CMSC 441: Algorithms
Greedy Algorithms

Hillol Kargupta, Professor
http://www.cs.umbc.edu/~hillol/
hillol@gl.umbc.edu
Greedy Algorithms

- Greedy algorithms have the following property: Continuously finding the local optimum leads to the global optimum solution.
- In simple words, be greedy at every step!
- A greedy algorithm always makes the choice that looks best at the moment.
- Examples:
 - Gas station problem to minimize the number of gas stops
 - Activity selection problem
 - Huffman code for data compression
 - Fractional knapsack problem
 - Minimum spanning tree: Prim’s algorithm
Example: Minimize gas stops

- Problem statement:
 - Goal is to minimize the number of gas stops.
 - Input: start & end positions, exact locations of all gas stations along the way. Exactly m miles can be covered with one full tank of gas, irrespective of speed. Assume that initially gas tank is full.
 - Output: a list of gas stops.

- Greedy idea: Go as far as you can go before stopping for gas!

<table>
<thead>
<tr>
<th>Gas station locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>s ____________________</td>
</tr>
</tbody>
</table>
Algorithm find_gas_stops():
current position = start position;
while (current_position < end_position)
 compute the position at which car will run out of gas.
 if (that position < end position) then
 find closest gas station before reaching that position.
 output fill up gas at that gas station.
 current position = that gas station location
 else
 current position = end position; /* reached */
Proof

• Prove that the algorithm finds an optimal solution, i.e. another solution with less number of gas stations does NOT exist.
• Induction or contradiction can be used. Contradiction will work well.
• Proof:
 • Assume that our algorithm does not find an optimal solution, i.e. there exists another better solution.
 • Our solution is \(s_1 = <g_{s1}, g_{s2}, g_{s3}, \ldots g_{sk}> \), that better solution is \(s_2 = <g_{s1}', g_{s2}', g_{s3}', \ldots g_{sk-1}'> \).
 • Continues in the next slide…
Proof …

• Compare the gas stops, starting with the first gas stop:
 - There are three possibilities:
 - $gs_i = gs_i'$: Continue to compare next gas stops.
 - $gs_i > gs_i'$: This is strange, s_1 is taking lead. Without affecting the outcome, we can make $gs_i' = gs_i$ and collapse this one to previous case.
 - $gs_i < gs_i'$: As per the algorithm, every time we are selecting last possible gas station before running out of gas. gs_i' is beyond gs_i (note that previous gas stop is same for both solutions) \Rightarrow car will run out of gas using s_2 \Rightarrow s_2 is invalid.
 - If $gs_i = gs_i'$ for all $k-1$ gas stops, s_1 makes one more stop gs_k to avoid running out of gas before reaching t. s_2 does not make that stop \Rightarrow car will run out of gas \Rightarrow s_2 is invalid.
• So, we have proven that, for all cases, s_2 is invalid \Rightarrow such a better solution does not exist.
• So, s_1 is an optimal solution \Rightarrow our algorithm is an optimal algorithm.
Details

- Input: start position \(s \), end position \(t \), gas station location array \(g[n] \), \(m \) miles/full tank.
- Let us say the current position is \(x \) with full tank of gas, then the car will run out of gas at position \(x+m \).
- To find the closest gas station: Do binary search in \(g[] \) for position \(x+m \), assuming that \(g[] \) is in sorted order.
- There are totally \(n \) gas stations. What is the running time of algorithm?
- Well, for finding each gas stop, time complexity is \(O(\lg n) \).
- Let us say that the total number of gas stops is \(k \). Then, time complexity is \(O(k \lg n) \).
- Worst case: \(O(n \lg n) \) [gas stations are sparse].
- Best case: \(O(((t-s)/m) \ast \lg n) \) [lots of gas stations].
Activity selection problem

- Given a set of n proposed activities that wish to use the resource, goal is to select a maximum-size set of mutually compatible activities.
- Each activity has start time and finish time. Two activities are compatible if they do not overlap.
- Greedy idea: The sooner an activity is finished, we can schedule another activity.
- Algorithm:
 - Initialize the output set to nil.
 - Consider each activity in the order of increasing finish time:
 - If the activity starts after the finish time of last activity in output set, then
 - Include it in the output set.
- For more details, pages 330 to 332 including figure 17.1
Huffman codes

- Widely used and effective technique for compressing data
- Savings of 20% to 90% are typical depending on file characteristics.
- Binary character code to represent each character:
 - Fixed length code: each char is assigned same fixed length codeword; a=000, b=001, c=010, d=011, e=100, f=101.
 - Variable length code: much better than fixed length code, by giving frequent chars short codeword and infrequent chars long codeword; a=0, b=101, c=100, d=111, e=1101, f=1100
 - Prefix code are codes in which no codeword is also a prefix of some other codeword.
 - An optimal code for a file is always represented by a full binary tree, in which every nonleaf node has two children.
Huffman codes …

- Figure 17.4: Fixed-length code and optimal prefix code for
 chars: frequencies = a:45, b:13, c:12, d:16, e:9, f:5
- Total # of bits of encoded file = \(\text{freq}_1 \times \text{length}(\text{code}_1) + \text{freq}_2 \times \text{length}(\text{code}_2) + \ldots + \text{freq}_k \times \text{length}(\text{code}_k) \)
- Huffman invented a greedy algorithm that constructs an optimal prefix code called Huffman code.
- Idea is to start with \(|C|\) leaves and perform a sequence of \(|C|-1\) “merging” operations to create the final tree.
- Greedy property: Smaller the frequency, make the code longer to improve the compression.
- Priority queues can be used to find the two least-frequent objects to merge together.
Properties of Huffman’s Algorithm

- Complexity?
- Correct and
- Optimal
Results

- Let J be the set of all internal nodes.

- Prove that the total cost of a tree for a code $\text{code} = \sum_{i \in J} f(i)$
Fractional Knapsack Problem

- A thief robbing a store finds \(n \) items; the \(i \)th item is worth \(v_i \) dollars and weights \(w_i \) pounds. He wants to take as valuable a load as possible, but he can carry at most \(W \) pounds in his knapsack.

- The thief can take fractions of items in this case. (There is another problem called 0-1 knapsack problem in which each item is either taken or left behind. No fractions allowed).

- Greedy property: Take the item with greatest value first, i.e. item with max. \(\frac{v_i}{w_i} \) value.

- Algorithm: Consider all items in the order of decreasing value. Keep including each item until the weight limit \(W \) is reached. Note that the last item may have to fractionally included.

- Proof by contradiction?
Prism’s algorithm

- Problem: Given a weighted undirected graph $G = (V,E)$, the goal is to find the minimum spanning tree, i.e. a tree that connects all nodes with minimum total cost.

- Algorithm:
 - Start with any node as the covered node.
 - At any time, there are two sets of nodes: covered nodes and uncovered nodes.
 - In each step, find the cheapest edge among all the edges that connect any covered node to any uncovered node.
 - Stop when all nodes are covered.

Covered nodes

```
       e1
      /   \
 e2     e3
      /     /
     .     .
     /     /
    ck     .
```

Uncovered nodes