Probabilistic Graphical Models

CMSC 691
UMBC
Two Problems for Graphical Models

\[p(x_1, x_2, x_3, \ldots, x_N) = \frac{1}{Z} \prod_C \psi_C(x_c) \]

Finding the normalizer Computing the marginals
Two Problems for Graphical Models

\[p(x_1, x_2, x_3, \ldots, x_N) = \frac{1}{Z} \prod_c \psi_c(x_c) \]

Finding the normalizer \hspace{2cm} Computing the marginals

\[Z = \sum_x \prod_c \psi_c(x_c) \]
Two Problems for Graphical Models

Finding the normalizer

$$\mathcal{P}(x_1, x_2, x_3, \ldots, x_N) = \frac{1}{Z} \prod_{c} \psi_c(x_c)$$

$$Z = \sum_{x} \prod_{c} \psi_c(x_c)$$

Computing the marginals

$$Z_n(v) = \sum_{x:x_n=v} \prod_{c} \psi_c(x_c)$$

Example: 3 variables, fix the 2nd dimension

$$Z_2(v) = \sum_{x_1} \sum_{x_3} \prod_{c} \psi_c(x = (x_1, v, x_3))$$
Two Problems for Graphical Models

Finding the normalizer

\[p(x_1, x_2, x_3, \ldots, x_N) = \frac{1}{Z} \prod_C \psi_C(x_c) \]

\[Z = \sum_x \prod_C \psi_C(x_c) \]

Q: Why are these difficult?
A: Many different combinations

Computing the marginals

\[Z_n(v) = \sum_{x:x_n=v} \prod_C \psi_C(x_c) \]

Example: 3 variables, fix the 2nd dimension

\[Z_2(v) = \sum_{x_1} \sum_{x_3} \prod_C \psi_C(x = (x_1, v, x_3)) \]
A graph G that represents a probability distribution over random variables X_1, \ldots, X_N
Probabilistic Graphical Models

A graph G that represents a probability distribution over random variables X_1, \ldots, X_N

Graph $G = (\text{vertices } V, \text{ edges } E)$

Distribution $p(X_1, \ldots, X_N)$
Probabilistic Graphical Models

A graph G that represents a probability distribution over random variables $X_1, ..., X_N$

Graph $G = (\text{vertices } V, \text{ edges } E)$

Distribution $p(X_1, ..., X_N)$

Vertices \leftrightarrow random variables

Edges show dependencies among random variables
Probabilistic Graphical Models

A graph G that represents a probability distribution over random variables X_1, \ldots, X_N

Graph $G = (\text{vertices } V, \text{ edges } E)$
Distribution $p(X_1, \ldots, X_N)$

Vertices \leftrightarrow random variables
Edges show dependencies among random variables

Two main flavors: \textit{directed} graphical models and \textit{undirected} graphical models
Outline

Directed Graphical Models

Undirected Graphical Models

Factor Graphs
Directed Graphical Models

A directed (acyclic) graph $G=(V,E)$ that represents a probability distribution over random variables X_1, \ldots, X_N

Joint probability factorizes into factors of X_i conditioned on the parents of X_i
Directed Graphical Models

A directed (acyclic) graph $G=(V,E)$ that represents a probability distribution over random variables X_1, \ldots, X_N

Joint probability factorizes into factors of X_i conditioned on the parents of X_i

Benefit: read the independence properties are transparent
Directed Graphical Models

A directed (acyclic) graph $G=(V,E)$ that represents a probability distribution over random variables X_1, \ldots, X_N

Joint probability factorizes into factors of X_i conditioned on the parents of X_i

A graph/joint distribution that follows this is a **Bayesian network**
Bayesian Networks: Directed Acyclic Graphs

\[p(x_1, x_2, x_3, \ldots, x_N) = \prod_{i} p(x_i \mid \pi(x_i)) \]

“parents of”
topological sort
Bayesian Networks: Directed Acyclic Graphs

\[p(x_1, x_2, x_3, \ldots, x_N) = \prod_{i} p(x_i \mid \pi(x_i)) \]

\[p(x_1, x_2, x_3, x_4, x_5) = ??? \]
Bayesian Networks: Directed Acyclic Graphs

\[p(x_1, x_2, x_3, x_4, x_5) = p(x_1)p(x_3)p(x_2|x_1, x_3)p(x_4|x_2, x_3)p(x_5|x_2, x_4) \]
Bayesian Networks: Directed Acyclic Graphs

\[p(x_1, x_2, x_3, \ldots, x_N) = \prod_{i} p(x_i \mid \pi(x_i)) \]

exact inference in general DAGs is NP-hard

inference in trees can be exact
Directed Graphical Model Notation

Unshaded nodes are unobserved (latent) R.V.s

Shaded nodes are observed R.V.s
Variables X & Y are conditionally independent given Z if all (undirected) paths from (any variable in) X to (any variable in) Y are d-separated by Z.

X & Y are d-separated if for all paths P, one of the following is true:

1. P has a chain with an observed middle node.

 ![Chain Diagram]

2. P has a fork with an observed parent node.

 ![Fork Diagram]

3. P includes a “v-structure” or “collider” with all unobserved descendants.

 ![Collider Diagram]
D-Separation: Testing for Conditional Independence

Variables X & Y are conditionally independent given Z if all (undirected) paths from (any variable in) X to (any variable in) Y are d-separated by Z

- **d-separation**
 - X & Y are d-separated if for all paths P, one of the following is true:
 - **observing Z blocks the path from X to Y**
 - **not observing Z blocks the path from X to Y**

Examples:**
- **P has a chain with an observed middle node**
 - $X \rightarrow Z \rightarrow Y$
 - Observing Z blocks the path from X to Y

- **P has a fork with an observed parent node**
 - Z is observed as a parent of both X and Y

- **P includes a “v-structure” or “collider” with all unobserved descendants**
 - $X \rightarrow Z \leftarrow Y$
D-Separation: Testing for Conditional Independence

Variables X & Y are conditionally independent given Z if all (undirected) paths from (any variable in) X to (any variable in) Y are \textit{d-separated} by Z.

\begin{align*}
\text{observing Z blocks} & \text{ the path from X to Y} \\
\text{not observing Z blocks} & \text{ the path from X to Y}
\end{align*}

\[p(x, y, z) = p(x)p(y)p(z|x, y) \]
\[p(x, y) = \sum_z p(x)p(y)p(z|x, y) = p(x)p(y) \]
Markov Blanket

the set of nodes needed to form the complete conditional for a variable x_i

$$p(x_i | x_j \neq i) = \frac{p(x_1, ..., x_N)}{\int p(x_1, ..., x_N) dx_i}$$

factorization of graph

$$= \frac{\prod_k p(x_k | \pi(x_k))}{\int \prod_k p(x_k | \pi(x_k)) dx_i}$$

factor out terms not dependent on x_i

$$= \frac{\prod_{k: k = i \text{ or } i \in \pi(x_k)} p(x_k | \pi(x_k))}{\int \prod_{k: k = i \text{ or } i \in \pi(x_k)} p(x_k | \pi(x_k)) dx_i}$$

Markov blanket of a node x is its parents, children, and children's parents

(in this example, shading does not show observed/latent)
Outline

Directed Graphical Models

Undirected Graphical Models

Factor Graphs
Undirected Graphical Models

An *undirected* graph $G=(V,E)$ that represents a probability distribution over random variables X_1, \ldots, X_N

Joint probability factorizes based on cliques in the graph
Undirected Graphical Models

An undirected graph $G=(V,E)$ that represents a probability distribution over random variables X_1, \ldots, X_N

Joint probability factorizes based on cliques in the graph

Common name: Markov Random Fields
Undirected Graphical Models

An *undirected* graph $G=(V,E)$ that represents a probability distribution over random variables $X_1, ..., X_N$

Joint probability factorizes based on cliques in the graph

Common name: **Markov Random Fields**

Undirected graphs can have an alternative formulation as **Factor Graphs**
Markov Random Fields: Undirected Graphs

\[p(x_1, x_2, x_3, \ldots, x_N) \]
Markov Random Fields: Undirected Graphs

clique: subset of nodes, where nodes are pairwise connected

maximal clique: a clique that cannot add a node and remain a clique

\[p(x_1, x_2, x_3, \ldots, x_N) \]
Markov Random Fields: Undirected Graphs

clique: subset of nodes, where nodes are pairwise connected.

maximal clique: a clique that cannot add a node and remain a clique.

\[
p(x_1, x_2, x_3, \ldots, x_N) = \frac{1}{Z} \prod_C \psi_C(x_C)
\]

- global normalization
- maximal cliques
- potential function (not necessarily a probability!)
- variables part of the clique C
Markov Random Fields: Undirected Graphs

clique: subset of nodes, where nodes are pairwise connected

maximal clique: a clique that cannot add a node and remain a clique

\[
p(x_1, x_2, x_3, \ldots, x_N) = \frac{1}{Z} \prod_c \psi_C(x_c)
\]

- global normalization
- maximal cliques
- potential function (not necessarily a probability!)

variables part of the clique C
Markov Random Fields: Undirected Graphs

clique: subset of nodes, where nodes are pairwise connected

maximal clique: a clique that cannot add a node and remain a clique

$p(x_1, x_2, x_3, \ldots, x_N) = \frac{1}{Z} \prod_C \psi_C(x_c)$

Q: What restrictions should we place on the potentials ψ_C?
Markov Random Fields: Undirected Graphs

clique: subset of nodes, where nodes are pairwise connected

maximal clique: a clique that cannot add a node and remain a clique

\[
p(x_1, x_2, x_3, \ldots, x_N) = \frac{1}{Z} \prod_{C} \psi_C(x_C)
\]

Q: What restrictions should we place on the potentials \(\psi_C \)?

A: \(\psi_C \geq 0 \) (or \(\psi_C > 0 \))
Terminology: Potential Functions

\[p(x_1, x_2, x_3, \ldots, x_N) = \frac{1}{Z} \prod_C \psi_C(x_C) \]

- energy function (for clique C)

\[\psi_C(x_C) = \exp \left(-E(x_C) \right) \]

Boltzmann distribution

(get the total energy of a configuration by summing the individual energy functions)
Ambiguity in Undirected Model Notation

$p(x, y, z) \propto \psi(x, y, z)$

$p(x, y, z) \propto \psi_1(x, y)\psi_2(y, z)\psi_3(x, z)$
Outline

Directed Graphical Models

Undirected Graphical Models

Factor Graphs
MRFs as Factor Graphs

Undirected graphs: \(G=(V,E) \) that represents \(p(X_1, \ldots, X_N) \)

Factor graph of \(p \): Bipartite graph of evidence nodes \(X \), factor nodes \(F \), and edges \(T \)

Evidence nodes \(X \) are the random variables

Factor nodes \(F \) take values associated with the potential functions

Edges show what variables are used in which factors
MRFs as Factor Graphs

Undirected graphs:
\(G = (V, E) \) that represents
\(p(X_1, ..., X_N) \)

Factor graph of \(p \):
Bipartite graph of evidence nodes \(X \), factor nodes \(F \), and edges \(T \)
MRFs as Factor Graphs

Undirected graphs: $G= (V,E)$ that represents $p(X_1, ..., X_N)$

Factor graph of p: Bipartite graph of evidence nodes X, factor nodes F, and edges T

Evidence nodes X are the random variables
MRFs as Factor Graphs

Undirected graphs: $G=(V,E)$ that represents $p(X_1, \ldots, X_N)$

Factor graph of p: Bipartite graph of evidence nodes X, factor nodes F, and edges T

Evidence nodes X are the random variables

Factor nodes F take values associated with the potential functions
MRFs as Factor Graphs

Undirected graphs: $G = (V, E)$ that represents $p(X_1, \ldots, X_N)$

Factor graph of p: Bipartite graph of evidence nodes X, factor nodes F, and edges T

Evidence nodes X are the random variables

Factor nodes F take values associated with the *potential functions*

Edges show what variables are used in which factors
Different Factor Graph Notation for the Same Graph

- Triangle graph
- Undirected connections

- Directed graph
- Directed connections

- Directed graph
- Square connections

Directed vs. Undirected Models: Moralization

\[x_1 \rightarrow x_2 \rightarrow x_4 \]
\[x_3 \rightarrow x_4 \]
Directed vs. Undirected Models: Moralization

\[p(x_1, ..., x_4) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]
Directed vs. Undirected Models: Moralization

\[p(x_1, ..., x_4) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]

parents of nodes in a directed graph must be connected in an undirected graph
Example: Linear Chain

Directed (e.g., hidden Markov model [HMM]; generative)
Example: Linear Chain

Directed (e.g., hidden Markov model [HMM]; generative)

Directed (e.g., maximum entropy Markov model [MEMM]; conditional)
Example: Linear Chain

Directed (e.g., hidden Markov model [HMM]; generative)

$z_1 \rightarrow z_2 \rightarrow z_3 \rightarrow z_4$

$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$

$w_1 \quad w_2 \quad w_3 \quad w_4$

Directed (e.g., maximum entropy Markov model [MEMM]; conditional)

$z_1 \rightarrow z_2 \rightarrow z_3 \rightarrow z_4$

$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$

$w_1 \quad w_2 \quad w_3 \quad w_4$

Undirected (e.g., conditional random field [CRF])

$z_1 \leftrightarrow z_2 \leftrightarrow z_3 \leftrightarrow z_4$

$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$

$w_1 \quad w_2 \quad w_3 \quad w_4$
Example: Linear Chain

Directed (e.g., hidden Markov model [HMM]; generative)

Undirected as factor graph (e.g., conditional random field [CRF])

Directed (e.g., maximum entropy Markov model [MEMM]; conditional)
Example: Linear Chain Conditional Random Field

Widely used in applications like part-of-speech tagging

President Obama told Congress ...
Example: Linear Chain Conditional Random Field

Widely used in applications like part-of-speech tagging:

President Obama told Congress ...

and named entity recognition:

President Obama told Congress ...
Linear Chain CRFs for Part of Speech Tagging

A linear chain CRF is a conditional probabilistic model of the sequence of tags z_1, z_2, \ldots, z_N conditioned on the *entire* input sequence $x_{1:N}$.
Linear Chain CRFs for Part of Speech Tagging

\[p(\clubsuit | \diamondsuit) \]

A linear chain CRF is a **conditional probabilistic model** of the sequence of tags \(z_1, z_2, ..., z_N \) conditioned on the *entire* input sequence \(x_{1:N} \).
A linear chain CRF is a conditional probabilistic model of the sequence of tags $z_1, z_2, ..., z_N$ conditioned on the entire input sequence $x_{1:N}$.
A linear chain CRF is a conditional probabilistic model of the sequence of tags $z_1, z_2, ..., z_N$ conditioned on the entire input sequence $x_{1:N}$.
Linear Chain CRFs for Part of Speech Tagging

\[p(z_1, z_2, \ldots, z_N \mid x_{1:N}) \]
Linear Chain CRFs for Part of Speech Tagging

\[
p(z_1, z_2, \ldots, z_N | x_{1:N}) \propto \prod_{i=1}^{N} \exp(\langle \theta^{(f)}, f_i(z_i) \rangle + \langle \theta^{(g)}, g_i(z_i, z_{i+1}) \rangle)
\]
Linear Chain CRFs for Part of Speech Tagging

\(g_j \): inter-tag features
(can depend on any/all input words \(x_{1:N} \))
Linear Chain CRFs for Part of Speech Tagging

g_j: inter-tag features (can depend on any/all input words $x_{1:N}$)

\mathbf{f}_i: solo tag features (can depend on any/all input words $x_{1:N}$)
Linear Chain CRFs for Part of Speech Tagging

\[g_j: \text{inter-tag features} \]
\[\text{(can depend on any/all input words} \ x_{1:N} \text{)} \]

\[f_i: \text{solo tag features} \]
\[\text{(can depend on any/all input words} \ x_{1:N} \text{)} \]

Feature design, just like in maxent models!
Linear Chain CRFs for Part of Speech Tagging

\(g_j \): inter-tag features
(can depend on any/all input words \(x_{1:N} \))

\(f_i \): solo tag features
(can depend on any/all input words \(x_{1:N} \))

Example:

\[
g_{j,N\rightarrow V}(z_j, z_{j+1}) = 1 \text{ (if } z_j = N \text{ & } z_{j+1} = V) \text{ else 0}
g_{j,told,N\rightarrow V}(z_j, z_{j+1}) = 1 \text{ (if } z_j = N \text{ & } z_{j+1} = V \text{ & } x_j = told) \text{ else 0}
\]
Outline

Directed Graphical Models

Undirected Graphical Models

Factor Graphs