UMBC CMSC441, Design & Analysis of Algorithms, Fall 2014

Homework 12

Due Thursday, November 20, 2014

  1. Alternate Floyd-Warshall. Exercise 25.2-7, page 700.
    Note: yes, use pseudocode for this problem.

  2. Sibling rivalry. Exercise 26.1-6, page 714.

  3. Peer grading. For the final exam at the Arbutus Culinary Masters Institute (ACMI), each student must prepare a meal of k dishes. Since the instructor cannot taste the work of all the students, the dishes are actually evaluated by other students. As always there are complications:

    The peer grading problem is to assign to each student a list of dishes to evaluate so that all of the requirements and constraints described above are satisfied.

    Given a list of n students and their GPAs g1, g2, g3, ... gn, describe how you can construct a flow network G = ( V, E ) with a capacity function c such that the maximum flow in the flow network helps solve the peer grading problem at ACMI. Describe what the vertices, edges and capacities represent. Explain how the maximum flow in G corresponds to a solution to the peer grading problem.

Last Modified: 12 Nov 2014 08:50:40 EST by Richard Chang
to Fall 2014 CMSC 441 Section 2 Homepage