UMBC Research on Software Agents and Multi-Agent Systems

Tim Finin University of Maryland Baltimore County finin@umbc.edu

The Agent Paradigm

- Software agents offer a new paradigm for very large scale distributed heterogeneous applications.
- The paradigm focuses on the interactions of autonomous, cooperating processes which can adapt to humans and other agents.
- Mobility is an orthogonal characteristic which many, but not all, consider important.
- Intelligence is always a desirable characteristic but is not strictly required by the paradigm.
- The paradigm is still forming.

Why is communication important?

- Most, but not all, would agree that communication is a requirement for cooperation.
- Societies can do things that no individual (agent) can.
- Diversity introduces heterogeneity.
- Autonomy encourages disregard for other agents' internal structure.
- Communicating agents need only care about understanding a "common language".

Agent Communication

- Agent-to-agent communication is key to realizing the potential of the agent paradigm, just as the development of human language was key to the development of human intelligence and societies.
- Agents use an *Agent Communication Language* or ACL to communication information and knowledge.
 - Genesereth (CACM, 1992) defined a software agent as any system which uses an ACL to exchange information.
- Understanding a "common language" means:
 - understanding its vocabulary, i.e., the meaning of its tokens
 knowing how to effectively use the vocabulary to perform tasks,
 - achieve goals, effect one's environment, etc.

Copyright 1998 Tim Finin

· For ACLs we're primarily concerned with the vocabulary

The intentional level, BDI theories, speech acts and ACLs: How do they all fit together? · ACL have message types that are usually modeled after speech acts, which are understood in terms of an intentional-level description of an agent · An intentional description makes references to beliefs, desires, intentions and other mental states. · BDI frameworks have the power to describe an agents' behavior, including communicative behavior · Describing behavior at this level is an important contribution of the agent-based approach.

Agents and agencies

- · Groups of agents can form a team to cooperate and act as one super-agent.
- Opening up an agent we may find it useful to describe its internal architecture as a collection of sub-agents.
- What's going on here? Is it agents all the way down?
- · One take -- a group of agents which can be modeled as having collective "mental states" (e.g., beliefs, desires, intentions) and can take collective actions can be usefully described as an agent.

Some Agent **Research** at UMBC

UMBC agent research

- Funding from NIST, DARPA, NSA, IBM, Fujitsu
- Focus:
 - Agent communication languages
 - Scalable Information filtering and retrieval
 - Mobile agent frameworks
 - Data mining
 - Applications to several problem domains
 - · enterprise integration
 - · distributed information retrieval · network management
 - · Electronic commerce

CIIMPLEX Consortium for Integrated Intelligent Manufacturing Planning and Execution EECOMS Extended Enterprise Coalition for Integrated Collaborative Manufacturing Systems

Participants

Funder: National Institute of Standards and Technology / Advanced Technology Program Technologies for the Integration of Manufacturing Applications (TIMA) •~ \$45M over six years in two ATP projects Goal: Plug and Play framework of business objectives and integration-enabling tools allowing a suite of solutions that can be

implemented "out-of-the-box" at small and midsized manufacturing and process sites including MES, ERP, Finite Scheduling, and Capacity Analysis/Decision Support Objectives: interoperability, configurability, adaptability, extensibility, plug and play.

IBM Corp
Universities
University of Maryland Baltimore County
University of North Carolina at Charlotte
University of Florida
Berclain USA Ltd.
Boeing
QAD Inc
GSE Systems
Lucent Technologies
 Ingersoll-Rand Co.
-Demand Solutions
-DLoG Remex Inc.
Intercim
EnvisionIt Software
The Haley Corporation

Manufacturing Enterprise Integration

- · Integration of planning and execution is imperative for agile manufacturing
 - parts delivery is delayed by the part supplie a preferred customer asks to move ahead a delivery
- machine breaks down on shop floor
- · This involves collaboration among business applications and managers
- · Business applications are legacy systems not intended to talk to each other (no API, no means of communication)
 - developed over long period of time (expensive to change) many decision steps are not covered (white space between applications)
- · Multi-agent system (MAS) approach
 - flexible and dynamic communication among applications
 - plug-and-play
 - interface agents to interact with people
 - other agents to fill the white space between business applications

General Problems

- There is no standard language for applications to express actions in a negotiation interaction
- everything is vendor-specific, impeding the creation of a marketExisting languages and standards for EDI are too weak to
- capture some desirable or required information – e.g., Business rules, constraints, contingencies, etc.
- Autonomous negotiation does not fit into existing business
 practices
 - How can we trust autonomous agents to negotiate on our behalf?
 - How do we integrate them into existing procedures for authorization, monitoring and auditing?
- Getting people and organizations to adopt radical new technology is very difficult

Specific Objectives

- Develop a high-level language for negotiation

 primitives for calls for proposal, proposals, counter-proposals,
 - acceptances, rejections, clarifications, etc.
 - security issues, e.g., authentication, authorization, signatures, etc.
- Developing content languages for negotiation
- For expressing business documents, business rules, constraints and other knowledge
- Integrating humans and agents in the negotiation process
 To provide oversight and monitoring
 To integrate with existing business practices
- Realism
 - Base solutions on emerging standards, both conceptual and technological, e.g., FIPA ACL, XML, PKI, TCP/IP

Specific Approach

- Use FIPA ACL primitives for negotiation

 Important contribution is the set of primitives and their semantics
- 2 Use XML, extended with KIF, as the content language
 - KIF-based extensions allow the use of constraints and business rules
- 3 Introduce the notion of adjustable autonomy into agent-based supply chain negotiation
 - Use of "decision rules" to decide how to respond augmented with "authorization rules" which decide if the action should be reviewed for authorization and by whom.

1 Negotiation primitives

- · Based on the FIPA ACL with extensions
- · Basic negotiation primitives:
 - cfp: call for proposals
 - propose: propose (or counter-propose) an action
 accept-proposal: accept a proposal
- accept-proposal: accept a proposal
 reject-proposal: reject a proposal (with optional reason)
- Other ACL primitives useful in negotiation
 inform, query, request, not_understood, refuse, ...
 - advertise, subscribe, broker, register, ...
- Specific negotiation protocols are defined using these primitives
 - e.g., Iterated-contract-net, English-auction, etc.

Examples of negotiation primitives

(cfp :from "http://umbc.edu/~finin/self" :lnguage KIP/XML :ontology http://c..hm.com/ced2 :content "~proposal> <salesContract>
cprice unit=usds: Price <price> <goods-_____goods-</aslesContract> <kisf>contract> <kisf>contract> <kisf>contract> <kisf>contract> <kisf>contract> <kisf>contract> <kisf>contract> <kisf>contract> <dotspre>contract> <dotspre>contract</dotspre>contract> <dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>contract</dotspre>con

(propose ito "http://umbc.edu/~finin/sell" ifrom "http://umbc.edu/~finin/sell" innuguge KIF/XML sontology http://uc.bin.com/sel2 :content " <proposal-<asieScontract> </proposal-</proposal-</proposal-</proposal-</proposal-</proposal-</proposal-</proposal-</proposal-</proposal-</proposal-</proposal-

2 An XML-based content

- We are exploring the use of an XML-based content language
- XML will be the language of the web
 - XML will rapidly become the dominant "content" encoding used on the web for ecommerce and other applications.
 - Businesses (and their agents) will continue to interact by exchanging documents (POs, invoices, catalogues, etc) but encoded in XML.
- XML supports the required extensions

 We envision extensions to encode rules, constraints and agent-agent

negotiation

HTML laptop description
<title>Laptop
Computer</title>
<body></body>

IBM Thinkpad 560X

233 Mhz
32 Mb
4 Gb
4.1 pounds
\$3200

COMPUTER TYPE="LAPTOP"> <COMPUTER TYPE="LAPTOP"> <MANUFACTURER>IBM</MANUFACTURER> <masshttp://www.vendor.com/images/560.gif</masses <masshttp://www.vendor.com/images/560.gif</massess <masshttp://www.vendor.com/images/560.gif</masshttp://www.vendor.com/images/560.gif</masshttp://www.vendor.com/images/560.gif</masshttp://www.vendor.com/images/560.gif</masshttp://www.vendor.com/images/560.gif</masshttp://www.vendor.com/images/560.gif</masshttp://www.vendor.com/images/560.gif</masshttp://www.vendor.com/images/560.gif</masshttp://www.vendor.com/imagessatter/statter/statter/statter/statter/statter/statter/statter/statter/statter/statter/statter/statter

3 Controlling negotiating agents

- The potential for automated negotiation raises many concerns
 - Do we really trust our agent not to be fleeced?

</BODY>

- How can we monitor what our agent has done and is doing?
- Can our agent learn our preferences and negotiation strategies?
- How can we accommodate existing procedures for authorization and review?

Adjustable Autonomy ACL statement · Response rules determine how the agent should respond in a How to respond? negotiation · Review rules determine if and by whom the proposed response should be reviewed Typical review rules: Review -review if price > \$500 -review if untrusted vendor -review if critical resource -review if new product Agent -review if offer only partly understood Approve -random review -etc.. no Machine learning techniques can be used to automatically learn a reviewers preferences and strategies Modify

Recent Results

- Developed tools for representing ACL messages in XML
 - Defined ACL DTD
 - Defined XSL style sheet for ACL
 - Implemented parser for ACL to XML
- Developed tools for representing KIF in XML
 - Defined KIF DTD
 - Defined XSL style sheet for for KIF
 - Implemented parser for KIF to XML
- A web-based demonstration of negotiation for the purchase of a laptop is available

Jackal

A Communications Infrastructure for Java-based Multi-agent Systems

- a Java package facilitating the use of the KQML ACL.
- Presents a simple yet powerful API.
- Situates messages within conversational context.
 Blackboard provides flexible interface to messages traffic.
- Blackboard provides flexible interface to messages traffic
- Does not require *any* modification to existing code.
 Supports multiple agents within the same virtual machine.
- Plug n' Play interface for communication protocols.
- 100% pure Java, using only SunSoft Java libraries.
- Implements many aspects of the proposed KNS specification, including multi-protocols, alias resolution and authentication.
- · Provides scalable, reliable messaging infrastructure.

9/98

6

KQML Naming Scheme (KNS)

- A DNS-like scheme for agent naming
- Protocols for dynamic group formation and disbanding.
- Transparent maintenance of a distributed, persistent identity for agents.
- Facilities for 'no-fault' access to agents and basic agent information.

Some key ideas

- Software agents offer a new paradigm for very large scale distributed heterogeneous applications.
- The paradigm focuses on the interactions of autonomous, cooperating processes which can adapt to humans and other agents.
- Agent Communication Languages are a key enabling technology
 - Mobility is an orthogonal characteristic which many, but not all, consider central.
 Intelligence is always a desirable characteristic but is not
- Intelligence is always a desirable characteristic but is not strictly required by the paradigm.
- The paradigm is still forming and ACLs will continue to evolve.

Prospects

- •FIPA's ACL is likely to be the next iteration of a widely used standard ACL.
- •Its not clear how ACLs will participate in the rapidly evolving world of Internet languages and protocols
- The ACL "territory" may be overtaken by efforts from a programming language (e.g., Java, Jini), another interoperability language (e.g., CORBA) or Web technology (e.g., XML).
- The Agent community is a small fish compared to, e.g., the Java community. What will Microsoft do?
- •We are experimenting with XML for agent communication -XML is a good way to represent structured information (e.g., ACL
- messages, KIF-like content) that is easy to use and understand by all agents, both human and software – We've developed DTDs and style sheets for FIPA ACL and KIF

For More Information e. General information on software agents e. http://www.cs.umbc.edu/agents KQML http://www.cs.umbc.edu/kqml MIF http://www.cs.umbc.edu/kif Ontologies http://www.cs.umbc.edu/antology/ Agent Communication Languages http://www.cs.umbc.edu/acl/ Jackal

http://jackal.cs.umbc.edu/J3

n-grams vs. words

· An IR system can use n-grams or words as terms

• Advantages of n-grams

- Don't need a morphological model (e.g., for stemming) so good for multi-linguistic environment or non-language corpora (e.g., Java code).
 Robust with respect to letter errors (typos, OCR errors, etc)
- Provides some context since they span adjacent words
 "computer science" --> compu + ... + ter_s + er_sc + r_sci + _scie + .
- · Advantages of words
 - Can be more precise ("computation" but not "computer") - Amenable to boolean combinations
- Bottom line?
 - Depends on specifics of application

- Tcl/Tk user interface

- Agent API using KQML

•Problem: What can we use as an ontology to characterize what a document is about?

•Solution: use a pre-existing, "naturally occurring"

- ontology, e.g., Yahoo hierarchy -- 150K nodes
- Newsgroup hierarchy -- 5K newsgroups
- Encyclopedia articles -- ~10K articles

•Approach: automatically classify the target document with respect to the ontology corpus with telltale.

