Capacitance

Any two conductors separated by an insulator form a parallel-plate capacitor.

Gate capacitance is very important as it creates channel charge necessary for operation.

Source and Drain have capacitance to body
- Across reverse-biased diodes
- Called *diffusion capacitance* because it is associated with source/drain diffusion.

Gate capacitance

Approximate channel as connected to source.

\[
C_{gs} = \frac{\varepsilon_{ox} WL}{t_{ox}} = C_{ox} WL = C_{permicron} W
\]

C_{permicron} is typically 2fF/µm.
Diffusion Capacitance

C_{sb}, C_{db}

Undesirable, called parasitic capacitance.

Capacitance depends on area and perimeter

Use small diffusion nodes

Comparable to C_g for contacted diffusion

Half of C_g for uncontacted diffusion.

Varies with process
Gate Capacitance Details

The gate capacitance can be decomposed into several parts:
- One part contributes to the channel charge.
- A second part is due to the topological structure of the transistor.

MOS Structure Capacitances, Overlap:

Lateral diffusion: source and drain diffusion extend under the oxide by an amount x_d. The effective channel length (L_{eff}) is less than the drawn length L by $2x_d$.

This gives rise to a linear, fixed capacitance called overlap capacitance.

$$C_{gsO} = C_{gdO} = C_{ox}x_dW = C_OW$$

Since x_d is technology dependent, it is usually combined with C_{ox}.
Gate Capacitance Details

Channel Charge

The gate-to-channel capacitance is composed of three components, C_{gs}, C_{gd} and C_{gb}.

Each of these is non-linear and dependent on the region of operation.

Estimates or average values are often used

- Linear: $C_{gb} \approx 0$ since the inversion region shields the bulk electrode from the gate.
- Saturation: C_{gb} and C_{gd} is ≈ 0 since the channel is pinched off.

<table>
<thead>
<tr>
<th>Operation Region</th>
<th>C_{gb}</th>
<th>C_{gs}</th>
<th>C_{gd}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutoff</td>
<td>$C_{ox}WL_{eff}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Linear</td>
<td>0</td>
<td>$C_{ox}WL_{eff}/2$</td>
<td>$C_{ox}WL_{eff}/2$</td>
</tr>
<tr>
<td>Saturation</td>
<td>0</td>
<td>$(2/3)C_{ox}WL_{eff}$</td>
<td>0</td>
</tr>
</tbody>
</table>
Diffusion Capacitance Details

Junction or Diffusion Capacitances

This component is caused by the reverse-biased source-bulk and drain-bulk *pn-junctions*. This capacitance is *non-linear* and *decreases* as reverse-bias is *increased*.

Bottom-plate junction

Depletion region capacitance is

\[C_{bottom} = C \cdot W L S \]

Diffusion Capacitance Details

C_j is the junction capacitance per unit area.

$$C_j = C_{j0} \left(1 + \frac{V_{sb}}{\Psi_0} \right)^{-M_j}$$

where, C_{j0} is the junction capacitance at zero bias and is highly process dependent.

M_j is the junction grading coefficient, typically between 0.5 and 0.33 depending on the abruptness of the diffusion junction.

Ψ_0 is the built-in potential that depends on doping levels given by

$$\Psi_0 = \nu_T \ln \left(\frac{N_A N_D}{N_i^2} \right)$$

where, ν_T is the thermal voltage.

N_A and N_D are doping levels of the body and source diffusion region.

N_i is the intrinsic carrier concentration in undoped silicon.
Diffusion Capacitance Details

Side-Wall Capacitance

Formed by the source region with doping N_D and the p^+ channel-stop implant with doping N_A^+.

Since the channel-stop doping is usually higher than the substrate, this results in a higher unit capacitance:

$$C_{sw} = C'_{jsw} x_j (W + 2 \times L_S)$$

C'_{jsw} is similar to C_j but with different coefficients $M_j = 0.33$ to 0.5.

Note that the channel side is not included in the calculation. Some SPICE models have an extra parameter to account for this junction. x_j is usually technology dependent and combined with C'_{jsw} as C_{jsw}.

Total diffusion/junction capacitance is:

$$C_{diff} = C_{bottom} + C_{sw} = C_j \times AREA + C_{jsw} \times PERIMETER$$

$$C_{diff} = C_j L_S W + C_{jsw} (2L_S + W)$$
MOS Capacitance Model

Capacitive Device Model

The previous model can be summarized as:

\[
\begin{align*}
C_{GS} &= C_{gs} + C_{gsO} \\
C_{GD} &= C_{gd} + C_{gdO} \\
C_{GB} &= C_{gb} \\
C_{SB} &= C_{Sdiff} \\
C_{DB} &= C_{Ddiff}
\end{align*}
\]

The dynamic performance of digital circuits is directly proportional to these capacitances!
Source-Drain Resistance

Scaling causes junctions to be *shallower* and contact openings to be *smaller*. This increases the parasitic resistance in series with the source and drain regions:

![Diagram of a MOSFET with source-drain resistance](image)

This resistance can be expressed as:

$$ R_{S,D} = \frac{L_{S,D}}{W} R_{\square} + R_C $$

- R_C = Contact Resistance
- R_{\square} = Sheet resistance (50Ω – 1kΩ)
- $L_{S,D}$ = length of source/drain region.

The series resistance degrades device performance by decreasing drain current. One option is to cover drain and source regions with a low-resistivity material such as *titanium* or *tungsten*.

This process is called *silicidation*, and is used in reducing poly resistance as well.
Capacitance Example

Given:

- $t_{ox} = 20\,\text{nm}$
- $L = 1.2\,\text{um}$
- $W = 1.8\,\text{um}$
- $L_D = L_S = 3.6\,\text{um}$
- $x_d = 0.15\,\text{um}$
-

\[
tox = 20 \times 10^{-9} \text{m} = 20 \text{nm} = 2 \times 10^{-7} \text{m}
\]

\[
x_d = 0.15 \times 10^{-6} \text{m} = 0.15 \text{um}
\]

\[
C_{j0} = 3 \times 10^{-4} \text{F/m}^2
\]

\[
C_{jsw0} = 8 \times 10^{-10} \text{F/m}
\]

Determine the zero-bias value of all relevant capacitances.

Gate capacitance, C_{ox}, per unit area is derived as:

\[
C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = \frac{3.5 \times 10^{-2} \text{fF/um}}{20 \times 10^{-9} \text{um}} = 1.75 \text{fF/um}^2
\]

Total gate capacitance C_g is:

\[
C_g = WLC_{ox} = 1.8\,\text{um} \times 1.2\,\text{um} \times 1.75 \text{fF/um}^2 = 3.78 \text{fF}
\]

Overlap capacitance is:

\[
C_{GSO} = C_{GDO} = Wx_dC_{ox} = 0.47 \text{fF}
\]

Subtracting out overlap capacitance yields C_{gb} under zero-bias:

\[
C_{gb} = C_{ox}WL_{eff} = 3.78 - 2 \times 0.47 = 2.84 \text{fF}
\]
Capacitance Example

Diffusion capacitance is the sum of bottom:

\[C_{j0L_DW} = 3 \times 10^{-1} \text{fF/um}^2 \times 3.6\text{um} \times 1.8\text{um} = 1.95\text{fF} \]

Plus side-wall (under zero-bias):

\[C_{jsw0}(2L_D + W) = 8 \times 10^{-1} (2 \times 3.6\text{um} + 1.8\text{um}) = 7.2\text{fF} \]

In this example, diffusion capacitance dominates gate capacitance (3.78fF versus 9.2fF).

Note that this is the worst case condition. Increasing reverse bias reduces diffusion capacitance (by about 50%).

Also note that side-wall dominates diffusion. Advanced processes use SiO₂ to isolate devices (trench isolation) instead of \(N_A^+ \) implant.