
CMSC 313, Computer Organization & Assembly Language Programming Section 0101
Fall 2001

Project 1: Escape Sequences

Due: Tuesday October 9, 2001 <--- !!!!!! OLD PROJECT !!!!!

Objective
The objectives of the programming assignment are 1) to gain experience writing larger assembly

language programs, and 2) to gain familiarity with various branching operations.

Background
String constants in UNIX and in C/C++ are allowed to contain control characters and other hard-

to-type characters. The most familiar of these is ‘\n’ for a newline or linefeed character (ASCII
code 10). The ‘\n’ is called an escape sequence. For this project, we will consider the following
escape sequences:

Sequence Name ASCII code
\a alert(bell) 07
\b backspace 08
\t horizontal tab 09
\n newline 10
\v vertical tab 11
\f formfeed 12
\r carriage return 13
\\ backslash 92

In addition, strings can have octal escape sequences. An octal escape sequence is a ‘\’ followed by
one, two or three octal digits. For example, ‘\a’ is equivalent to ‘\7’ and ‘\\’ is equivalent to
‘\134’. Note that in this scheme, the null character can be represented as ‘\0’. The octal escape
sequence ends at the third octal digit, before the end of the string, or before the first non-octal digit,
whichever comes first. For example "abc\439xyz" is equivalent to "abc#9xyz" because the
ASCII code for ‘#’ is 438 and 9 is not an octal digit.

Assignment
For this project, you will write a program in assembly language which takes a string input by the

user, convert the escape sequences in the string as described above and print out the converted string.
In addition, your program should be robust enough to handle user input that might include malformed
escape sequences. Examples of malformed escape sequences include: a ‘\’ followed by an invalid
character, a ‘\’ as the last character of the string and a ‘\’ followed an octal number that exceeds
25510.

All the invalid escape sequences should be reported to the user (i.e., your program should not just
quit after detecting the first invalid escape sequence). When the user input has malformed escape
sequences, your program should still convert and print out the rest of the string (which might contain
some valid escape sequences). In this case, a ‘\’ should be printed at the location of malformed escape
sequence. For example, if the user types in “abc \A def \43 ghi \411” your program should have
output:

Error: unknown escape sequence \A
Error: octal value overflow in \411
Original: abc \A def \43 ghi \411
Convert: abc \ def # ghi \

Turning in your program
Before you submit your program, record some sample runs of your program using the UNIX

script command. You should select sample runs that demonstrate the features supported by your
program. Picking good test cases is your responsibility.

Use the UNIX ‘submit’ command on the GL system to turn in your project. You should submit
two files: 1) your assembly language program and 2) the typescript file of your sample runs. The class
name for submit is ‘cs313’ and the project name is ‘proj1’.

Implementation Issues:
1. You should think carefully about how you will keep track of the number of characters you

have already processed in the source string. Since you will process more than one character
per iteration of the main loop, you will need a consistent way to update the character count
and the pointer into the source string.

2. Your program will have numerous branches. You should think about the layout of your
program and how to make it more readable. Avoid spaghetti code. Related parts of your
program should be placed near each other.

3. Do take into account the fact that the output string might be shorter than the input string.

Notes:
Recall that the project policy states that programming projects must be the result of individual

effort. You are not allowed to work together. Also, your projects will be graded on five criteria:
correctness, design, style, documentation and efficiency. So, it is not sufficient to turn in programs
that assemble and run. Assembly language programming can be a messy affair --- neatness counts.

