Solution for Homework 11
Prepared by Niakam Kazemi

36.1-7) Let L_1 and L_2 be two languages in P.

 L_1 in P \Rightarrow There exists a polynomial-time algorithm A that decides L_1.

 L_2 in P \Rightarrow There exists a polynomial-time algorithm B that decides L_2.

Closure under UNION - The following polynomial-time algorithm decides L_1 UNION L_2:

 Let w be an arbitrary instance (encoding) of the problem
 Run A with input w
 If A accepted w
 Then
 Accept
 Else
 Run B with input w
 If B accepted w
 Then
 Accept
 Else
 Reject

Closure under INTERSECTION - The following polynomial-time algorithm decides L_1 INTERSECT L_2:

 Let w be an arbitrary instance (encoding) of the problem
 Run A with input w
 Run B with input w
 If (A accepted w) AND (B accepted w) Then
 Accept
 Else
 Reject

Closure under CONCATENATION - The following polynomial-time algorithm decides the $L_1 L_2$:

 Let w be an arbitrary instance (encoding) of the problem
 For all w', w'' such that ($w = w' w''$) and (w' in L_1) and (w'' in L_2)
 Run A with input w'
 Run B with input w''
 If (A accepted w') AND (B accepted w'') Then
 Accept & Exit
 Else
 Reject

Closure under COMPLEMENT - The following polynomial-time algorithm decides the COMPLEMENT of L_1:

 Let w be an arbitrary instance (encoding) of the problem
 Run A with input w
 If (A accepted w) Then
 Accept
 Else
 Reject

Closure under Kleen star – Using closure under UNION and CONCATENATION we conclude that class P is closed under Kleen star.
36.2-9) Let L be any language in P. Therefore:

\[\neg L \subseteq P \quad (\text{where } \neg L \text{ is the complement of } P) \]
\[\Rightarrow \neg L \subseteq \text{NP} \quad (\text{since } P \text{ is a subset of NP}) \]
\[\Rightarrow L \in \text{co-NP} \]

Since L is any language in P we conclude that P is a subset of co-NP.

36.3-1)

\(L_1 \leq_p L_2 \Rightarrow \) There exists a polynomial-time computable function \(f : \{0, 1\}^* \rightarrow \{0, 1\}^* \) such that for all \(x \) in \(\{0, 1\}^* \), \(x \in L_1 \) if and only if \(f(x) \in L_2 \).

\(L_2 \leq_p L_3 \Rightarrow \) There exists a polynomial-time computable function \(g : \{0, 1\}^* \rightarrow \{0, 1\}^* \) such that for all \(y \) in \(\{0, 1\}^* \), \(y \in L_2 \) if and only if \(g(y) \in L_3 \).

Therefore, there exists a polynomial-time computable function \(h : \{0, 1\}^* \rightarrow \{0, 1\}^* \) such that for all \(x \) in \(\{0, 1\}^* \), \(x \in L_1 \) if and only if \(h(x) = g(f(x)) = g(y) \in L_3 \). In other words, to reduce \(L_1 \) to \(L_3 \) in polynomial time, first use \(f(x) \) to reduce \(L_1 \) to \(L_2 \) and then use \(g(y) \) (\(g \) with the input \(f(x) \)) to reduce \(L_2 \) to \(L_3 \).