Approximate Inference: Variational Inference

CMSC 691
UMBC
Goal: Posterior Inference

Hyperparameters α

Unknown “parameters” Θ

Data: $p(\Theta)$

Likelihood model: $p_{\alpha}(\Theta | \text{Data})$
(Some) Learning Techniques

MAP/MLE: Point estimation, basic EM

Variational Inference: Functional Optimization

Sampling/Monte Carlo

what we’ve already covered

today

next class
Outline

Variational Inference

Basic Technique

Example: Topic Models
Variational Inference: Core Idea

- Observed x, latent r.v.s θ
- We have some joint model $p(\theta, x)$
- We want to compute $p(\theta|x)$ but this is computationally difficult
Variational Inference: Core Idea

• Observed x, latent r.v.s θ
• We have some joint model $p(\theta, x)$
• We want to compute $p(\theta|x)$ but this is computationally difficult

• Solution: approximate $p(\theta|x)$ with a different distribution $q_\lambda(\theta)$ and make $q_\lambda(\theta)$ “close” to $p(\theta|x)$
Variational Inference

$p(\theta \mid x)$

Difficult to compute
Variational Inference

Minimize the "difference" by changing λ

$p(\theta | x)$: Difficult to compute

$q(\theta)$: controlled by parameters λ

$q(\theta)$: Easy (ier) to compute
Variational Inference

$p(\theta | x)$

Difficult to compute

$q(\theta)$

Easy(ier) to compute

Minimize the "difference" by changing λ
Variational Inference: A Gradient-Based Optimization Technique

Set $t = 0$

Pick a starting value λ_t

Until **converged**:
1. Get value $y_t = F(q(\bullet; \lambda_t))$
2. Get gradient $g_t = F'(q(\bullet; \lambda_t))$
3. Get **scaling factor** ρ_t
4. Set $\lambda_{t+1} = \lambda_t + \rho_t * g_t$
5. Set $t += 1$
Set $t = 0$

Pick a starting value λ_t

Until converged:
1. Get value $y_t = F(q(\bullet; \lambda_t))$
2. Get gradient $g_t = F'(q(\bullet; \lambda_t))$
3. Get scaling factor ρ_t
4. Set $\lambda_{t+1} = \lambda_t + \rho_t * g_t$
5. Set $t += 1$
Variational Inference: The Function to Optimize

Any easy-to-compute distribution

\[\mathcal{D}_{KL} (q(\theta) \parallel p(\theta | x)) \]

Posterior of desired model
Variational Inference:
The Function to Optimize

Any easy-to-compute distribution

\[
\min_{q} \mathbb{D}_{KL} (q(\theta) \ || \ p(\theta \mid x))
\]

- Find the best distribution (calculus of variations)
- Posterior of desired model
Variational Inference:
The Function to Optimize

\[
\min_{q} D_{KL}(q(\theta) \parallel p(\theta \mid x))
\]

Find the best distribution

Parameters for desired model

\[
q(\theta)
\]
Variational Inference: The Function to Optimize

\[
\min_q D_{KL} \left(q(\theta) \ || \ p(\theta \mid x) \right)
\]

Find the best distribution

Parameters for desired model

\[
q \left(\theta \mid \lambda \right)
\]

Variational parameters for \(\theta \)
Variational Inference: The Function to Optimize

KL-Divergence (expectation)

\[
\min_q D_{KL}(q(\theta) \mid\mid p(\theta \mid x))
\]

Find the best distribution

\[
D_{KL}(q(\theta) \mid\mid p(\theta \mid x)) = \\
\mathbb{E}_{q(\theta)} \left[\log \frac{q(\theta)}{p(\theta \mid x)} \right]
\]

Parameters for desired model

\[
q(\theta \mid \lambda)
\]

Variational parameters for \(\theta\)
Variational Inference

\[
\min_q \mathbb{E}_{q(\theta)} \log \left(\frac{q(\theta)}{p(\theta | x)} \right)
\]

Find the \textit{best} distribution

Parameters for \textit{desired} model

\[
q(\theta | \lambda)
\]

Variational parameters for \(\theta\)
Exponential Family Recap: "Easy" Posterior Inference

\[p(\theta \mid x) \propto \pi(x \mid \theta) p(\theta) \]

\(p \) is the conjugate prior for \(\pi \)

Exponential Family Recap: "Easy" Expectations

\[\mathbb{E}_{p_\theta} [f(x)] = \nabla_\theta A(\theta) \]
Variational Inference

\[
\min_{q} \text{KL}(q(\theta) \parallel p(\theta | x))
\]

Find the best distribution

When \(p \) and \(q \) are the same exponential family form, the variational update \(q(\theta) \) is (often) computable (in closed form)
Variational Inference: A Gradient-Based Optimization Technique

Set $t = 0$

Pick a starting value λ_t

Let

$$F(q(\cdot; \lambda_t)) = KL[q(\cdot; \lambda_t) || p(\cdot)]$$

Until **converged**:

1. Get value $y_t = F(q(\cdot; \lambda_t))$
2. Get gradient $g_t = F'(q(\cdot; \lambda_t))$
3. Get **scaling factor** ρ_t
4. Set $\lambda_{t+1} = \lambda_t + \rho_t * g_t$
5. Set $t += 1
Variational Inference: Maximization or Minimization?

\[\mathcal{L}(q, p) = \mathbb{E}_q [\log p(x, \theta)] - \mathbb{E}_q [q(\theta)] \]

\[= -D_{KL}(q(\theta) \| p(\theta | x)) + \text{constant} \]

\[= \text{Evidence Lower Bound (ELBO)} \]
Evidence Lower Bound (ELBO)

$$\log p(x) = \log \int p(x, \theta) d\theta$$
Evidence Lower Bound (ELBO)

\[\log p(x) = \log \int p(x, \theta) d\theta \]

\[= \log \int p(x, \theta) \frac{q(\theta)}{q(\theta)} d\theta \]
Evidence Lower Bound (ELBO)

\[
\log p(x) = \log \int p(x, \theta) d\theta \\
= \log \int p(x, \theta) \frac{q(\theta)}{q(\theta)} d\theta \\
= \log \mathbb{E}_{q(\theta)} \left[\frac{p(x, \theta)}{q(\theta)} \right]
\]
Evidence Lower Bound (ELBO)

\[
\log p(x) = \log \int p(x, \theta) d\theta
\]

\[
= \log \int p(x, \theta) \frac{q(\theta)}{q(\theta)} d\theta
\]

\[
= \log \mathbb{E}_{q(\theta)} \left[\frac{p(x, \theta)}{q(\theta)} \right]
\]

\[
\geq \mathbb{E}_{q(\theta)} [p(x, \theta)] - \mathbb{E}_{q(\theta)} [q(\theta)]
\]

\[
= \mathcal{L}(q)
\]
Outline

Variational Inference

Basic Technique

Example: Topic Models
Mixture Model vs. Admixture Model

- Both consider K generating distributions
- Mixture model
- Admixture model
Mixture Model vs. Admixture Model

• Both consider K generating distributions

• Mixture model
 – Each of the N datapoints is generated from one of those K distributions

• Admixture model
Mixture Model vs. Admixture Model

- Both consider K generating distributions
- Mixture model
 - Each of the N datapoints is generated from one of those K distributions
- Admixture model
 - Each of the N datapoints is generated from a mixture of those K distributions
Bag-of-Items Models: Admixture Models

\[p(\text{Three: 1, people: 2, attack: 2, ...}) = p(\text{Unigram counts}) \]

Three people have been fatally shot, and five people, including a mayor, were seriously wounded as a result of a Shining Path attack today against a community in Junin department, central Peruvian mountain region.
Bag-of-Items Models: Admixture Models

Three people have been fatally shot, and five people, including a mayor, were seriously wounded as a result of a Shining Path attack today against a community in Junin department, central Peruvian mountain region.

\[p(\cdot) = p_{\phi, \omega}(\cdot) \]

Unigram counts

- Three: 1
- people: 2
- attack: 2
- ...

Global (corpus-level) parameters interact with local (document-level) parameters
Latent Dirichlet Allocation (Blei et al., 2003)

Per-document (unigram) word counts
Latent Dirichlet Allocation (Blei et al., 2003)

Count of word j in document i
Latent Dirichlet Allocation
(Blei et al., 2003)

Count of word j
in document i

Core assumptions:
1. K “topics”: distributions over possible vocab words
Latent Dirichlet Allocation (Blei et al., 2003)

Count of word j in document i

Core assumptions:
1. K “topics”: distributions over possible vocab words
2. Each document i has general “preferences” for which topics to use
Latent Dirichlet Allocation (Blei et al., 2003)

Count of word j in document i

Core assumptions:
1. K “topics”: distributions over possible vocab words
2. Each document i has general “preferences” for which topics to use
3. Each observed word j in a document i can come from a different topic
Latent Dirichlet Allocation (Blei et al., 2003)

Count of word j in document i

\[\text{Per-document (unigram) word counts} \]

K “topics”: distribution over vocabulary

\[\text{Per-topic word usage} \]

\[\text{Per-document (latent) topic usage} \]
Latent Dirichlet Allocation
(Blei et al., 2003)

Per-document (unigram) word counts

Per-document (latent) topic usage

Per-topic word usage
Latent Dirichlet Allocation (Blei et al., 2003)

Core assumptions:
1. K “topics”: distributions over possible vocab words
2. Each document i has general “preferences” for which topics to use
3. Each observed word j in a document i can come from a different topic
Latent Dirichlet Allocation (Blei et al., 2003)

Core assumptions:
1. K “topics”: distributions over possible vocab words
2. Each document i has general “preferences” for which topics to use
3. Each observed word j in a document i can come from a different topic
Latent Dirichlet Allocation
(Blei et al., 2003)

Core assumptions:
1. K “topics”: distributions over possible vocab words
2. Each document i has general “preferences” for which topics to use
3. Each observed word j in a document i can come from a different topic
Latent Dirichlet Allocation (Blei et al., 2003)

Core assumptions:
1. K “topics”: distributions over possible vocab words
2. Each document i has general “preferences” for which topics to use
3. Each observed word j in a document i can come from a different topic
Latent Dirichlet Allocation
(Blei et al., 2003)

Core assumptions:
1. K “topics”: distributions over possible vocab words
2. Each document i has general “preferences” for which topics to use
3. Each observed word j in a document i can come from a different topic
Variational Inference: LDirA

\[p: \text{True model} \]

\[w^{(d,n)} \sim \text{Discrete}(\phi_{z^{(d,n)}}) \]
\[\phi_k \sim \text{Dirichlet}(\beta) \]
\[z^{(d,n)} \sim \text{Discrete}(\theta^{(d)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\alpha) \]

Explicit conditioning left off (for space)
Variational Inference: LDirA

\[w^{(d,n)} \sim \text{Discrete}(\phi_{z^{(d,n)}}) \]
\[\phi_k \sim \text{Dirichlet}(\beta) \]
\[z^{(d,n)} \sim \text{Discrete}(\theta^{(d)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\alpha) \]

\[\phi_k \sim \text{Dirichlet}(\lambda_k) \]
\[z^{(d,n)} \sim \text{Discrete}(\psi^{(d,n)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\gamma_d) \]

Explicit conditioning left off (for space)
Variational Inference: LDirA

\[w^{(d,n)} \sim \text{Discrete}(\phi_{z^{(d,n)}}) \]
\[\phi_k \sim \text{Dirichlet}(\beta) \]
\[z^{(d,n)} \sim \text{Discrete}(\theta^{(d)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\alpha) \]

\[\phi_k \sim \text{Dirichlet}(\lambda_k) \]
\[z^{(d,n)} \sim \text{Discrete}(\psi^{(d,n)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\gamma_d) \]

Notice: no shared parameters!!!
Variational Inference: A Gradient-Based Optimization Technique

Set $t = 0$

Pick a starting value λ_t

Let

$$F(q(\bullet;\lambda_t)) = \text{KL}[q(\bullet;\lambda_t) \mid \mid p(\bullet)]$$

Until converged:

1. Get value $y_t = F(q(\bullet;\lambda_t))$
2. Get gradient $g_t = F'(q(\bullet;\lambda_t))$
3. Get scaling factor ρ_t
4. Set $\lambda_{t+1} = \lambda_t + \rho_t * g_t$
5. Set $t += 1$
Variational Inference: LDirA Topic Proportions

\[p: \text{True model} \]
\[z^{(d,n)} \sim \text{Discrete}(\theta^{(d)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\alpha) \]

\[q: \text{Mean-field approximation} \]
\[z^{(d,n)} \sim \text{Discrete}(\psi^{(d,n)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\gamma_d) \]

\[\mathbb{E}_{q(\theta^{(d)})}\left[\log p(\theta^{(d)} \mid \alpha) \right] \]
Variational Inference: LDirA Topic Proportions

\textbf{p: True model}

\[z^{(d,n)} \sim \text{Discrete}(\theta^{(d)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\alpha) \]

\textbf{q: Mean-field approximation}

\[z^{(d,n)} \sim \text{Discrete}(\psi^{(d,n)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\gamma_d) \]

\[\mathbb{E}_{q(\theta^{(d)})} \left[\log p(\theta^{(d)} \mid \alpha) \right] = \]

\[\mathbb{E}_{q(\theta^{(d)})} \left[(\alpha - 1)^T \log \theta^{(d)} + C \right] = \]

\[\frac{\Gamma(\sum_k \alpha_k)}{\prod_k \Gamma(\alpha_k)} \prod_k \theta_k^{\alpha_k - 1} \]

\[\text{params} = (\alpha_k - 1)_k \]

\[\text{suff. stats.} = (\log \theta_k)_k \]
Variational Inference: LDirA Topic Proportions

\[p: \text{True model} \]

\[
\begin{align*}
 z^{(d,n)} &\sim \text{Discrete}(\theta^{(d)}) \\
 \theta^{(d)} &\sim \text{Dirichlet}(\alpha)
\end{align*}
\]

\[q: \text{Mean-field approximation} \]

\[
\begin{align*}
 z^{(d,n)} &\sim \text{Discrete}(\psi^{(d,n)}) \\
 \theta^{(d)} &\sim \text{Dirichlet}(\nu_d)
\end{align*}
\]

\[
\mathbb{E}_{q(\theta^{(d)})} \left[\log p(\theta^{(d)} | \alpha) \right] = \\
\mathbb{E}_{q(\theta^{(d)})} \left[(\alpha - 1)^T \log \theta^{(d)} + C \right]
\]

params = \((\psi_k - 1)_k \)

suff. stats. = \((\log \theta_k)_k \)

expectation of sufficient statistics of q distribution
Variational Inference: LDirA Topic Proportions

\[z^{(d,n)} \sim \text{Discrete}(\theta^{(d)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\alpha) \]

p: True model

\[z^{(d,n)} \sim \text{Discrete}(\psi^{(d,n)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\nu_d) \]

q: Mean-field approximation

\[\mathbb{E}_{q(\theta^{(d)})} \left[\log p(\theta^{(d)} \mid \alpha) \right] = \]
\[(\alpha - 1)^T \mathbb{E}_{q(\theta^{(d)})} \left[\log \theta^{(d)} \right] + C \]

The expectation of the sufficient statistics is the gradient of the log normalizer.
Variational Inference: LDirA Topic Proportions

\(p: \) True model
\[
\begin{align*}
z^{(d,n)} &\sim \text{Discrete}(\theta^{(d)}) \\
\theta^{(d)} &\sim \text{Dirichlet}(\alpha)
\end{align*}
\]

\(q: \) Mean-field approximation
\[
\begin{align*}
z^{(d,n)} &\sim \text{Discrete}(\psi^{(d,n)}) \\
\theta^{(d)} &\sim \text{Dirichlet}(\gamma_d)
\end{align*}
\]

\[
\mathbb{E}_{q(\theta^{(d)})} \left[\log p(\theta^{(d)} | \alpha) \right] = \\
\mathbb{E}_{q(\theta^{(d)})} \left[(\alpha - 1)^T \log \theta^{(d)} + C \right] = \\
(\alpha - 1)^T \nabla_{\gamma_d} A(\gamma_d - 1) + C
\]

expectation of the sufficient statistics is the gradient of the log normalizer
Variational Inference: LDirA Topic Proportions

\[p: \text{True model} \]
\[z^{(d,n)} \sim \text{Discrete}(\theta^{(d)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\alpha) \]

\[q: \text{Mean-field approximation} \]
\[z^{(d,n)} \sim \text{Discrete}(\psi^{(d,n)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\gamma_d) \]

\[\mathbb{E}_{q(\theta^{(d)})}[\log p(\theta^{(d)} | \alpha)] = (\alpha - 1)^T \nabla_{\gamma_d} A(\gamma_d - 1) + C \]

\[\mathcal{L} \bigg|_{\gamma_d} = (\alpha - 1)^T \nabla_{\gamma_d} A(\gamma_d - 1) + M(\gamma_d) \]

there’s more math to do!
Variational Inference: A Gradient-Based Optimization Technique

Set $t = 0$
Pick a starting value λ_t
Let
$$F(q(\bullet; \lambda_t)) = KL[q(\bullet; \lambda_t) || p(\bullet)]$$
Until converged:
1. Get value $y_t = F(q(\bullet; \lambda_t))$
2. Get gradient $g_t = F'(q(\bullet; \lambda_t))$
3. Get scaling factor ρ_t
4. Set $\lambda_{t+1} = \lambda_t + \rho_t * g_t$
5. Set $t += 1$
Variational Inference: LDirA Topic Proportions

\[p: \text{True model} \]
\[z^{(d,n)} \sim \text{Discrete}(\theta^{(d)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\alpha) \]

\[q: \text{Mean-field approximation} \]
\[z^{(d,n)} \sim \text{Discrete}(\psi^{(d,n)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\gamma_d) \]

\[\mathcal{L} \Bigg|_{\gamma_d} = (\alpha - 1)^T \nabla_{\gamma_d} A(\gamma_d - 1) + M(\gamma_d) \]

\[\nabla_{\gamma_d} \mathcal{L} \Bigg|_{\gamma_d} = (\alpha - 1)^T \nabla_{\gamma_d}^2 A(\gamma_d - 1) + \nabla_{\gamma_d} M(\gamma_d) \]
Variational Inference: LDirA Topic Proportions

\[p: \text{True model} \]
\[z^{(d,n)} \sim \text{Discrete}(\theta^{(d)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\alpha) \]

\[q: \text{Mean-field approximation} \]
\[z^{(d,n)} \sim \text{Discrete}(\psi^{(d,n)}) \]
\[\theta^{(d)} \sim \text{Dirichlet}(\gamma_d) \]

\[\mathcal{L} \bigg|_{\gamma_d} = (\alpha - 1)^T \nabla_{\gamma_d} A(\gamma_d - 1) + M(\gamma_d) \]

\[\nabla_{\gamma_d} \mathcal{L} \bigg|_{\gamma_d} = (\alpha - 1)^T \nabla_{\gamma_d}^2 A(\gamma_d - 1) + \nabla_{\gamma_d} M(\gamma_d) \]

analytically solve this for faster convergence (Blei et al., 2003)
Variational Inference: Core Idea

Basic Technique

- Observed x, latent r.v.s θ
- We have some joint model $p(\theta, x)$
- We want to compute $p(\theta|x)$ but this is computationally difficult

Example: Topic Models

- Solution: approximate $p(\theta|x)$ with a different distribution $q_\lambda(\theta)$ and make $q_\lambda(\theta)$ “close” to $p(\theta|x)$