Modeling Trust in Distributed Systems

By,
Lalana Kagal, Scott Cost,
Timothy Finin, Yun Peng

University of Maryland Baltimore County

Presented at the Second Workshop on Norms and Institutions in MAS, Autonomous Agents, Montreal, May 29, 2001

Outline

- Problems
- What is Distributed Trust
- Background
- Limitations
- Overview of our system
- Design
- Ontology
- How it works
- Processing
- Ongoing Work
- Summary

Problem

There are 2 scenarios that we are trying to address
1. Supply Chain Management System
 - Focus of the paper
2. Dynamic Wireless Environment
 - Ongoing work

Supply Chain Management

- Inter company information access
- Sharing/accessing information, and performing actions across (or within) organizations
- have to observe organizational policies for security and authorization.
Supply Chain Management

- We need to:
 - grant authorization and rights
 - delegate authorization and rights
 - request certificates proving authorizations
 - request actions, attaching certificates as necessary
- Implemented a system for CIIMPLEX EECOMS project

CIIMPLEX EECOMS

CIIMPLEX: Consortium for Integrated Intelligent Manufacturing Planning and Execution
EECOMS: Extended Enterprise Coalition for Integrated Collaborative Manufacturing Systems

- Goal: Plug and Play framework of business objectives and integration-enabling tools allowing a suite of solutions that can be implemented "out-of-the-box" at small and midsized manufacturing and process sites including MES, ERP, Finite Scheduling, and Capacity Analysis/Decision Support
- Objectives: interoperability, configurability, adaptability, extensibility, plug and play
- Focus: supply chain management

Funder: National Institute of Standards and Technology / Advanced Technology Program
Technologies for the Integration of Manufacturing Applications (TIMA)

CIIMPLEX Participants

- IBM Corp
- University of Maryland
- Baltimore County
- University of Florida
- University of North Carolina at Charlotte
- Berclain USA Ltd.
- Boeing
- QAD Inc
- GSE Systems
- Lucent Technologies
- Ingersoll-Rand Co.
 - Demand Solutions
 - DLoG Remex Inc.
- Intercim
- EnvisionIt Software
- The Haley Corporation

Dynamic Wireless Environments

- Unknown entities
- Wireless devices are resource poor
- Authenticate other wireless devices
- Need to communicate and sometimes use other devices
We need to:
- specify ‘public’ policies
- Manage authorization and delegation
- Implementation should be ‘light’, yet effective

Issues:
- No central authority
- Logging in is not possible
- Access control for entities never encountered before

We use Distributed Trust to solve the above issues

Distributed Trust:
- trust = policies + credentials + determining if credentials fulfill policies + delegating trust to third parties

Background:
- PGP
 - Secure emails
 - Web of trust
- SPKI
 - used for access control
 - A PKC consists of key, name, authorization
 - includes notion of delegation + permission to delegate further
 - Authorization certificates
 - Depth of delegation is boolean or integer

Background (cont.):
- Role based Access Control
- Trust Establishment
 - based on role based Access Control
 - Policy Language is defined in XML
 - Certificate Collector collects missing certificates
 - Supports negative certificates
- PolicyMaker
 - binds public keys to predicates
 - no mapping between keys and personal id
 - Simple language to express trust info
 - Given policy, answers queries about trust
Delegation Logic
- Language for specifying trust information
- Ability to manage non-monotonic reasoning
- Expresses delegation depth explicitly

PGP and X.509 certificates
- Provide authorization
- No delegation

SPKI
- Provides authorization
- Limited delegation
- No constraints on delegations

Role based
- Difficult in inter company communication as roles are different across domains

Trust Establishment
- Specifies certificate types that makes interoperability with other TE systems difficult
- Used for mapping between entities and roles
- Limited support for delegation

PolicyMaker
- Policy is complex, fully programmable
- Hard to understand for non-programmers

Overview of our System
- Provides authorization
- Representation for credentials and trust relationships
- Flexibility in describing policies
- Constraints on execution
- Constraints on further delegation
Overview of our System

- Security and authorization policy represented as rules and constraints
- Principals make signed statements
- Principals can be humans (via a suitable interface) or software agents acting on behalf of humans
- Agents reason about the policy and statements to derive (prove) authorizations

Design

Supply Chain Management System
- Companies have security policies
- Policy enforced by a number of ‘security officers’
- Each agent in the system has an ID certificate, X.509
- All communication via signed messages
- Trust info encoded in Prolog

Design

Ontology

- Agents
 - Entities in the system
 - Associated with roles
- Actions
 - Application specific action
- Propositions
 - Permissions
 - Actions that an agent can perform
 permission(Agent, Action, Constraint)
Ontology

- Delegations
 Abilities that are deferred
 `delegate(Issue, Start, End, From, To, Permission, Constraint on redelegation, Flag)`
 Delegation is an ability

- requests
 `request(From, To, Action)`
 `requestCert(From, To, Action)`

Policy

- Security Policy
 - Authorization policies
 - Specifies rules for checking credentials
 - Delegation policies
 - Rules for deferring of permissions
 - Basic Permissions
 - Role based access rights for entities
 - Access rights for an agent
 - Certain basic rights

How it works: Initial delegation

How it works: Request
How it works: Delegation

Delegate to Developers

Processing

- Prolog is used to specify policies, delegations and queries
- An action is allowed if
 - the agent has the ability to perform the action or
 - has been delegated the ability by someone, who has the ability to delegate

How it works: Request

Processing

- An agent has the right to delegate if
 - it is an ability
 - or someone had delegated to it the right and the delegator had the right to delegate
Ongoing Work

- Use a semantic language based on XML (RDF/DAML) for representation of trust information
- Use XML Signatures
- Trust in dynamic wireless environment
- Specifying ontology for permissions, obligations, entitlements, prohibitions in RDF/DAML

Summary

- We have developed an infrastructure for distributed trust
- Designed a representation for trust info, credentials and policies
- Showed its feasibility through implementation
- Discussed some of our future research directions

Questions

- Reputation mechanism
- Using smart cards for authentication
- Delegating of obligations, entitlements, prohibitions
- Short lived Propositions
 - reduces processing time
 - easy handling of revocations