NASM — The Netwide Assembler

version 2.10.04

© 1996-2012 The NASM Development Team — All Rights Reserved

This document is redistributable under the license given in the file "LICENSE" distributed in the NASM
archive.

Contents

Chapter 1: Introduction. e e e e e 16
LAIWhatIs NASM?. e 16
1.1.1 Why Yet Another Assembler?. e 16
1.1.2 License ConditionS e e e 16
1.2 Contact Information L 17
L3 Installation. e 17
1.3.1 Installing NASM under MS-DOS orWindows, 17
1.3.2 Installing NASM under Unix e e e e 18
Chapter 2: Running NASM. e 19
2.1 NASM Command-Line Syntax e e 19
2.1.1 The-o Option: Specifying the OutputFileName 19
2.1.2 The-f Option: Specifying the Output File Format 20
2.1.3 The-l Option: GeneratingalListingFile 20
2.1.4 The-MOption: Generate Makefile Dependencies. 20
2.1.5 The-MGOption: Generate Makefile Dependencies 20
2.1.6 The-MFOption: Set Makefile Dependency File 20
2.1.7 The-MDOption: Assemble and Generate Dependencies.
2.1.8 The-MTOption: Dependency TargetName. 21
2.1.9 The-MQOption: Dependency Target Name (Quoted) 21
2.1.10 The-MPOption: Emit phony targets. 21
2.1.11 The-F Option: Selecting a Debug Information Format 21
2.1.12 The-g Option: Enabling Debug Information. 21
2.1.13 The-X Option: Selecting an Error Reporting Format. 21
2.1.14 The-Z Option: Send ErrorstoaFile. 22
2.1.15 The-s Option: Send Errors tetdout, 22
2.1.16 The-i Option: Include File Search Directories 22
2.1.17 The-p Option: Pre-Include aFile. ... 23
2.1.18 The-d Option: Pre-DefineaMacro. v i it 23
2.1.19 The-u Option: UndefineaMacro. i ittt 23

2.1.20 The-E Option: Preprocess Only. i e e e e e 23

2.1.21 The-a Option: Don’t Preprocess AtAll. 24
2.1.22 The-OOption: Specifying Multipass Optimization 24
2.1.23 The-t Option: Enable TASM Compatibility Mode 24
2.1.24 The-w and-WOptions: Enable or Disable Assembly Warnings 24
2.1.25 The-v Option: Display VersionInfo 25
2.1.26 The-y Option: Display Available Debug Info Formats 25
2.1.27 The——prefix and—--postfix Options. 26
2.1.28 TheNASMEN¥ENnvironment Variable, 26
2.2 Quick Start for MASM USEIS e e e e e e 26
221 NASMIs Case—Sensitive e 26
2.2.2 NASM Requires Square Brackets For Memory References 26
2.2.3 NASM Doesn'’t Store Variable Types e 27
224 NASM DoesnASSUME 27
2.2.5 NASM Doesn’'t Support Memory Models 27
2.2.6 Floating—Point Differences e 27
2.2.7 Other Differences. e 28
Chapter 3: The NASM Language 0 i i e e e e e e e e e e e e e e e 29
3.1 LayoutofaNASM Source Line e e 29
3.2 Pseudo-Instructions L e 30
3.2.1DBand Friends: Declaring Initialized Data 30
3.2.2RESBand Friends: Declaring Uninitialized Data 30
3.2.3INCBIN: Including External Binary Files. 31
3.24EQUDefining Constants e e e 31
3.2.5TIMES: Repeating InstructionsorData 31
3.3 Effective Addresses 32
3.4CoNnstants L e e 33
34 1NumericConstants e 33
3.4.2Character Strings e e e e e e 33
343 Character Constants. e 34
3.44String Constants L L e e e e 34
3.4.5Unicode Strings. L e e e e 35

3.4.6 Floating—PointConstants e e e 35

347 Packed BCD Constants e e e e e 36

BE5EXPrESSIONS i e e e e 36
3.5.1] : Bitwise OR Operator. o e e 37
3.5.27: Bitwise XOR Operator. o e e e e e e 37
3.5.3& Bitwise AND Operator. e e e e e 37
3.5.4<<and>>: Bit ShiftOperators e 37
3.5.5+ and-: Addition and Subtraction Operators 37
3.5.6*%,/,/l ,%and%%Multiplication and Division. 37
35.7Unary Operators e e e e e e e e e e 37

3.6SEGandWRT. e 37

3.7STRICT: Inhibiting Optimization e e 38

3.8 Critical EXPressions e e e e 38

3.9 Local Labels. 39

Chapter 4: The NASM PreproCessor o v v i i i e e e e e e e e e e e e e e e 41

4.1 Single-Line MacCros e e e 41
4.1.1 The Normal Wayedefine e 41
4.1.2 Resolvingbdefine : %xdefine 42
4.1.3 Macro Indirectior®6[...] e e e e 43
4.1.4 Concatenating Single Line Macro Toke¥s; 43
4.1.5 The Macro Name Itsefb?and%?? 44
4.1.6 Undefining Single-Line Macro%undef, 44
4.1.7 Preprocessor Variablésassign L 44
4.1.8 Defining Strings¥edefstr L 45
4.1.9 Defining Tokengodeftok L 45

4.2 String Manipulation in Macros. e e e e 45
4.2.1 Concatenating String&istrcat L 45
4.2.2 String Lengthestrlen L L L e e 46
4.2.3 Extracting Substring®bsubstr L 46

4.3 Multi-Line Macros%macro e e 46
4.3.1 Overloading Multi-Line Macros i e e e 47
4.3.2 Macro-Local Labels 48
4.3.3 Greedy Macro Parameters. e e e e e e e 48
4.3.4 Macro Parameters Range e e e 49

4.3.5 Default Macro Parameters e e e e e e 50

4.3.6%0Q Macro Parameter Counter. e 51
4.3.7%0Q Label PreceedingMacro e 51
4.3.8%rotate : Rotating Macro Parameters e 51
4.3.9 Concatenating Macro Parameters e e e 52
4.3.10 Condition Codes as Macro Parameters. v v i 53
4.3.11 Disabling Listing EXpansion. e e e e e 53
4.3.12 Undefining Multi-Line Macro®bunmacro. v i i e e 53
4.4 Conditional Assembly L e 54
4.4.1%ifdef : Testing Single-Line Macro Existence. 54
4.4.2%ifmacro : Testing Multi-Line Macro Existence 55
4.4.3%ifctx : Testingthe ContextStack. 55
4.4.4%if : Testing Arbitrary Numeric Expressions 55
4.4.5%ifidn and%ifidni : Testing Exact TextlIdentity 56
4.4.6%ifid , %ifnum , %ifstr : Testing Token Types 56
4.4.7%iftoken :TestforaSingle Token, 57
4.4.8%ifempty : Testfor Empty Expansion. e 57
4.4.9%ifenv : Test If Environment Variable Exists 57
4.5 Preprocessor LOOPHIreD. v v v e e e e e e e e e e e e e e 58
4.6 Source Files and Dependencies e 58
4.6.1%include :Including OtherFiles 59
4.6.2%pathsearch : SearchthelIncludePath 59
4.6.3%depend: Add DependentFiles 59
4.6.4%use: Include Standard Macro Package 60
47 TheContext Stack 60
4.7.1%push and%pop Creating and Removing Contexts 60
4.7.2 Context-Local Labels. 60
4.7.3 Context-Local Single—-Line Macros. e e 61
4.7.4 Context Fall-Through Lookup e 61
4.7.5%repl : Renaminga Context e e e e 62
4.7.6 Example Use of the Context Stack: Block IFs 62
4.8 Stack Relative Preprocessor Directives. e e e 64

4.8.1%arg Directive. L e e e 64

4.8.2%stacksize Directive L e e e 64

4.8.3%local Directive e 65
4.9 Reporting User-Defined Errofgierror , %warning , %fatal 65
4.10 Other Preprocessor Directives e 66

4.10.1%line Directive e 66

4.10.2%!<env>: Read an environmentvariable.. L Lo 67
4.11 Comment Block®bcomment L 67
412 Standard MacCros e 67

4.12.1 NASM Version Macros o o v v i e e e e e 67

4.12.2__NASM_VERSION_ID_:NASMVersionID. 68

4.12.3 _NASM _VER :NASMVersionstring i ... 68

4.12.4 FILE__ and__LINE__ :File Name and Line Number. 68

4125 BITS__ :CurrentBITSMode i 68

4.12.6__ OUTPUT_FORMAT: Current Qutput Format 69

4.12.7 Assembly Date and Time Macros 0 i i i i e e 69

4.12.8 USE package :Packagelnclude Test. 69

4129 PASS_ :AssemblyPass. e 70

4.12.10STRUCandENDSTRUDeclaring Structure Data Types. 70

4.12.11ISTRUC, AT andIEND: Declaring Instances of Structures 71

4.12.12ALIGN andALIGNB: Data Alignment e 72

4.12.13SECTALIGN Section Alignment. e 73

Chapter 5: Standard Macro Packages i e e e 74
5.1laltreg : Alternate Register Names e 74
5.2smartalign :SmartALIGNMacro e e 74
5.3fp : Floating—point macros. e e e e 75
5.4ifunc :lIntegerfunctions L e 75

5.4.1 Integer logarithms e e 75

Chapter 6: Assembler Directives e e e e 76
6.1BITS: Specifying Target Processor Mode i 76

6.1.1USE16& USE32 AliasesforBITS e 77
6.2DEFAULT Change the assemblerdefaults 77
6.3SECTIONor SEGMENTChanging and Defining Sections 77

6.3.1 The SECT__MaCro. it e e e e e e e e e e s e e 77

6.4ABSOLUTEDefining Absolute Labels. 78

6.5EXTERNImporting Symbols from Other Modules. 79
6.6 GLOBAL Exporting Symbols to Other Modules 79
6.7COMMOMefining Common Data Areas. v i v i i e e e 80
6.8CPU Defining CPU Dependencies. i i i i i e e e e 80
6.9FLOAT Handling of floating—pointconstants 81
Chapter 7: Output Formats e e e 82
7.1bin : Flat—-Form Binary Output e e 82
7.1.10RGBinary File Program Origin e e 82
7.1.2bin Extensions to th8ECTIONDirective v i e 83
7.1.3 Multisection Support forthen Format 83
7.1A4MapFiles. e 83
7.2ith :Intel Hex Output. e e 84
7.3srec : Motorola S—Records Qutput L e 84
7.40bj : Microsoft OMF ObjectFiles e 84
7.4.1obj Extensionsto thEEGMENDirective 85
7.4.2GROUPDefining Groups of Segments 86
7.4.3UPPERCASHDisabling Case SensitivityinOQutput 86
7.4.4IMPORT Importing DLL Symbols e 86
7.45EXPORTExporting DLL Symbols 87
7.4.6..start : Defining the Program Entry Point. 87
7.4.70bj Extensions to thEXTERNDiIrective. 87
7.4.80bj Extensions to th€EOMMONirective. v it 88
7.5win32 : Microsoft Win32 ObjectFiles. 88
7.5.1win32 Extensions to thBECTIONDirective 89
7.5.2win32 : Safe Structured ExceptionHandling 89
7.6win64 : Microsoft Win64 ObjectFiles. o 91
7.6.1win64 : Writing Position—-IndependentCode 91
7.6.2win64 : Structured Exception Handling. Lo 92
7.7coff :Common ObjectFile Format 95
7.8macho32 andmacho64: Mach Object File Format. 95
7.9elf32 ,elf64 ,elfx32 : Executable and Linkable Format ObjectFiles 95

7.9.1 ELF specificdirectivesabi e 95

7.9.2elf Extensions to th8ECTIONDirective v i e 95
7.9.3 Position—-Independent Coddf. Special Symbols and/RT
7.9.4 Thread Local Storagelf Special Symbols and/RT
7.9.5elf Extensions to th&LOBALDirective.« 97

7.9.6elf Extensions to th€EOMMORNirective 98
7.9.716-bitcodeand ELF 98
7.9.8Debug formatsand ELF 98
7.10aout : Linuxa.out ObjectFiles e 98
7.11aoutb : NetBSD/FreeBSD/OpenBS&out ObjectFiles. 98
7.12as86 : Minix/Linux as86 ObjectFiles. 99
7.13rdf : Relocatable Dynamic Object File Format 99
7.13.1 Requiring a Library: THEBRARY Directive 99
7.13.2 Specifying a Module Name: TREODULBirective 99
7.13.3rdf Extensions to th&LOBALDirective 100
7.13.4rdf Extensions to thEXTERNDirective, 100
7.14dbg: Debugging Format e 100
Chapter 8: Writing 16—bit Code (DOS, Windows 3/3.1). v i i i i i i 102
8.1 ProducingEXE Files e 102
8.1.1 Using th@bj Format To GeneratEXE Files. 102
8.1.2 Using thdin Format To GeneratEXE Files. 103
8.2 ProducingCOMFiles e 104
8.2.1 Using thdin Format To Generat€OMFiles. 104
8.2.2 Using th@bj Format To Generat€OMFiles. 105
8.3 ProducingSYS Files e 105
8.4 Interfacing to 16-bit C Programs. e e e 105
8.4.1 External Symbol Names e 105
8.4.2Memory Models e 106
8.4.3 Function Definitions and Function Calls., 107
8.4.4 Accessing Dataltems. e 109
8.4.5cl16.mac : Helper Macros for the 16-bitCInterface 110
8.5 Interfacing to Borland Pascal Programs e 111
8.5.1 The Pascal Calling Convention it 111
8.5.2 Borland Pascal Segment Name Restrictions 113

10

8.5.3 Usingcl6.mac With Pascal Programs. 113

Chapter 9: Writing 32-bit Code (Unix, Win32, DJGPP). i 114
9.1 Interfacing to 32-bit C Programs. e e e 114
9.1.1 External Symbol Names 114
9.1.2 Function Definitions and FunctionCalls. 114
9.1.3Accessing Dataltems. e e 116
9.1.4c32.mac : Helper Macros for the 32-bhitCiInterface 117
9.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries. 117
9.2.1 Obtaining the Address of the GOT 118
9.2.2 Finding Your Local Dataltems e 119
9.2.3 Finding External and Common Dataltems 119
9.2.4 Exporting Symbols to the Library User 119
9.2.5 Calling Procedures Outside the Library 120
9.2.6 Generating the Library File 120
Chapter 10: Mixing 16 and 32 BitCode. e e 122
10.1 MiXxed=Size JUMPS o i e e e e e e 122
10.2 Addressing Between Different-Size Segments00 122
10.3 Other Mixed—-Size Instructions e 123
Chapter 11: Writing 64-bit Code (Unix, Win64) i i i i 125
11.1 Register Names in 64-bitMode 125
11.2 Immediates and Displacements in 64-bitMode 125
11.3 Interfacing to 64-bit C Programs (Unix) e 126
11.4 Interfacing to 64-bit C Programs (Win64) e 127
Chapter 12: Troubleshooting e 128
12.1 Common Problems e e 128
12.1.1 NASM Generates InefficientCode. 128
12.1.2 My JumpsareQutof Range e 128
12.1.30R@Doesmt Work 128
12.14TIMES Doesn't Work o o e 129
12.2BUGS . . . o o o e e e e e e e e e e e e e e e e e e e 129
Appendix A: Ndisasm e e e 131
Al Introduction. L e e 131
A.2 Getting Started: Installation e 131

A3 RuUNNiNg NDISASM. 131

A.3.1 COM Files: Specifyingan Origin. i 131
A.3.2 Code Following Data: Synchronisation. 132
A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation 132
A.3.40therOptions e e e e 133
A.4Bugs and Improvements. e e e e e e e 133
Appendix B: Instruction List L e e e 134
B.lIntroduction. L e 134
B.1.1 Special INStructions.... e e e 134
B.1.2 Conventional instructions. 134
B.1.3 Katmai Streaming SIMD instructions (SSE — a.k.a. KNI, XMM, MMX2) 162
B.1.4 Introduced in Deschutes but necessary for SSEsupport 164
B.1.5 XSAVE group (AVX and extended state). 164
B.1.6 Generic memory operations. e e e e e e e 164
B.1.7 New MMX instructions introduced in Katmai. 164
B.1.8 AMD Enhanced 3DNow! (Athlon) instructions 165
B.1.9 Willamette SSE2 Cacheability Instructions 165
B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions) 165
B.1.11 Willamette Streaming SIMD instructions (SSE2) 167
B.1.12 Prescott New Instructions (SSE3) e 169
B.1.1I3VMXINSrUCtioNS. e e e 169
B.1.14 Extended Page Tables VMX instructions 170
B.1.15 Tejas New Instructions (SSSE3). o i i i i e 170
B.1.16 AMD SSE4A e 170
B.1.17 New instructions in Barcelona. 171
B.1.18 Penryn New Instructions (SSE4.1). e 171
B.1.19 Nehalem New Instructions (SSE4.2). i it i e 172
B.1.20 Intel SMX. e 172
B.1.21 Geode (Cyrix) 3DNow! additions o 172
B.1.22 Intel new instructions in 22?2, 172
B.1.23 Intel AES instructions. e 173
B.1.24 Intel AVX AES IiNStructions. e 173
B.1.25 Intel AVXinstructions e 173

11

B.1.26 Intel Carry—Less Multiplication instructions (CLMUL) 187

12

B.1.27 Intel AVX Carry-Less Multiplication instructions (CLMUL) 187
B.1.28 Intel Fused Multiply—Add instructions (FMA). 187
B.1.29 Intel post—32 nm processor instructions e e 191
B.1.30 VIA (Centaur) security instructions e 192
B.1.31 AMD Lightweight Profiling (LWP) instructions 192
B.1.32 AMD XOP and FMA4 instructions (SSE5) o 192
B.1.33 Intel AVX2 inStructions 195
B.1.34 Transactional Synchronization Extensions (TSX) 199
B.1.35 Intel BMI1 and BMI2 instructions. 199
B.1.36 Systematic names for the hinting nop instructions 200
Appendix C: NASM Version History e e 205
C.ANASM2SENES . . . o v o o e e e e e e e e 205
C.1.1Version 2.10.04 e 205
C.1.2Version 2.10.03 e e 205
C.1.3Version 2.10.02 e e 205
C.1.4Version 2.10.01 e 205
C.1.5Version 2.10 e 205
C.1.6 Version 2.09.10 e 206
C.1.7Version 2.09.09 206
C.1.8Version 2.09.08 e 206
C.1.9Version 2.09.07 e 206
C.1.10Version 2.09.06 e e 206
C.1.11Version 2.09.05. e 206
C.1.12 Version 2.09.04 e e e 206
C.1.13Version 2.09.03 e e 206
C.1.14 Version 2.09.02 e 207
C.1.15Version 2.09.01 e e 207
C.1.16 Version 2.09 e e 207
C.1.17Version 2.08.02. e 208
C.1.18Version 2.08.01 e 208
C.1.19Version 2.08 e 208
C.1.20 Version 2.07 e e 209

C.1.21Version 2.06 e e e e 209

C.1.22Version 2.05.01 e e 210
C.1.23Version 2.05 e e 210
C.1.24Version 2.04 e 210
C.1.25Version 2.03.01 e e 211
C.1.26 Version 2.03 e e 211
C.1.27 Version 2.02 e e 212
C.1.28 Version 2.01 e e 212
C.1.29Version 2.00 e e 213
C.2NASMO0.98 Series o o e 213
C.2.1Version 0.98.39 214
C.2.2Version 0.98.38 214
C.2.3Version 0.98.37 214
C.24Version 0.98.36 e 214
C.25Version 0.98.35 L 215
C.2.6Version 0.98.34 215
C.2.7Version 0.98.33 L 215
C.2.8Version 0.98.32 216
C.29Version 0.98.31 216
C.2.10Version 0.98.30 e e 216
C.2.11Version 0.98.28 e e 216
C.2.12Version 0.98.26 e e 217
C.2.13 Version 0.98.25alt. 217
C.2.14 Version 0.98.25 L e e 217
C.2.15Version 0.98.24pL. e e 217
C.2.16 Version 0.98.24 L e e e 217
C.2.17Version 0.98.23 e e 217
C.2.18Version 0.98.22 L e 217
C.2.19Version 0.98.21 e e 217
C.2.20 Version 0.98.20 e e 217
C.2.21Version 0.98.19. L e 217
C.2.22Version 0.98.18 e e 217
C.2.23Version 0.98.17 e e 217

13

14

C.2.24Version 0.98.16 217

C.2.25Version 0.98.15. L e e 218
C.2.26 Version 0.98.14 L e 218
C.2.27Version 0.98.13 e 218
C.2.28Version 0.98.12. e e 218
C.2.29Version 0.98.11 e e 218
C.2.30Version 0.98.10 e 218
C.2.31Version 0.98.09. e e 218
C.2.32Version 0.98.08 e 218
C.2.33 Version 0.98.09b with John Coffman patches released 28-Oct-2001 219
C.2.34 Version 0.98.07 released 01/28/01. o i i 219
C.2.35 Version 0.98.06f released 01/18/01 219
C.2.36 Version 0.98.06e released 01/09/01 219
C.2.37Version 0.98pl e 220
C.2.38 Version 0.98bf (bug—fixed) 220
C.2.39 Version 0.98.03 with John Coffman’s changes released 27-Jul-2000 220
C.240Version 0.98.03 L e 220
C.241Version 0.98 224
C.2.42Version 0.98p9 e e 224
C.2.43Version 0.98p8 e e 224
C.2.44Version 0.98p7 e e e 224
C.2.45Version 0.98p6 e 225
C.2.46 Version 0.98P3.7 e e e 225
C.2.47Version 0.98p3.6 e e e 225
C.2.48Version 0.98p3.5 e 225
C.2.49Version 0.98p3.4 e e 226
C.2.50Version 0.98P3.3 e e 226
C.2.51Version 0.98p3.2 e e 226
C.2.52Version 0.98p3-hpa. e 226
C.2.53 Version 0.98 pre-release 3 e 227
C.2.54 Version 0.98 pre-release 2 e e 227
C.255Version 0.98 pre-release 1 e e 227
C.3NASMO.9SENES o o e e e e e 228

C.3.1 Version 0.97 released December 1997 e 228

C.3.2 Version 0.96 released November 1997 229
C.3.3Version 0.95released July 1997 231
C.3.4 Version 0.94 released April 1997 e 232

C.3.5Version 0.93 released January 1997. e e e 233
C.3.6 Version 0.92 released January 1997. e e e 233
C.3.7 Version 0.91 released November 1996 o 234
C.3.8 Version 0.90 released October 1996 234

15

Chapter 1: Introduction

1.1 What Is NASM?

The Netwide Assembler, NASM, is an 80x86 and x86-64 assembler designed for portability and modularity.
It supports a range of object file formats, including Linux aB$D a.out , ELF, COFF Mach-Q,
Microsoft 16—bitOBJ, Win32 andWin64 . It will also output plain binary files. Its syntax is designed to be
simple and easy to understand, similar to Intel's but less complex. It supports all currently known x86
architectural extensions, and has strong support for macros.

1.1.1 Why Yet Another Assembler?

The Netwide Assembler grew out of an ideacomp.lang.asm.x86 (or possiblyalt.lang.asm —
forget which), which was essentially that there didn’t seem to be afge®#86—series assembler around,
and that maybe someone ought to write one.

e aB6 is good, but not free, and in particular you don’t get any 32-bit capability until you pay. It's DOS
only, too.

e gas is free, and ports over to DOS and Unix, but it's not very good, since it's designed to be a back end to
gcc, which always feeds it correct code. So its error checking is minimal. Also, its syntax is horrible, from
the point of view of anyone trying to actuallyrite anything in it. Plus you can’t write 16-bit code in it
(properly.)

e as86 is specific to Minix and Linux, and (my version at least) doesn't seem to have much (or any)
documentation.

« MASMsnN't very good, and it's (was) expensive, and it runs only under DOS.

« TASMis better, but still strives for MASM compatibility, which means millions of directives and tons of
red tape. And its syntax is essentially MASM’s, with the contradictions and quirks that entails (although it
sorts out some of those by means of Ideal mode.) It's expensive too. And it's DOS-only.

So here, for your coding pleasure, is NASM. At present it’s still in prototype stage — we don’t promise that it
can outperform any of these assemblers. But plgdsasesend us bug reports, fixes, helpful information,

and anything else you can get your hands on (and thanks to the many people who've done this already! You
all know who you are), and we’ll improve it out of all recognition. Again.

1.1.2 License Conditions

Please see the filel CENSE, supplied as part of any NASM distribution archive, for the license conditions
under which you may use NASM. NASM is now under the so—called 2-clause BSD license, also known as
the simplified BSD license.

Copyright 1996-2011 the NASM Authors — All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

« Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

« Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1.2 Contact Information

The current version of NASM (since about 0.98.08) is maintained by a team of developers, accessible through
thenasm-devel mailing list (see below for the link). If you want to report a bug, please read section 12.2
first.

NASM has a website &ittp://www.nasm.us/ . If it's not there, google for us!

New releases, release candidates, and daily development snapshots of NASM are available from the official
web site.

Announcements are posted to comp.lang.asm.x86 and to the web site

http://www.freshmeat.net/

If you want information about the current development status, please subscribenésrivedevel email
list; see link from the website.

1.3 Installation
1.3.1 Installing NASM under MS-DOS or Windows

Once you've obtained the appropriate archive for NASMasm-XXX-dos.zip or
nasm-XXX-win32.zip (where XXX denotes the version number of NASM contained in the archive),
unpack it into its own directory (for examplanasm).

The archive will contain a set of executable files: the NASM executabledden.exe , the NDISASM
executable filmmdisasm.exe , and possibly additional utilities to handle the RDOFF file format.

The only file NASM needs to run is its own executable, so c@syn.exe to a directory on your PATH, or
alternatively ediautoexec.bat to add thenasm directory to youlPATH(to do that under Windows XP,

go to Start > Control Panel > System > Advanced > Environment Variables; these instructions may work
under other versions of Windows as well.)

That's it — NASM is installed. You don't need the nasm directory to be present to run NASM (unless you've
added it to youPATH, so you can delete it if you need to save space; however, you may want to keep the
documentation or test programs.

If you've downloaded the DOS source archimasm—-XXX.zip , thenasm directory will also contain the
full NASM source code, and a selection of Makefiles you can (hopefully) use to rebuild your copy of NASM
from scratch. See the filBISTALL in the source archive.

17

http://www.nasm.us/
news:comp.lang.asm.x86
http://www.freshmeat.net/

18

Note that a number of files are generated from other files by Perl scripts. Although the NASM source

distribution includes these generated files, you will need to rebuild them (and hence, will need a Perl
interpreter) if you change insns.dat, standard.mac or the documentation. It is possible future source
distributions may not include these files at all. Ports of Perl for a variety of platforms, including DOS and

Windows, are available from www.cpan.org.

1.3.2 Installing NASM under Unix

Once you've obtained the Unix source archive for NASdsm—-XXX.tar.gz (where XXX denotes the
version number of NASM contained in the archive), unpack it into a directory suabkréscal/src
The archive, when unpacked, will create its own subdirectasy—XXX

NASM is an auto—configuring package: once you've unpackexd ito the directory it's been unpacked into
and type./configure . This shell script will find the best C compiler to use for building NASM and set up
Makefiles accordingly.

Once NASM has auto-configured, you can typake to build thenasm andndisasm binaries, and then
make install to install them in/usr/local/bin and install the man pagesasm.l and
ndisasm.1 in /usr/local/man/manl . Alternatively, you can give options such-asprefix to the
configure script (see the filNSTALL for more details), or install the programs yourself.

NASM also comes with a set of utilities for handling RBOFFcustom object-file format, which are in the
rdoff subdirectory of the NASM archive. You can build these withke rdf and install them with
make rdf_install , if you want them.

http://www.cpan.org/ports/

Chapter 2: Running NASM

2.1 NASM Command-Line Syntax

To assemble a file, you issue a command of the form

nasm —f <format> <filename> [-0 <output>]

For example,

nasm —f elf myfile.asm

will assemblemyfile.asm into anELF object filemyfile.o . And
nasm —f bin myfile.asm —o myfile.com

will assemblemyfile.asm into a raw binary filanyfile.com

To produce a listing file, with the hex codes output from NASM displayed on the left of the original sources,
use the-l option to give a listing file name, for example:

nasm —f coff myfile.asm - myfile.lst

To get further usage instructions from NASM, try typing

nasm —h

As —hf , this will also list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your systemasit or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system iELF, and you should use the optiehelf when you want NASM to produce Linux
object files. If it says

nasm: Linux/i386 demand-paged executable (QMAGIC)

or something similar, your systemasout , and you should usef aout instead (Linuxa.out systems
have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won’t see any output at all,
unless it gives error messages.

2.1.1 The-o Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is dependent on
the object file format. For Microsoft object file formatsb| , win32 andwin64), it will remove the.asm
extension (or whatever extension you like to use — NASM doesn't care) from your source file hame and
substitute.obj . For Unix object file formatsaput , as86, coff , elf32 , elf64 , elfx32 , ieee ,
macho32 and macho64) it will substitute.o . Fordbg, rdf , ith andsrec , it will use .dbg , .rdf ,

19

.ith and .srec , respectively, and for théin format it will simply remove the extension, so that
myfile.asm produces the output filmyfile

If the output file already exists, NASM will overwrite it, unless it has the same name as the input file, in
which case it will give a warning and usasm.out as the output file name instead.

For situations in which this behaviour is unacceptable, NASM providesatemmand-line option, which
allows you to specify your desired output file name. You inveledy following it with the name you wish
for the output file, either with or without an intervening space. For example:

nasm —f bin program.asm —o program.com
nasm —f bin driver.asm —odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimisation passes required. See section 2.1.22.

2.1.2 The—f Option: Specifying the Output File Format

If you do not supply the-f option to NASM, it will choose an output file format for you itself. In the
distribution versions of NASM, the default is alwayia ; if you've compiled your own copy of NASM, you
can redefin@F _DEFAULTat compile time and choose what you want the default to be.

Like -0, the intervening space betweeh and the output file format is optional; sbelf and-felf are
both valid.

A complete list of the available output file formats can be given by issuing the comasmd-hf .

2.1.3 The-l Option: Generating a Listing File

If you supply the-l option to NASM, followed (with the usual optional space) by a file name, NASM will
generate a source-listing file for you, in which addresses and generated code are listed on the left, and the
actual source code, with expansions of multi-line macros (except those which specifically request no
expansion in source listings: see section 4.3.11) on the right. For example:

nasm —f elf myfile.asm —I myfile.Ist

If a list file is selected, you may turn off listing for a section of your source[ligth-] , and turn it back
on with[list +] , (the default, obviously). There is no "user form" (without the brackets). This can be used
to list only sections of interest, avoiding excessively long listings.

2.1.4 The-MOption: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file for
further processing. For example:

nasm —-M myfile.asm > myfile.dep

2.1.5 The-MGOption: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This differs frbroghien in that if
a nonexisting file is encountered, it is assumed to be a generated file and is added to the dependency list
without a prefix.

2.1.6 The-MFOption: Set Makefile Dependency File

This option can be used with thé/ or -MGoptions to send the output to a file, rather than to stdout. For
example:

nasm -M —-MF myfile.dep myfile.asm

2.1.7 The-MDOption: Assemble and Generate Dependencies

The -MDoption acts as the combination of th® and —MF options (i.e. a filename has to be specified.)
However, unlike the-Mor ~-MGoptions,~MDdoesnot inhibit the normal operation of the assembler. Use this
to automatically generate updated dependencies with every assembly session. For example:

nasm —f elf —o myfile.o ~-MD myfile.dep myfile.asm

2.1.8 The-MTOption: Dependency Target Name

The-MT option can be used to override the default name of the dependency target. This is normally the same
as the output filename, specified by the option.

2.1.9 The-MQOption: Dependency Target Name (Quoted)

The —MQoption acts as theMT option, except it tries to quote characters that have special meaning in
Makefile syntax. This is not foolproof, as not all characters with special meaning are quotable in Make.

2.1.10 The-MPOption: Emit phony targets

When used with any of the dependency generation options;MRoption causes NASM to emit a phony
target without dependencies for each header file. This prevents Make from complaining if a header file has
been removed.

2.1.11 The-F Option: Selecting a Debug Information Format

This option is used to select the format of the debug information emitted into the output file, to be used by a
debugger (omill be). Prior to version 2.03.01, the use of this switchndilenable output of the selected
debug info format. Useg, see section 2.1.12, to enable output. Versions 2.03.01 and later automatically
enable-g if —F is specified.

A complete list of the available debug file formats for an output format can be seen by issuing the command
nasm —f <format> -y . Not all output formats currently support debugging output. See section 2.1.26.

This should not be confused with thedbg output format option which is not built into NASM by default.
For information on how to enable it when building from the sources, see section 7.14.

2.1.12 The-g Option: Enabling Debug Information.

This option can be used to generate debugging information in the specified format. See section 2.1.11. Using
—g without—F results in emitting debug info in the default format, if any, for the selected output format. If no
debug information is currently implemented in the selected output forignag,silently ignored

2.1.13 The-X Option: Selecting an Error Reporting Format

This option can be used to select an error reporting format for any error messages that might be produced by
NASM.

Currently, two error reporting formats may be selected. They areXe option and the-Xgnu option. The
GNU format is the default and looks like this:

filename.asm:65: error: specific error message

wherefilename.asm is the name of the source file in which the error was dete@feds the source file
line number on which the error was detectedor is the severity of the error (this could Wwarning),

21

and specific error message is a more detailed text message which should help pinpoint the exact
problem.

The other format, specified byXvc is the style used by Microsoft Visual C++ and some other programs. It
looks like this:

filename.asm(65) : error: specific error message
where the only difference is that the line number is in parentheses instead of being delimited by colons.

See also th¥isual C++ output format, section 7.5.

2.1.14 The-Z Option: Send Errors to a File

UnderMS-DOSt can be difficult (though there are ways) to redirect the standard—error output of a program
to a file. Since NASM usually produces its warning and error messagddayn |, this can make it hard to
capture the errors if (for example) you want to load them into an editor.

NASM therefore provides theZ option, taking a filename argument which causes errors to be sent to the
specified files rather than standard error. Therefore you can redirect the errors into a file by typing

nasm -Z myfile.err —f obj myfile.asm

In earlier versions of NASM, this option was calle@, but it was changed sinceE is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.20.

2.1.15 The-s Option: Send Errors to stdout

The —s option redirects error messagesstoout rather thanstderr , so it can be redirected under
MS-DOSTo assemble the filmyfile.asm and pipe its output to thmore program, you can type:

nasm —s —f obj myfile.asm | more

See also theZ option, section 2.1.14.

2.1.16 The-i Option: Include File Search Directories

When NASM sees thésinclude or %pathsearch directive in a source file (see section 4.6.1, section
4.6.2 or section 3.2.3), it will search for the given file not only in the current directory, but also in any
directories specified on the command line by the use ofitheption. Therefore you can include files from a
macro library, for example, by typing

nasm —ic:\macrolib\ —f obj myfile.asm
(As usual, a space between and the path name is allowed, and optional).

NASM, in the interests of complete source—code portability, does not understand the file naming conventions
of the OS it is running on; the string you provide as an argument to thption will be prepended exactly as
written to the name of the include file. Therefore the trailing backslash in the above example is necessary.
Under Unix, a trailing forward slash is similarly necessary.

(You can use this to your advantage, if you're really perverse, by noting that the ifition will cause
%include "bar.i" to search for the filkoobar.i ...

If you want to define astandardinclude search path, similar fasr/include on Unix systems, you
should place one or moré directives in th&NASMENnvironment variable (see section 2.1.28).

For Makefile compatibility with many C compilers, this option can also be specifield.as

2.1.17 The-p Option: Pre-Include a File

NASM allows you to specify files to bere—includedinto your source file, by the use of thp option. So
running

nasm myfile.asm —p myinc.inc

is equivalent to runningasm myfile.asm and placing the directiv&include "myinc.inc" at the
start of the file.

For consistency with thel , =D and-U options, this option can also be specified-Bs

2.1.18 The-d Option: Pre-Define a Macro

Just as the-p option gives an alternative to placifignclude directives at the start of a source file, ttte
option gives an alternative to placin§alefine directive. You could code

nasm myfile.asm —dFOO=100
as an alternative to placing the directive
%define FOO 100

at the start of the file. You can miss off the macro value, as well: the olé@Ois equivalent to coding
%define FOO . This form of the directive may be useful for selecting assembly—-time options which are then
tested usingoifdef |, for example-dDEBUG

For Makefile compatibility with many C compilers, this option can also be specified.as

2.1.19 The-u Option: Undefine a Macro

The —u option undefines a macro that would otherwise have been pre-defined, either automatically or by a
—p or —d option specified earlier on the command lines.

For example, the following command line:
nasm myfile.asm —dFO0O=100 -uFOO

would result inFOOnot being a predefined macro in the program. This is useful to override options specified
at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified.as

2.1.20 The-E Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. Usingitloption (which requires no
arguments) will cause NASM to preprocess its input file, expand all the macro references, remove all the
comments and preprocessor directives, and print the resulting file on standard output (or save it to a file, if the
-0 option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions which
depend on the values of symbols: so code such as

%assign tablesize ($-tablestart)
will cause an error in preprocess—only mode.

For compatiblity with older version of NASM, this option can also be written—E in older versions of
NASM was the equivalent of the currefZ option, section 2.1.14.

23

2.1.21 The-a Option: Don’t Preprocess At Al

If NASM is being used as the back end to a compiler, it might be desirable to suppress preprocessing
completely and assume the compiler has already done it, to save time and increase compilation speeds. The
—a option, requiring no argument, instructs NASM to replace its powerful preprocessor with a stub
preprocessor which does nothing.

2.1.22 The-OOption: Specifying Multipass Optimization
Using the-O option, you can tell NASM to carry out different levels of optimization. The syntax is:

e —0O0: No optimization. All operands take their long forms, if a short form is not specified, except
conditional jumps. This is intended to match NASM 0.98 behavior.

¢ —0OL1 Minimal optimization. As above, but immediate operands which will fit in a signed byte are
optimized, unless the long form is specified. Conditional jumps default to the long form unless otherwise
specified.

e —-Ox (where x is the actual lettexx): Multipass optimization. Minimize branch offsets and signed
immediate bytes, overriding size specification unlesssthiet keyword has been used (see section
3.7). For compatibility with earlier releases, the lekemay also be any number greater than one. This
number has no effect on the actual number of passes.

The-Ox mode is recommended for most uses, and is the default since NASM 2.09.

Note that this is a capit&), and is different from a smadl, which is used to specify the output file name. See
section 2.1.1.

2.1.23 The-t Option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with BorlandlASM When NASM’'s—t option is used, the
following changes are made:

« local labels may be prefixed wit® @nhstead of

« size override is supported within brackets. In TASM compatible mode, a size override inside square
brackets changes the size of the operand, and not the address type of the operand as it does in NASM
syntax. E.gmov eax,[DWORD val] is valid syntax in TASM compatibility mode. Note that you lose
the ability to override the default address type for the instruction.

» unprefixed forms of some directives supportedg(, elif , else , endif , if , ifdef , ifdifi ,
ifndef ,include ,local)

2.1.24 The-wand -WOptions: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to the user,
but not a sufficiently severe error to justify NASM refusing to generate an output file. These conditions are
reported like errors, but come up with the word ‘warning’ before the message. Warnings do not prevent
NASM from generating an output file and returning a success status to the operating system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the user.
Therefore NASM supports thew command-line option, which enables or disables certain classes of
assembly warning. Such warning classes are described by a name, for exguinpie-labels ; you can

enable warnings of this class by the command-line optisr-orphan-labels and disable it by
-w-orphan-labels

The suppressible warning classes are:

e macro—params covers warnings about multi-line macros being invoked with the wrong number of
parameters. This warning class is enabled by default; see section 4.3.1 for an example of why you might
want to disable it.

¢ macro-selfref warns if a macro references itself. This warning class is disabled by default.

* macro—defaults warns when a macro has more default parameters than optional parameters. This
warning class is enabled by default; see section 4.3.5 for why you might want to disable it.

« orphan-labels covers warnings about source lines which contain no instruction but define a label
without a trailing colon. NASM warns about this somewhat obscure condition by default; see section 3.1
for more information.

« number-overflow covers warnings about numeric constants which don't fit in 64 bits. This warning
class is enabled by default.

« gnu-elf-extensions warns if 8-bit or 16-bit relocations are used-inelf = format. The GNU
extensions allow this. This warning class is disabled by default.

« float-overflow warns about floating point overflow. Enabled by default.

« float-denorm warns about floating point denormals. Disabled by default.

« float—-underflow warns about floating point underflow. Disabled by default.

» float-toolong warns about too many digits in floating—point numbers. Enabled by default.
e user controls%warning directives (see section 4.9). Enabled by default.

* lock warns aboutOCKprefixes on unlockable instructions. Enabled by default.

« hle warns about invalid use of the HEACQUIREor XRELEASEprefixes. Enabled by default.

e error causes warnings to be treated as errors. Disabled by default.

e all is an alias fomll suppressible warning classes (not includamgpr). Thus,—w+all enables all
available warnings.

In addition, you can set warning classes across sections. Warning classes may be enabled with
[warning +warning—name] , disabled withjwarning —warning—name] or reset to their original
value with[warning *warning—name] . No "user form" (without the brackets) exists.

Since version 2.00, NASM has also supported the gcc-like syftéwarning and —Wno-warning
instead of-w+warning and-w-warning , respectively.

2.1.25 The-v Option: Display Version Info

Typing NASM -v will display the version of NASM which you are using, and the date on which it was
compiled.

You will need the version number if you report a bug.
2.1.26 The-y Option: Display Available Debug Info Formats

Typing nasm —f <option> -y will display a list of the available debug info formats for the given output
format. The default format is indicated by an asterisk. For example:

nasm —f elf -y

25

26

valid debug formats for 'elf32’ output format are
("' denotes default):
*stabs ELF32 (i386) stabs debug format for Linux
dwarf elf32 (i386) dwarf debug format for Linux

2.1.27 The-—prefix —and--postfix Options.

The ——prefix ~ and ——postfix options prepend or append (respectively) the given argument to all
global or extern variables. E.g——prefix _ will prepend the underscore to all global and external
variables, as C sometimes (but not always) likes it.

2.1.28 TheNASMENWEnvironment Variable

If you define an environment variable callBtASMENVthe program will interpret it as a list of extra
command-line options, which are processed before the real command line. You can use this to define
standard search directories for include files, by puttingptions in theNASMENVWariable.

The value of the variable is split up at white space, so that the v&ldie:\nasmlib\ will be treated as

two separate options. However, that means that the valNAME="my name" won't do what you might

want, because it will be split at the space and the NASM command-line processing will get confused by the
two nonsensical wordsdNAME="myandname".

To get round this, NASM provides a feature whereby, if you begitN&k@MEN\environment variable with

some character that isn't a minus sign, then NASM will treat this character as the separator character for
options. So setting thdASMENWariable to the valué-s!-ic:\nasmlib\ is equivalent to setting it to

—s —ic:\nasmlib\ , but!-dNAME="my name" will work.

This environment variable was previously caldSMThis was changed with version 0.98.31.

2.2 Quick Start for MASM Users

If you're used to writing programs with MASM, or with TASM in MASM-compatible (non-Ideal) mode, or
with a86, this section attempts to outline the major differences between MASM'’s syntax and NASM'’s. If
you're not already used to MASM,, it's probably worth skipping this section.

2.2.1 NASM Is Case-Sensitive

One simple difference is that NASM is case-sensitive. It makes a difference whether you call ydao label

Foo or FOO If you're assembling tdOSor OS/2 .0OBJ files, you can invoke thElPPERCASKHlirective
(documented in section 7.4) to ensure that all symbols exported to other code modules are forced to be upper
case; but even thewjthin a single module, NASM will distinguish between labels differing only in case.

2.2.2 NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it should be
possible, as far as is practical, for the user to look at a single line of NASM code and tell what opcode is
generated by it. You can't do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

then the two lines of code

mov ax,foo
mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references. The rule is
simply that any access to thententsof a memory location requires square brackets around the address, and
any access to theddressof a variable doesn’t. So an instruction of the fanov ax,foo will alwaysrefer

to a compile—time constant, whether it'sa@Uor the address of a variable; and to accessdht&ntsof the
variablebar , you must codenov ax,[bar]

This also means that NASM has no need for MASNDEFSET keyword, since the MASM code

mov ax,offset bar means exactly the same thing as NASktisv ax,bar . If you're trying to get
large amounts of MASM code to assemble sensibly under NASM, you can always code
%idefine offset to make the preprocessor treat @eFSETkeyword as a ho-op.

This issue is even more confusingaB6, where declaring a label with a trailing colon defines it to be a
‘label’ as opposed to a ‘variable’ and caua86 to adopt NASM-style semantics; soafié, mov ax,var

has different behaviour depending on whetrar was declared agar: dw 0 (a label) ovar dw 0 (a
word-size variable). NASM is very simple by comparisererythingis a label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by MASM and its

clones, such amov ax,table[bx] , where a memory reference is denoted by one portion outside square
brackets and another portion inside. The correct syntax for the abmmyiax,[table+bx] . Likewise,
mov ax,es:[di] is wrong andnov ax,[es:di] is right.

2.2.3 NASM Doesn't Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM wiill
remember, on seeing@ar dw 0 , that you declaredar as a word-size variable, and will then be able to fill

in the ambiguity in the size of the instructiorov var,2 , NASM will deliberately remember nothing about

the symbolar except where it begins, and so you must explicitly code word [var],2

For this reason, NASM doesn’t support hteDS MOVSSTOS SCAS CMPSINS, or OUTSinstructions,
but only supports the forms such BDSB MOVSWand SCASD which explicitly specify the size of the
components of the strings being manipulated.

2.2.4 NASM Doesn'tASSUME

As part of NASM'’s drive for simplicity, it also does not support A&SUMHlirective. NASM will not keep
track of what values you choose to put in your segment registers, and willanggaraticallygenerate a
segment override prefix.

2.2.5 NASM Doesn’'t Support Memory Models

NASM also does not have any directives to support different 16—bit memory models. The programmer has to
keep track of which functions are supposed to be called with a far call and which with a near call, and is
responsible for putting the correct formRET instruction RETNor RETE NASM acceptRET itself as an
alternate form forRETN; in addition, the programmer is responsible for coding CALL FAR instructions
where necessary when callirexternal functions, and must also keep track of which external variable
definitions are far and which are near.

2.2.6 Floating—Point Differences

NASM uses different names to refer to floating—point registers from MASM: where MASM would call them
ST(0) , ST(1) and so on, and86 would call them simph0, 1 and so on, NASM chooses to call them
st0 , stl etc.

27

28

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was based on a
misunderstanding by the authors.

2.2.7 Other Differences

For historical reasons, NASM uses the keywdM/ORDwvhere MASM and compatible assemblers use
TBYTE

NASM does not declare uninitialized storage in the same way as MASM: where a MASM programmer might
usestack db 64 dup (?) , NASM requiresstack resb 64 , intended to be read as ‘reserve 64
bytes’. For a limited amount of compatibility, since NASM treatss a valid character in symbol names, you
can code? equ 0 and then writingdw ? will at least do something vaguely usefDlUPis still not a
supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASM. See chapter 4 and
chapter 6 for further detalils.

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor directive or an
assembler directive: see chapter 4 and chapter 6) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label, an
instruction and a comment is allowed. Of course, the operand field is either required or forbidden by the
presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next line is
considered to be a part of the backslash—ended line.

NASM places no restrictions on white space within a line: labels may have white space before them, or
instructions may have no space before them, or anything. The colon after a label is also optional. (Note that
this means that if you intend to colbglsb alone on a line, and tydedab by accident, then that’s still a

valid source line which does nothing but define a label. Running NASM with the command-line option
—-w+orphan-labels will cause it to warn you if you define a label alone on a line without a trailing colon.)

Valid characters in labels are letters, numbers, #, @ ~, . , and?. The only characters which may be used
as thefirst character of an identifier are letters,(with special meaning: see section 3.9)and ?. An
identifier may also be prefixed with&to indicate that it is intended to be read as an identifier and not a
reserved word; thus, if some other module you are linking with defines a symbolezalegiou can refer to
$eax in NASM code to distinguish the symbol from the register. Maximum length of an identifier is 4095
characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU instructions,
MMX instructions and even undocumented instructions are all supported. The instruction may be prefixed by
LOCK REP, REPEREPZ or REPNEREPNZ in the usual way. Explicit address—size and operand-size
prefixesAl16, A32, A64, 016 andO32, 064 are provided — one example of their use is given in chapter 10.
You can also use the name of a segment register as an instruction prefix: epdimay [bx],ax is
equivalent to codingnov [es:bx],ax . We recommend the latter syntax, since it is consistent with other
syntactic features of the language, but for instructions sudfOBSSB which has no operands and yet can
require a segment override, there is no clean syntactic way to proceed apad fonisb

An instruction is not required to use a prefix: prefixes sucB@# 32, LOCKor REPEcan appear on a line
by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo-instructions, described in
section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the register name
(e.g.ax, bp, ebx, cr0 : NASM does not use thgas —style syntax in which register names must be prefixed

by a % sign), or they can be effective addresses (see section 3.3), constants (section 3.4) or expressions
(section 3.5).

29

For x87 floating—point instructions, NASM accepts a wide range of syntaxes: you can use two—operand forms
like MASM supports, or you can use NASM’s native single—operand forms in most cases. For example, you

can code:
fadd stl : this sets st0 := st0 + st
fadd stO,stl : so does this
fadd stl,stO ; this sets stl := st1 + stO
fadd to stl : so does this

Almost any x87 floating—point instruction that references memory must use one of the pbafe@RD
QWORDr TWORIMD indicate what size of memory operand it refers to.

3.2 Pseudo-Instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the instruction
field anyway because that's the most convenient place to put them. The current pseudo-instrudiiBns are
DW DD DQ DT, DOandDY; their uninitialized counterpar@ESB RESWRESD RESQ REST, RESOand

RESY, theINCBIN command, th&QUcommand, and thEIMES prefix.

3.2.1 DBand Friends: Declaring Initialized Data

DB DWDD DQ DT, DOandDY are used, much as in MASM, to declare initialized data in the output file.
They can be invoked in a wide range of ways:

db 0x55 ; just the byte 0x55

db 0x55,0x56,0x57 ;three bytes in succession
db 'a’,0x55 ; character constants are OK
db ’hello’,13,10,’$’ ; so are string constants

dw 0x1234 ; 0x34 0x12

dw 'a’ ; Ox61 0x00 (it's just a number)
dw ‘ab’ ; Ox61 0x62 (character constant)
dw ‘abc’ ; Ox61 0x62 0x63 0x00 (string)
dd 0x12345678 ; 0X78 0x56 0x34 0x12

dd 1.234567e20 ; floating—point constant

dg 0x123456789abcdef0 ; eight byte constant
dg 1.234567e20 ; double—precision float

dt 1.234567e20 ; extended-precision float

DT, DOandDY do not accept numeric constants as operands.

3.2.2 RESBand Friends: Declaring Uninitialized Data

RESB RESWRESD RESQREST, RESOandRESYare designed to be used in the BSS section of a module:
they declareuninitialized storage space. Each takes a single operand, which is the number of bytes, words,
doublewords or whatever to reserve. As stated in section 2.2.7, NASM does not support the MASM/TASM
syntax of reserving uninitialized space by writiD§V ? or similar things: this is what it does instead. The
operand to &ESB-type pseudo-instruction iscatical expressionsee section 3.8.

For example:

buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 : reserve a word

realarray resq 10 ; array of ten reals
ymmval: resy 1 ; one YMM register

3.2.3 INCBIN : Including External Binary Files

INCBIN is borrowed from the old Amiga assembler DevPac: it includes a binary file verbatim into the output
file. This can be handy for (for example) including graphics and sound data directly into a game executable
file. It can be called in one of these three ways:

incbin “file.dat" ; include the whole file

incbin “file.dat",1024 ; skip the first 1024 bytes

incbin “file.dat",1024,512 ; skip the first 1024, and
; actually include at most 512

INCBIN is both a directive and a standard macro; the standard macro version searches for the file in the
include file search path and adds the file to the dependency lists. This macro can be overridden if desired.

3.2.4 EQU Defining Constants

EQUdefines a symbol to a given constant value: wB&hlis used, the source line must contain a label. The
action ofEQUis to define the given label name to the value of its (only) operand. This definition is absolute,
and cannot change later. So, for example,

message db ’hello, world’
msglen equ $-message

definesmsglen to be the constant 1fhsglen may not then be redefined later. This is not a preprocessor
definition either: the value ofmsglen is evaluatedonce using the value of (see section 3.5 for an
explanation off) at the point of definition, rather than being evaluated wherever it is referenced and using the
value of$ at the point of reference.

3.2.5 TIMES: Repeating Instructions or Data

The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as NASM's
equivalent of th®UPsyntax supported by MASM-compatible assemblers, in that you can code

zerobuf: times 64 db 0

or similar things; bufTIMES is more versatile than that. The argumenfTtMES is not just a numeric
constant, but a numeraxpressionso you can do things like

buffer: db "hello, world’
times 64-$+buffer db ’’

which will store exactly enough spaces to make the total lendihftér up to 64. Finally,TIMES can be
applied to ordinary instructions, so you can code trivial unrolled loops in it:

times 100 movsb

Note that there is no effective difference betwéares 100 resb 1 andresb 100 , except that the
latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand tdIMES is a critical expression (section 3.8).

Note also thaffIMES can't be applied to macros: the reason for this is TIeES is processed after the
macro phase, which allows the argumenTIRIES to contain expressions such@bs-$+buffer as above.
To repeat more than one line of code, or a complex macro, use the prepréaregsdirective.

31

32

3.3 Effective Addresses

An effective address is any operand to an instruction which references memory. Effective addresses, in
NASM, have a very simple syntax: they consist of an expression evaluating to the desired address, enclosed in
square brackets. For example:

wordvar dw 123
mov ax,[wordvar]
mov ax,[wordvar+1]
mov ax,[es:wordvar+bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for example
es:wordvar[bx]

More complicated effective addresses, such as those involving more than one register, work in exactly the
same way:

mov eax,[ebx*2+ecx+offset]
mov ax,[bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don't neloedsarily
legal are perfectly all right:

mov eax,[ebx*5] ; assembles as [ebx*4+ebX]
mov eax,[labell*2-label2] ;ie [labell+(labell-label2)]

Some forms of effective address have more than one assembled form; in most such cases NASM will generate
the smallest form it can. For example, there are distinct assembled forms for the 32-bit effective addresses
[eax*2+0] and[eax+eax] , and NASM will generally generate the latter on the grounds that the former
requires four bytes to store a zero offset.

NASM has a hinting mechanism which will caugax+ebx] and[ebx+eax] to generate different
opcodes; this is occasionally useful becajesé+ebp] and[ebp+esi] have different default segment
registers.

However, you can force NASM to generate an effective address in a particular form by the use of the
keywordsBYTE WORIDWORRNANOSPLIT. If you needeax+3] to be assembled using a double-word
offset field instead of the one byte NASM will normally generate, you can fmderd eax+3]

Similarly, you can force NASM to use a byte offset for a small value which it hasn’t seen on the first pass (see
section 3.8 for an example of such a code fragment) by (isytg eax+offset] . As special cases,

[byte eax] will code [eax+0] with a byte offset of zero, andword eax] will code it with a
double-word offset of zero. The normal fof®@ax] , will be coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a 32-bit
segment from within 16 bit code. For more information on this see the section on mixed-size addressing
(section 10.2). In particular, if you need to access data with a known offset that is larger than will fit in a
16-bit value, if you don't specify that it is a dword offset, nasm will cause the high word of the offset to be
lost.

Similarly, NASM will split [eax*2] into[eax+eax] because that allows the offset field to be absent and
space to be saved; in fact, it will also spiax*2+offset] into [eax+eax+offset] . You can combat
this behaviour by the use of tMOSPLIT keyword: [nosplit eax*2] will force [eax*2+0] to be
generated literally.

In 64-bit mode, NASM will by default generate absolute addressesREhekeyword makes it produce
RIP —relative addresses. Since this is frequently the normally desired behaviour, Beg-fidL Tdirective
(section 6.2). The keywordiBS overridesREL

3.4 Constants

NASM understands four different types of constant: numeric, character, string and floating—point.

3.4.1 Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number bases,
in a variety of ways: you can suffikd or X, Dor T, Qor O, andB or Y for hexadecimal, decimal, octal and
binary respectively, or you can prefbx, for hexadecimal in the style of C, or you can prefixfor
hexadecimal in the style of Borland Pascal or Motorola Assemblers. Note, though, tBaptéfix does
double duty as a prefix on identifiers (see section 3.1), so a hex number prefixeddwstgramust have a

digit after the$ rather than a letter. In addition, current versions of NASM accept the fHefifor
hexadecimalQd or Ot for decimal,00 or 0qg for octal, anddb or Oy for binary. Please note that unlike C, a

0 prefix by itself doesiotimply an octal constant!

Numeric constants can have underscorgsnterspersed to break up long strings.

Some examples (all producing exactly the same code):

mov ax,200 ; decimal

mov ax,0200 ; still decimal

mov ax,0200d ; explicitly decimal
mov ax,0d200 ; also decimal
mov ax,0c8h ; hex

mov ax,$0c8 ; hex again: the 0 is required
mov ax,0xc8 ; hex yet again
mov ax,0hc8 ; still hex

mov ax,310q ; octal

mov ax,3100 ; octal again

mov ax,00310 ; octal yet again
mov ax,0g310 ; octal yet again

mov ax,11001000b ; binary

mov ax,1100_1000b ; same binary constant

mov ax,1100_ 1000y ; same binary constant once more
mov ax,0b1100_ 1000 ; same binary constant yet again
mov ax,0y1100 1000 ; same binary constant yet again

3.4.2 Character Strings

A character string consists of up to eight characters enclosed in either single guotes)(double quotes

(...) or backquotes'.(."). Single or double quotes are equivalent to NASM (except of course that
surrounding the constant with single quotes allows double quotes to appear within it and vice versa); the
contents of those are represented verbatim. Strings enclosed in backquotes support\ Cestgpes for
special characters.

The following escape sequences are recognized by backquoted strings:

\ single quote ()
\" double quote (")
\' backquote ()

33

\\ backslash (\)

\? question mark (?)
\a BEL (ASCII 7)
\b BS (ASCII 8)
\t TAB (ASCII 9)
\n LF (ASCII 10)

\v VT (ASCII 11)

\f FF (ASCIl 12)

\r CR (ASCII 13)

\e ESC (ASCII 27)

\377 Up to 3 octal digits - literal byte

\XFF Up to 2 hexadecimal digits — literal byte
\ul234 4 hexadecimal digits — Unicode character
\U12345678 8 hexadecimal digits — Unicode character

All other escape sequences are reserved. NotéOthaneaning aNUL character (ASCII 0), is a special case
of the octal escape sequence.

Unicode characters specified wiih or\U are converted to UTF-8. For example, the following lines are all
equivalent:

db \u263a’ ; UTF-8 smiley face
db \xe2\x98\xba' ; UTF-8 smiley face
db OE2h, 098h, OBAh ; UTF-8 smiley face

3.4.3 Character Constants

A character constant consists of a string up to eight bytes long, used in an expression context. It is treated as if
it was an integer.

A character constant with more than one byte will be arranged with little—endian order in mind: if you code
mov eax, abcd’

then the constant generated is Ar61626364 , but 0x64636261 , so that if you were then to store the
value into memory, it would readbcd rather thandcba. This is also the sense of character constants
understood by the Pentium@PUID instruction.

3.4.4 String Constants

String constants are character strings used in the context of some pseudo-instructions, névdyntiig
andINCBIN (where it represents a filename.) They are also used in certain preprocessor directives.

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

db ’hello’ ; string constant

db ’'h')’e’I'I'o’ ; equivalent character constants
And the following are also equivalent:

dd ’'ninechars’ ; doubleword string constant

dd ’'nine’,/char,’s’ ;becomes three doublewords
db ’'ninechars’,0,0,0 ; and really looks like this

Note that when used in a string—supporting context, quoted strings are treated as a string constants even if
they are short enough to be a character constant, because otlabrveibe would have the same effect as

db 'a’ , which would be silly. Similarly, three—character or four—character constants are treated as strings
when they are operandsiyyand so forth.

3.4.5 Unicode Strings

The special operators utfl6 , utfléle , utflébe , utf32 , utf32le and
__utf32be__ allows definition of Unicode strings. They take a string in UTF-8 format and converts it to
UTF-16 or UTF-32, respectively. Unless the forms are specified, the output is littleendian.

For example:

%define u(x) __ utflé_ (x)
%define w(x) _ utf32_ (x)

dw u(C:\WINDOWS"), 0 ; Pathname in UTF-16
dd w(‘A + B =\u206a’), 0 ; String in UTF-32

The UTF operators can be applied either to strings passed tRlHamily instructions, or to character
constants in an expression context.

3.4.6 Floating—Point Constants

Floating—point constants are acceptable only as argumeb® @VWDD DQ DT, andDQ or as arguments to
the special operators float8 , floatl6 , float32 , floaté4 , float80Om__
__float80e__ , floatl28] ,and_ floatl28h

Floating—point constants are expressed in the traditional form: digits, then a period, then optionally more
digits, then optionally ai followed by an exponent. The period is mandatory, so that NASM can distinguish
betweerdd 1 , which declares an integer constant, ddd..0 which declares a floating—point constant.

NASM also support C99-style hexadecimal floating—paddxt; hexadecimal digits, period, optionally more
hexadeximal digits, then optionallyPafollowed by abinary (not hexadecimal) exponent in decimal notation.
As an extension, NASM additionally supports @feand$ prefixes for hexadecimal, as well binary and octal
floating—point, using th@b or 0y andOo or 0q prefixes, respectively.

Underscores to break up groups of digits are permitted in floating—point constants as well.

Some examples:

db -0.2 ; "Quarter precision”

dw -0.5 ; IEEE 754r/SSES5 half precision
dd 1.2 ; an easy one

dd 1.222 222 222 ; underscores are permitted
dd Ox1p+2 ; 1.0x27"2=4.0

dg Ox1p+32 ; 1.0x2732 = 4 294 967 296.0
dqg 1l.el0 ; 10 000 000 000.0

dg 1l.e+10 ; synonymous with 1.e10

dqg 1l.e-10 ; 0.000 000 000 1

dt 3.141592653589793238462 ; pi

do 1.e+4000 ; IEEE 754r quad precision

35

36

The 8-bit "quarter—precision” floating—point format is sign:exponent:mantissa = 1:4:3 with an exponent bias
of 7. This appears to be the most frequently used 8-bit floating—point format, although it is not covered by
any formal standard. This is sometimes called a "minifloat.”

The special operators are used to produce floating—point numbers in other contexts. They produce the binary
representation of a specific floating—point number as an integer, and can use anywhere integer constants are
used in an expression. float80m__ and _ float80e produce the 64-bit mantissa and 16-bit
exponent of an 80-bit floating—point number, andloat128| and__ float128h_ produce the

lower and upper 64-bit halves of a 128-bit floating—point number, respectively.

For example:
mov rax,__float64__ (3.141592653589793238462)

... would assign the binary representation of pi as a 64-bit floating point numb&AMdrhis is exactly
equivalent to:

mov rax,0x400921fb54442d18

NASM cannot do compile—time arithmetic on floating—point constants. This is because NASM is designed to
be portable — although it always generates code to run on x86 processors, the assembler itself can run on any
system with an ANSI C compiler. Therefore, the assembler cannot guarantee the presence of a floating—point
unit capable of handling the Intel number formats, and so for NASM to be able to do floating arithmetic it
would have to include its own complete set of floating—point routines, which would significantly increase the
size of the assembler for very little benefit.

The special tokens_Infinity ,__ONaN__(or _NaN_) and__SNaN__ can be used to generate
infinities, quiet NaNs, and signalling NaNs, respectively. These are normally used as macros:

%define Inf __Infinity
%define NaN __ QNaN___
dg +1.5, -Inf, NaN ; Double—precision constants

The%use fp standard macro package contains a set of convenience macros. See section 5.3.

3.4.7 Packed BCD Constants

3.5

x87-style packed BCD constants can be used in the same contexts as 80-bit floating—point numbers. They
are suffixed withp or prefixed withOp, and can include up to 18 decimal digits.

As with other numeric constants, underscores can be used to separate digits.
For example:

dt 12_345 678 901_245 678p
dt -12_345 678 901_245 678p
dt +0p33

dt 33p

Expressions

Expressions in NASM are similar in syntax to those in C. Expressions are evaluated as 64-bit integers which
are then adjusted to the appropriate size.

NASM supports two special tokens in expressions, allowing calculations to involve the current assembly
position: the$ and$$ tokens.$ evaluates to the assembly position at the beginning of the line containing the

expression; so you can code an infinite loop usiMiP $. $$ evaluates to the beginning of the current
section; so you can tell how far into the section you are by ($i&§$) .

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.

3.5.1 | : Bitwise OR Operator

The| operator gives a bitwise OR, exactly as performed byORenachine instruction. Bitwise OR is the
lowest—priority arithmetic operator supported by NASM.

3.5.2 ~: Bitwise XOR Operator

N provides the bitwise XOR operation.

3.5.3 &: Bitwise AND Operator

& provides the bitwise AND operation.

3.5.4 << and >>: Bit Shift Operators

<< gives a hit-shift to the left, just as it does in C53&3 evaluates to 5 times 8, or 49> gives a bit-shift
to the right; in NASM, such a shift Elwaysunsigned, so that the bits shifted in from the left—-hand end are
filled with zero rather than a sign—extension of the previous highest bit.

3.5.5 + and -: Addition and Subtraction Operators

The+ and- operators do perfectly ordinary addition and subtraction.

3.5.6*,/,/ ,%and%%Multiplication and Division

* is the multiplication operatof. and// are both division operatork:is unsigned division and is signed
division. Similarly,%and%%provide unsigned and signed modulo operators respectively.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo operator.

Since theé%character is used extensively by the macro preprocessor, you should ensure that both the signed
and unsigned modulo operators are followed by white space wherever they appear.

3.5.7 Unary Operators

The highest—priority operators in NASM's expression grammar are those which only apply to one argument.
These are-, —, ~, ! , SEG and the integer functions operators.

- negates its operandl,does nothing (it's provided for symmetry witf), ~ computes the one’s complement
of its operand! is the logical negation operator.

SEGprovides the segment address of its operand (explained in more detail in section 3.6).

A set of additional operators with leading and trailing double underscores are used to implement the integer
functions of théfunc macro package, see section 5.4.

3.6 SEGand WRT

When writing large 16-bit programs, which must be split into multiple segments, it is often necessary to be
able to refer to the segment part of the address of a symbol. NASM supp@EGbeerator to perform this
function.

The SEG operator returns thpreferred segment base of a symbol, defined as the segment base relative to
which the offset of the symbol makes sense. So the code

37

mov ax,seg symbol
mov es,ax
mov bx,symbol

will load ES:BX with a valid pointer to the symbsymbol .

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one. NASM lets
you do this, by the use of tMéRT(With Reference To) keyword. So you can do things like

mov ax,weird_seg ; weird_seg is a segment base
mov es,ax
mov bx,symbol wrt weird_seg

to loadES:BX with a different, but functionally equivalent, pointer to the synsyaibol .

NASM supports far (inter-segment) calls and jumps by means of the syaltasegment:offset
wheresegment andoffset both represent immediate values. So to call a far procedure, you could code
either of

call (seg procedure):procedure
call weird_seg:(procedure wrt weird_seqg)

(The parentheses are included for clarity, to show the intended parsing of the above instructions. They are not
necessary in practice.)

NASM supports the syntagall far procedure as a synonym for the first of the above usagbt?
works identically taCALL in these examples.

To declare a far pointer to a data item in a data segment, you must code
dw symbol, seg symbol

NASM supports no convenient synonym for this, though you can always invent one using the macro
processor.

3.7 STRICT: Inhibiting Optimization

When assembling with the optimizer set to level 2 or higher (see section 2.1.22), NASM will use size
specifiers BYTE WORDDWORDQWORDIWORDPOWORDr YWOR)) but will give them the smallest
possible size. The keywoRTRICT can be used to inhibit optimization and force a particular operand to be
emitted in the specified size. For example, with the optimizer on, BId$16 mode,

push dword 33
is encoded in three byté8 6A 21 , whereas
push strict dword 33
is encoded in six bytes, with a full dword immediate opef6@8 21 00 00 00
With the optimizer off, the same code (six bytes) is generated whetf@FRIET keyword was used or not.

3.8 Critical Expressions

Although NASM has an optional multi-pass optimizer, there are some expressions which must be resolvable
on the first pass. These are cal&dtical Expressions

The first pass is used to determine the size of all the assembled code and data, so that the second pass, whe
generating all the code, knows all the symbol addresses the code refers to. So one thing NASM can’t handle is
code whose size depends on the value of a symbol declared after the code in question. For example,

times (label-$) db 0
label: db 'Where am 1?’

The argument t@IMES in this case could equally legally evaluate to anything at all; NASM will reject this
example because it cannot tell the size of RMES line when it first sees it. It will just as firmly reject the
slightly paradoxical code

times (label-$+1) db 0
label: db 'NOW where am 1?’

in whichanyvalue for theTIMES argument is by definition wrong!

NASM rejects these examples by means of a concept calidtical expressionwhich is defined to be an
expression whose value is required to be computable in the first pass, and which must therefore depend only
on symbols defined before it. The argument tofthMES prefix is a critical expression.

3.9 Local Labels

NASM gives special treatment to symbols beginning with a period. A label beginning with a single period is
treated as bocal label, which means that it is associated with the previous non-local label. So, for example:

labell ; some code

.loop
; some more code
jne .loop
ret

label2 ; some code

.loop
; some more code
jne .loop
ret

In the above code fragment, eatiE instruction jumps to the line immediately before it, because the two
definitions of.loop are kept separate by virtue of each being associated with the previous non-local label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however, NASM goes
one step further, in allowing access to local labels from other parts of the code. This is achieved by means of
defininga local label in terms of the previous non-local label: the first definitialoop above is really

defining a symbol callethbell.loop , and the second defines a symbol calddxtl2.loop . So, if you

really needed to, you could write

label3 ; some more code
; and some more

jmp labell.loop

39

40

Sometimes it is useful — in a macro, for instance — to be able to define a label which can be referenced from
anywhere but which doesn't interfere with the normal local-label mechanism. Such a label can't be non-local
because it would interfere with subsequent definitions of, and references to, local labels; and it can’t be local
because the macro that defined it wouldn’t know the label's full name. NASM therefore introduces a third
type of label, which is probably only useful in macro definitions: if a label begins with the special j@efix

then it does nothing to the local label mechanism. So you could code

labell: ; @ non—local label
.local: ; this is really labell.local
..@foo: ; this is a special symbol
label2: ; another non-local label
.local: ; this is really label2.local

jmp ..@foo ; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for example,
..Start is used to specify the entry point in thiej output format (see section 7.4.6)magebase is

used to find out the offset from a base address of the current imagewm€@#e output format (see section
7.6.1). So just keep in mind that symbols beginning with a double period are special.

Chapter 4: The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi-level file inclusion,
two forms of macro (single-line and multi-line), and a ‘context stack’ mechanism for extra macro power.
Preprocessor directives all begin witkoeaign.

The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

%define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO\
THIS_VALUE

will work like a single-line macro without the backslash—newline sequence.

4.1 Single-Line Macros
4.1.1 The Normal Way:%define

Single-line macros are defined using #hdefine preprocessor directive. The definitions work in a similar
way to C; so you can do things like

%define ctrl Ox1F &
%define param(a,b) ((a)+(a)*(b))

mov byte [param(2,ebx)], ctrl 'D’
which will expand to

mov byte [(2)+(2)*(ebx)], OX1F & 'D’

When the expansion of a single-line macro contains tokens which invoke another macro, the expansion is
performed at invocation time, not at definition time. Thus the code

%define a(x) 1+b(x)
%define b(x) 2*x
mov ax,a(8)

will evaluate in the expected way nmov ax,1+2*8 , even though the mactowasn’t defined at the time of
definition ofa.

Macros defined witl®edefine are case sensitive: aft#define foo bar , onlyfoo will expand tobar :
Foo or FOOwill not. By using%idefine instead of%define (the ‘i’ stands for ‘insensitive’) you can
define all the case variants of a macro at once, sdltfine foo bar would causdoo , Foo, FOQ

fOO and so on all to expand bar .

There is a mechanism which detects when a macro call has occurred as a result of a previous expansion of the
same macro, to guard against circular references and infinite loops. If this happens, the preprocessor will only
expand the first occurrence of the macro. Hence, if you code

41

42

%define a(x) 1+a(x)

mov ax,a(3)

the macroa(3) will expand once, becomingi+a(3) , and will then expand no further. This behaviour can
be useful: see section 9.1 for an example of its use.

You can overload single—line macros: if you write

%define foo(x) 1+x
%define foo(x,y) 1+x*y

the preprocessor will be able to handle both types of macro call, by counting the parameters you pass; so
foo(3) will becomel+3 whereadoo(ebx,2) will becomel+ebx*2 . However, if you define

%define foo bar

then no other definition dibo will be accepted: a macro with no parameters prohibits the definition of the
same name as a maaevith parameters, and vice versa.

This doesn't prevent single—line macros baiedefined you can perfectly well define a macro with
%define foo bar

and then re—define it later in the same source file with

%define foo baz

Then everywhere the macfoo is invoked, it will be expanded according to the most recent definition. This
is particularly useful when defining single-line macros Withssign (see section 4.1.7).

You can pre—define single—line macros using the ‘—d’ option on the NASM command line: see section 2.1.18.

4.1.2 Resolvingnodefine : %xdefine

To have a reference to an embedded single-line macro resolved at the time that the embedding macro is
defined as opposed to when the embedding macexp@ndedyou need a different mechanism to the one
offered by%define . The solution is to usébxdefine , or it's case—insensitive counterpésixdefine

Suppose you have the following code:

%define isTrue 1
%define isFalse isTrue
%define isTrue 0O

vall: db isFalse
%define isTrue 1

val2: db isFalse

In this caseyall is equal to 0, andal2 is equal to 1. This is because, when a single-line macro is defined
using%define , it is expanded only when it is called. isfalse expands tasTrue , the expansion will
be the current value @True . The first time it is called that is 0, and the second time it is 1.

If you wantedisFalse to expand to the value assigned to the embedded risdete at the time that
isFalse was defined, you need to change the above code 8hxdefine .

%xdefine isTrue 1
%xdefine isFalse isTrue
%xdefine isTrue 0

vall: db isFalse
%xdefine isTrue 1

val2: db isFalse

Now, each time thaisFalse s called, it expands to 1, as that is what the embedded risdote
expanded to at the time thaFalse was defined.

4.1.3 Macro Indirection: %...]

The %[...] construct can be used to expand macros in contexts where macro expansion would otherwise
not occur, including in the names other macros. For example, if you have a set of macro$-oahted
Foo32 andFoo64, you could write:

mov ax,Foo%[BITS] ; The Foo value

to use the builtin macro BITS _ (see section 4.12.5) to automatically select between them. Similarly, the
two statements:

%xdefine Bar Quux ; Expands due to %xdefine
%define Bar %[Quux] ; Expands due to %...]

have, in fact, exactly the same effect.

%][...] concatenates to adjacent tokens in the same way that multi-line macro parameters do, see section
4.3.9 for details.

4.1.4 Concatenating Single Line Macro Token$o+

Individual tokens in single line macros can be concatenated, to produce longer tokens for later processing.
This can be useful if there are several similar macros that perform similar functions.

Please note that a space is required &fteiin order to disambiguate it from the synt@x1used in multiline
macros.

As an example, consider the following:
%define BDASTART 400h ; Start of BIOS data area

struc tBIOSDA ; its structure
.COM1laddr RESW 1
.COM2addr RESW 1
; ..and so on

endstruc

Now, if we need to access the elements of tBIOSDA in different places, we can end up with:

mov ax,BDASTART + tBIOSDA.COM1laddr
mov bx,BDASTART + tBIOSDA.COM2addr

This will become pretty ugly (and tedious) if used in many places, and can be reduced in size significantly by
using the following macro:

43

; Macro to access BIOS variables by their names (from tBDA):
%define BDA(X) BDASTART + tBIOSDA. %+ X
Now the above code can be written as:

mov ax,BDA(COM1addr)
mov bx,BDA(COMZ2addr)

Using this feature, we can simplify references to a lot of macros (and, in turn, reduce typing errors).

4.1.5 The Macro Name ltself%?and %??

The special symbol%?and%?? can be used to reference the macro name itself inside a macro expansion,
this is supported for both single—and multi-line macfé8.refers to the macro name mwvoked whereas

%7?7? refers to the macro name dsclared The two are always the same for case—sensitive macros, but for
case-insensitive macros, they can differ.

For example:

%idefine Foo mov %7?,%7??
foo
FOO

will expand to:

mov foo,Foo
mov FOO,Foo

The sequence:
%idefine keyword $%?

can be used to make a keyword "disappear”, for example in case a new instruction has been used as a label ir
older code. For example:

%idefine pause $%? ; Hide the PAUSE instruction

4.1.6 Undefining Single-Line Macros%undef
Single-line macros can be removed with %hendef directive. For example, the following sequence:
%define foo bar
%undef foo
mov eax, foo
will expand to the instructiomov eax, foo , since aftePoundef the macrdoo is no longer defined.

Macros that would otherwise be pre—defined can be undefined on the command-line using the ‘~u’ option on
the NASM command line: see section 2.1.19.

4.1.7 Preprocessor Variables¥assign

An alternative way to define single-line macros is by means of%assign command (and its
case-insensitive counterpa¥biassign , which differs from %assign in exactly the same way that
%idefine differs from%define).

%assign is used to define single-line macros which take no parameters and have a numeric value. This
value can be specified in the form of an expression, and it will be evaluated once, wiéastign
directive is processed.

Like %define , macros defined usirfpassign can be re—defined later, so you can do things like
%assign i i+1
to increment the numeric value of a macro.

%assign is useful for controlling the termination &bkrep preprocessor loops: see section 4.5 for an
example of this. Another use féassign is given in section 8.4 and section 9.1.

The expression passed%essign is a critical expression (see section 3.8), and must also evaluate to a pure
number (rather than a relocatable reference such as a code or data address, or anything involving a register).

4.1.8 Defining Strings:%defstr

%defstr , and its case-insensitive counterpitiefstr , define or redefine a single-line macro without
parameters but converts the entire right—hand side, after macro expansion, to a quoted string before definition.

For example:

%defstr test TEST

is equivalent to

%define test ' TEST’

This can be used, for example, with #héconstruct (see section 4.10.2):
%defstr PATH %!PATH ; The operating system PATH variable

4.1.9 Defining Tokens%deftok

4.2

%deftok , and its case-insensitive counterpitieftok , define or redefine a single-line macro without
parameters but converts the second parameter, after string conversion, to a sequence of tokens.

For example:
%deftok test ' TEST’
is equivalent to
%define test TEST

String Manipulation in Macros

It's often useful to be able to handle strings in macros. NASM supports a few simple string handling macro
operators from which more complex operations can be constructed.

All the string operators define or redefine a value (either a string or a numeric value) to a single—line macro.
When producing a string value, it may change the style of quoting of the input string or strings, and possibly
use\ —escapes inside-quoted strings.

4.2.1 Concatenating Strings%ostrcat

The%strcat operator concatenates quoted strings and assign them to a single-line macro.

For example:

45

46

%strcat alpha "Alpha: ", '12" screen’

... would assign the valuAlpha: 12" screen’ toalpha . Similarly:

e, »

foo"\', "bar

%strcat beta
... would assign the valudoo"\\'bar™ tobeta .

The use of commas to separate strings is permitted but optional.

4.2.2 String Length:%strlen

The%strlen operator assigns the length of a string to a macro. For example:
%strlen charcnt 'my string’

In this examplecharcnt would receive the value 9, just as if @assign had been used. In this example,
'my string’ was a literal string but it could also have been a single-line macro that expands to a string, as
in the following example:

%define sometext 'my string’
%strlen charcnt sometext

As in the first case, this would resultdharcnt being assigned the value of 9.

4.2.3 Extracting Substrings:%substr

4.3

Individual letters or substrings in strings can be extracted usirhsbbstr operator. An example of its use
is probably more useful than the description:

%substr mychar 'xyzw’ 1 ; equivalent to %define mychar 'x’
%substr mychar 'xyzw’ 2 ; equivalent to %define mychar 'y’
%substr mychar 'xyzw’ 3 ; equivalent to %define mychar 'z’

%substr mychar 'xyzw’ 2,2 ; equivalent to %define mychar 'yz’
%substr mychar 'xyzw’ 2,-1 ; equivalent to %define mychar 'yzw’
%substr mychar 'xyzw' 2,-2 ; equivalent to %define mychar 'yz’

As with %strlen (see section 4.2.2), the first parameter is the single-line macro to be created and the
second is the string. The third parameter specifies the first character to be selected, and the optional fourth
parameter preceeded by comma) is the length. Note that the first index is 1, not 0 and the last index is equal to
the value thafestrlen would assign given the same string. Index values out of range result in an empty
string. A negative length means "until N-1 characters before the end of string*] ireeans until end of
string,—2 until one character before, etc.

Multi-Line Macros: %macro

Multi-line macros are much more like the type of macro seen in MASM and TASM: a multi-line macro
definition in NASM looks something like this.

%macro prologue 1
push ebp
mov ebp,esp
sub esp,%1

%endmacro

This defines a C-like function prologue as a macro: so you would invoke the macro with a call such as
myfunc: prologue 12
which would expand to the three lines of code

myfunc: push ebp
mov ebp,esp
sub esp,12

The numberl after the macro name in tHémacro line defines the number of parameters the macro
prologue expects to receive. The use%iflinside the macro definition refers to the first parameter to the
macro call. With a macro taking more than one parameter, subsequent parameters would be refét2d to as
%3and so on.

Multi-line macros, like single-line macros, are case—sensitive, unless you define them using the alternative
directive%imacro .

If you need to pass a commaymat of a parameter to a multi-line macro, you can do that by enclosing the
entire parameter in braces. So you could code things like

%macro silly 2

%2:db %1

%endmacro
silly 'a’, letter_a ; letter_a: db'a’
silly 'ab’, string_ab ; string_ab: db 'ab’
silly {13,10}, crlf ;erlf: db 13,10

4.3.1 Overloading Multi-Line Macros

As with single-line macros, multi-line macros can be overloaded by defining the same macro name several
times with different numbers of parameters. This time, no exception is made for macros with no parameters at
all. So you could define

%macro prologue 0
push ebp
mov ebp,esp
%endmacro
to define an alternative form of the function prologue which allocates no local stack space.

Sometimes, however, you might want to ‘overload’ a machine instruction; for example, you might want to
define

%macro push 2

push %1
push %2
%endmacro

47

so that you could code

push ebx ; this line is not a macro call
push eax,ecx ; but this one is

Ordinarily, NASM will give a warning for the first of the above two lines, sipgsh is now defined to be a
macro, and is being invoked with a number of parameters for which no definition has been given. The correct
code will still be generated, but the assembler will give a warning. This warning can be disabled by the use of
the—w—-macro—-params command-line option (see section 2.1.24).

4.3.2 Macro—Local Labels

NASM allows you to define labels within a multi-line macro definition in such a way as to make them local
to the macro call: so calling the same macro multiple times will use a different label each time. You do this by
prefixing %%o the label name. So you can invent an instruction which exec®RES d the Z flag is set by

doing this:

%macro retz 0

jnz %%skip
ret
%%skip:

%endmacro

You can call this macro as many times as you want, and every time you call it NASM will make up a different
‘real’ name to substitute for the lal##lb6skip. The names NASM invents are of the for@2345.skip

where the number 2345 changes with every macro call.. @eprefix prevents macro—local labels from
interfering with the local label mechanism, as described in section 3.9. You should avoid defining your own
labels in this form (the.@ prefix, then a number, then another period) in case they interfere with
macro-local labels.

4.3.3 Greedy Macro Parameters

Occasionally it is useful to define a macro which lumps its entire command line into one parameter definition,
possibly after extracting one or two smaller parameters from the front. An example might be a macro to write
a text string to a file in MS-DOS, where you might want to be able to write

writefile [filehandle],"hello, world",13,10

NASM allows you to define the last parameter of a macro fgréedy meaning that if you invoke the macro
with more parameters than it expects, all the spare parameters get lumped into the last defined one along with
the separating commas. So if you code:

%macro writefile 2+

jmp %%endstr
%%str: db %2
%%endstr:

mov dx,%%str

mov cx,%%endstr-%%str

mov bx,%1

mov ah,0x40

int 0x21

%endmacro

then the example call tavritefile above will work as expected: the text before the first comma,
[filehandle] , is used as the first macro parameter and expanded %ftiés referred to, and all the
subsequent text is lumped ifeRand placed after thab.

The greedy nature of the macro is indicated to NASM by the use ofdiym after the parameter count on the
%macro line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macragywen
number of parameters from the actual number specified up to infinity; in this case, for example, NASM now
knows what to do when it sees a calltdtefile with 2, 3, 4 or more parameters. NASM will take this

into account when overloading macros, and will not allow you to define another favnitedfle taking

4 parameters (for example).

Of course, the above macro could have been implemented as a non—greedy macro, in which case the call to it
would have had to look like

writefile [filehandle], {"hello, world",13,10}

NASM provides both mechanisms for putting commas in macro parameters, and you choose which one you
prefer for each macro definition.

See section 6.3.1 for a better way to write the above macro.

4.3.4 Macro Parameters Range

NASM allows you to expand parameters via special construétipny} wherex is the first parameter
index andy is the last. Any index can be either negative or positive but must never be zero.

For example
%macro mpar 1-*
db %{3:5}
%endmacro
mpar 1,2,3,4,5,6
expands t®,4,5 range.
Even more, the parameters can be reversed so that

%macro mpar 1-*

db %{5:3}
%endmacro
mpar 1,2,3,4,5,6
expands t®,4,3 range.

But even this is not the last. The parameters can be addressed via negative indices so NASM will count them
reversed. The ones who know Python may see the analogue here.

%macro mpar 1-*
db %{-1:-3}
%endmacro

49

50

mpar 1,2,3,4,5,6
expands t®,5,4 range.
Note that NASM uses comma to separate parameters being expanded.

By the way, here is a trick — you might use the int#gx1:—1 } which gives you the last argument passed to
a macro.

4.3.5 Default Macro Parameters

NASM also allows you to define a multi-line macro witlamge of allowable parameter counts. If you do
this, you can specify defaults for omitted parameters. So, for example:

%macro die 0-1 "Painful program death has occurred."”

writefile 2,%1
mov ax,0x4c01
int 0x21

%endmacro

This macro (which makes use of theitefile macro defined in section 4.3.3) can be called with an
explicit error message, which it will display on the error output stream before exiting, or it can be called with
no parameters, in which case it will use the default error message supplied in the macro definition.

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults for the
optional ones. So if a macro definition began with the line

%macro foobar 1-3 eax,[ebx+2]

then it could be called with between one and three parameter¥lamduld always be taken from the macro
call. %2 if not specified by the macro call, would defaulteax , and%3if not specified would default to
[ebx+2]

You can provide extra information to a macro by providing too many default parameters:
%macro quux 1 something

This will trigger a warning by default; see section 2.1.24 for more information. \§finex is invoked, it
receives not one but two parametemmething can be referred to &2 The difference between passing
something this way and writingsomething in the macro body is that with this wapmething is
evaluated when the macro is defined, not when it is expanded.

You may omit parameter defaults from the macro definition, in which case the parameter default is taken to be
blank. This can be useful for macros which can take a variable number of parameters, Sistwkba (see
section 4.3.6) allows you to determine how many parameters were really passed to the macro call.

This defaulting mechanism can be combined with the greedy—parameter mechanisndjesontecro above
could be made more powerful, and more useful, by changing the first line of the definition to

%macro die 0—1+ "Painful program death has occurred.",13,10

The maximum parameter count can be infinite, denoted.bi this case, of course, it is impossible to
provide afull set of default parameters. Examples of this usage are shown in section 4.3.8.

4.3.6 %0Q Macro Parameter Counter

The parameter referen&60will return a numeric constant giving the number of parameters received, that is,
if %0is n then%n is the last parameteb0is mostly useful for macros that can take a variable number of
parameters. It can be used as an argumelbrEp (see section 4.5) in order to iterate through all the
parameters of a macro. Examples are given in section 4.3.8.

4.3.7 %0Q Label Preceeding Macro

%00 will return the label preceeding the macro invocation, if any. The label must be on the same line as the
macro invocation, may be a local label (see section 3.9), and need not end in a colon.

4.3.8 %rotate : Rotating Macro Parameters

Unix shell programmers will be familiar with tlshift ~ shell command, which allows the arguments passed
to a shell script (referenced &%, $2 and so on) to be moved left by one place, so that the argument
previously referenced &2 becomes available &i, and the argument previously referencedasis no
longer available at all.

NASM provides a similar mechanism, in the form%fotate . As its name suggests, it differs from the
Unix shift in that no parameters are lost: parameters rotated off the left end of the argument list reappear on
the right, and vice versa.

%rotate is invoked with a single numeric argument (which may be an expression). The macro parameters
are rotated to the left by that many places. If the argumeé¥tatate is negative, the macro parameters are
rotated to the right.

So a pair of macros to save and restore a set of registers might work as follows:
%macro multipush 1-*
%rep %0
push %1
%rotate 1
%endrep
%endmacro

This macro invokes th®USHinstruction on each of its arguments in turn, from left to right. It begins by
pushing its first argumen®], then invoke®orotate to move all the arguments one place to the left, so that
the original second argument is now availabléds Repeating this procedure as many times as there were
arguments (achieved by supplyitias the argument 8hrep) causes each argument in turn to be pushed.

Note also the use ¢f as the maximum parameter count, indicating that there is no upper limit on the number
of parameters you may supply to theltipush macro.

It would be convenient, when using this macro, to haR@®©Requivalent, whichdidn’t require the arguments

to be given in reverse order. Ideally, you would write rindtipush macro call, then cut-and-paste the

line to where the pop needed to be done, and change the name of the called mmadtipdp , and the

macro would take care of popping the registers in the opposite order from the one in which they were pushed.

This can be done by the following definition:

%macro multipop 1-*

51

52

%rep %0

%rotate -1
pop %1

%endrep

%endmacro

This macro begins by rotating its arguments one place toghe so that the origindhst argument appears
as %1 This is then popped, and the arguments are rotated right again, so the second-to-last argument
become$bl Thus the arguments are iterated through in reverse order.

4.3.9 Concatenating Macro Parameters

NASM can concatenate macro parameters and macro indirection constructs on to other text surrounding them.
This allows you to declare a family of symbols, for example, in a macro definition. If, for example, you
wanted to generate a table of key codes along with offsets into the table, you could code something like

%macro keytab_entry 2

keypos%l equ $-keytab
do %2

%endmacro

keytab:
keytab_entry F1,128+1
keytab_entry F2,128+2
keytab_entry Return,13

which would expand to

keytab:

keyposF1 equ $-keytab
db 128+1

keyposF2 equ $-keytab
db 128+2

keyposReturn equ $-keytab
do 13

You can just as easily concatenate text on to the other end of a macro parameter, byodfiting

If you need to appenddigit to a macro parameter, for example defining lafmdd andfoo2 when passed

the parametefoo , you can’'t code%ll because that would be taken as the eleventh macro parameter.
Instead, you must cod®{1}1 , which will separate the first (giving the number of the macro parameter)
from the second (literal text to be concatenated to the parameter).

This concatenation can also be applied to other preprocessor in—line objects, such as macro-local labels
(section 4.3.2) and context—local labels (section 4.7.2). In all cases, ambiguities in syntax can be resolved by
enclosing everything after tRésign and before the literal text in braces%f¥6foo}bar concatenates the

text bar to the end of the real name of the macro-local 1&foa (This is unnecessary, since the form
NASM uses for the real names of macro-local labels means that the two Gsfigésolbar and
%%foobar would both expand to the same thing anyway; nevertheless, the capability is there.)

The single-line macro indirection construég]...] (section 4.1.3), behaves the same way as macro
parameters for the purpose of concatenation.

See also th&o+operator, section 4.1.4.

4.3.10 Condition Codes as Macro Parameters

NASM can give special treatment to a macro parameter which contains a condition code. For a start, you can
refer to the macro paramet®l by means of the alternative synt®1, which informs NASM that this

macro parameter is supposed to contain a condition code, and will cause the preprocessor to report an error
message if the macro is called with a parameter whichtia valid condition code.

Far more usefully, though, you can refer to the macro parameter by méang, efhich NASM will expand
as theinverse condition code. So theetz macro defined in section 4.3.2 can be replaced by a general
conditional-return macro like this:

%macro retc 1
%-1 %%skip
ret

%%skip:

%endmacro

This macro can now be invoked using calls ligte ne , which will cause the conditional-jump instruction
in the macro expansion to come outl&s orretc po which will make the jump aPE.

The %+1 macro—parameter reference is quite happy to interpret the argu@¥@dteind ECXZ as valid
condition codes; howeve®o-1 will report an error if passed either of these, because no inverse condition
code exists.

4.3.11 Disabling Listing Expansion

When NASM is generating a listing file from your program, it will generally expand multi-line macros by
means of writing the macro call and then listing each line of the expansion. This allows you to see which
instructions in the macro expansion are generating what code; however, for some macros this clutters the
listing up unnecessarily.

NASM therefore provides th&olist qualifier, which you can include in a macro definition to inhibit the
expansion of the macro in the listing file. Thaolist qualifier comes directly after the number of
parameters, like this:

%macro foo 1.nolist
Or like this:
%macro bar 1-5+.nolist a,b,c,d,e,f,g,h
4.3.12 Undefining Multi-Line Macros: %ounmacro

Multi-line macros can be removed with tBeunmacro directive. Unlike theédoundef directive, however,
%unmacro takes an argument specification, and will only remove exact matches with that argument
specification.

For example:

53

%macro foo 1-3

; Do something
%endmacro
%unmacro foo 1-3

removes the previously defined maéoo , but

%macro bar 1-3

; Do something
%endmacro
%unmacro bar 1

doesnotremove the macrbar , since the argument specification does not match exactly.

4.4 Conditional Assembly

Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if certain
conditions are met. The general syntax of this feature looks like this:

%if<condition>

; some code which only appears if <condition> is met
%elif<condition2>

; only appears if <condition> is not met but <condition2> is
%else

; this appears if neither <condition> nor <condition2> was met
%endif

The inverse form&osifn and%elifn are also supported.
The%else clause is optional, as is theelif clause. You can have more than ébelif clause as well.

There are a number of variants of #é& directive. Each has its corresponditglif , %ifn , and%elifn
directives; for example, the equivalents to tb@fdef directive are %elifdef , %ifndef , and
%elifndef

4.4.1 %ifdef : Testing Single-Line Macro Existence

Beginning a conditional-assembly block with the Bbddef MACRO will assemble the subsequent code if,
and only if, a single—line macro calldiACRGUs defined. If not, then th&elif and%else blocks (if any)
will be processed instead.

For example, when debugging a program, you might want to write code such as

; perform some function
%ifdef DEBUG

writefile 2,"Function performed successfully”,13,10
%endif

; go and do something else

Then you could use the command-line opt@DEBUG0 create a version of the program which produced
debugging messages, and remove the option to generate the final release version of the program.

You can test for a macnoot being defined by usingpifndef instead of%ifdef . You can also test for
macro definitions ifoelif blocks by usingeelifdef and%elifndef

4.4.2 %ifmacro : Testing Multi-Line Macro Existence

The %ifmacro directive operates in the same way as%iftlef directive, except that it checks for the
existence of a multi-line macro.

For example, you may be working with a large project and not have control over the macros in a library. You
may want to create a macro with one name if it doesn't already exist, and another name if one with that name
does exist.

The %ifmacro is considered true if defining a macro with the given name and number of arguments would
cause a definitions conflict. For example:

%ifmacro MyMacro 1-3
%error "MyMacro 1-3" causes a conflict with an existing macro.
%else
%macro MyMacro 1-3
; insert code to define the macro
%endmacro

%endif

This will create the macro "MyMacro 1-3" if no macro already exists which would conflict with it, and emits
a warning if there would be a definition conflict.

You can test for the macro not existing by using%hfamacro instead oPsifmacro . Additional tests can
be performed ifoelif blocks by usingoelifmacro and%elifnmacro

4.4.3 %ifctx : Testing the Context Stack

The conditional-assembly constri#ifctx will cause the subsequent code to be assembled if and only if
the top context on the preprocessor’'s context stack has the same name as one of the arguments. As with
%ifdef , the inverse angbelif forms%ifnctx , %elifctx and%elifnctx are also supported.

For more details of the context stack, see section 4.7. For a samplexiebof , see section 4.7.6.

4.4.4 %if : Testing Arbitrary Numeric Expressions

The conditional-assembly constrgétf expr will cause the subsequent code to be assembled if and only if
the value of the numeric expressiexpr is non-zero. An example of the use of this feature is in deciding
when to break out of @rep preprocessor loop: see section 4.5 for a detailed example.

The expression given #if , and its counterpagbelif , is a critical expression (see section 3.8).

%if extends the normal NASM expression syntax, by providing a set of relational operators which are not
normally available in expressions. The operators, >, <=, >= and<> test equality, less—-than, greater—than,
less—or—equal, greater—or—-equal and not-equal respectively. The C-likeforiausd!= are supported as
alternative forms of= and <>. In addition, low—priority logical operator&& ™ and|| are provided,
supplying logical AND, logical XOR and logical OR. These work like the C logical operators (although C has
no logical XOR), in that they always return either 0 or 1, and treat any non-zero input as 1 {4q tbat

55

56

example, returns 1 if exactly one of its inputs is zero, and 0 otherwise). The relational operators also return 1
for true and O for false.

Like other%if constructs%if has a counterpatbelif , and negative form&ifn and%elifn

4.4.5 %ifidn and %ifidni : Testing Exact Text Identity

The constructifidn textl,text2 will cause the subsequent code to be assembled if and only if
textl andtext2 , after expanding single-line macros, are identical pieces of text. Differences in white
space are not counted.

%ifidni is similar to%ifidn , but is case—insensitive.

For example, the following macro pushes a register or number on the stack, and allows youRo aseat
real register:

%macro pushparam 1

%ifidni %1,ip

call %%label
%%label:
%else

push %1
%endif

%endmacro

Like other %if constructs,%ifidn has a counterpafoelifidn , and negative form&sifnidn and
%elifnidn . Similarly, %ifidni has counterpargelifidni , %ifnidni and%elifnidni

4.4.6 %ifid , %ifnum , %ifstr : Testing Token Types

Some macros will want to perform different tasks depending on whether they are passed a number, a string, or
an identifier. For example, a string output macro might want to be able to cope with being passed either a
string constant or a pointer to an existing string.

The conditional assembly construiifid , taking one parameter (which may be blank), assembles the
subsequent code if and only if the first token in the parameter exists and is an idéaiffiam works
similarly, but tests for the token being a numeric constaiistr tests for it being a string.

For example, thevritefile macro defined in section 4.3.3 can be extended to take advant#gfstof
in the following fashion:

%macro writefile 2—-3+

%ifstr %2

jmp %%endstr

%if %0 = 3

%%str: db %2,%3

%else

%%str: db %2

%endif

%%endstr: mov dx,%%str

mov cX,%%endstr-%%str

%else
mov dx,%?2
mov ¢X,%3
%endif
mov bx,%1
mov ah,0x40

int 0x21
%endmacro
Then thewritefile macro can cope with being called in either of the following two ways:

writefile [file], strpointer, length
writefile [file], "hello", 13, 10

In the first, strpointer is used as the address of an already-declared strinderagith is used as its
length; in the second, a string is given to the macro, which therefore declares it itself and works out the
address and length for itself.

Note the use o¥if inside thedoifstr : this is to detect whether the macro was passed two arguments (so the
string would be a single string constant, atd%?2 would be adequate) or more (in which case, all but the
first two would be lumped together in¥%3 anddb %2,%3 would be required).

The usuaboelif ...,%ifn ..., and%elifn ... versions exist for each &6ifid , %ifnum and%ifstr

4.4.7 %iftoken : Test for a Single Token

Some macros will want to do different things depending on if it is passed a single token (e.g. paste it to
something else usirfp+) versus a multi-token sequence.

The conditional assembly constrigéiftoken assembles the subsequent code if and only if the expanded
parameters consist of exactly one token, possibly surrounded by whitespace.

For example:

%iftoken 1

will assemble the subsequent code, but

%iftoken -1

will not, since-1 contains two tokens: the unary minus operatand the numbet.

The usuabeeliftoken , %ifntoken , and%elifntoken variants are also provided.

4.4.8 %ifempty : Test for Empty Expansion

The conditional assembly constri@éifempty assembles the subsequent code if and only if the expanded
parameters do not contain any tokens at all, whitespace excepted.

The usuaboelifempty , %ifnempty , and%elifnempty variants are also provided.

4.4.9 %ifenv : Test If Environment Variable Exists

The conditional assembly constrigéifenv assembles the subsequent code if and only if the environment
variable referenced by tBé!<env> directive exists.

The usuaboelifenv , %ifnenv , and%elifnenv variants are also provided.

57

Just as foo!<env> the argument should be written as a string if it contains characters that would not be
legal in an identifier. See section 4.10.2.

4.5 Preprocessor Loops®orep

NASM's TIMES prefix, though useful, cannot be used to invoke a multi-line macro multiple times, because
it is processed by NASM after macros have already been expanded. Therefore NASM provides another form
of loop, this time at the preprocessor ledélep.

The directive®orep and%endrep (%rep takes a numeric argument, which can be an expressemgrep
takes no arguments) can be used to enclose a chunk of code, which is then replicated as many times as
specified by the preprocessor:

%assigni0
%rep 64
inc word [table+2*i]
%assign i i+1
%endrep

This will generate a sequence of IBIC instructions, incrementing every word of memory frigaibble] to
[table+126]

For more complex termination conditions, or to break out of a repeat loop part way along, you can use the
%exitrep directive to terminate the loop, like this:

fibonacci:
%assigni0
%assignj 1
%rep 100
%if j > 65535

%exitrep
%endif

dw j

%assign K j+i
%assign i j
%assign j k
%endrep

fib_number equ ($—fibonacci)/2

This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat count
must still be given tdorep. This is to prevent the possibility of NASM getting into an infinite loop in the
preprocessor, which (on multitasking or multi—user systems) would typically cause all the system memory to
be gradually used up and other applications to start crashing.

Note a maximum repeat count is limited by 62 bit number, though it is hardly possible that you ever need
anything bigger.

4.6 Source Files and Dependencies

These commands allow you to split your sources into multiple files.

4.6.1 %include : Including Other Files

Using, once again, a very similar syntax to the C preprocessor, NASM's preprocessor lets you include other
source files into your code. This is done by the use dfdinelude directive:

%include "macros.mac"
will include the contents of the filmacros.mac into the source file containing tBéinclude directive.

Include files are searched for in the current directory (the directory you're in when you run NASM, as
opposed to the location of the NASM executable or the location of the source file), plus any directories
specified on the NASM command line using theoption.

The standard C idiom for preventing a file being included more than once is just as applicable in NASM: if
the filemacros.mac has the form

%ifndef MACROS_MAC
%define MACROS_MAC
; now define some macros
%endif

then including the file more than once will not cause errors, because the second time the file is included
nothing will happen because the mabtACROS_MAMIl already be defined.

You can force a file to be included even if there i€4include directive that explicitly includes it, by using
the—p option on the NASM command line (see section 2.1.17).

4.6.2 %pathsearch : Search the Include Path

The %pathsearch directive takes a single-line macro name and a filename, and declare or redefines the
specified single-line macro to be the include—path-resolved version of the filename, if the file exists
(otherwise, it is passed unchanged.)

For example,
%pathsearch MyFoo "foo.bin"
... with=lbins/ in the include path may end up defining the ma@y#-oo to be"bins/foo.bin"

4.6.3 %depend: Add Dependent Files

The%depend directive takes a filename and adds it to the list of files to be emitted as dependency generation
when the-Moptions and its relatives (see section 2.1.4) are used. It produces no output.

This is generally used in conjunction wibpathsearch . For example, a simplified version of the standard
macro wrapper for theNCBIN directive looks like:

%imacro incbin 1-2+ 0
%pathsearch dep %1
%depend dep

incbin dep,%?2
%endmacro

This first resolves the location of the file into the magep, then adds it to the dependency lists, and finally
issues the assembler—leVsICBIN directive.

59

60

4.6.4 %use: Include Standard Macro Package

4.7

The %use directive is similar td%include , but rather than including the contents of a file, it includes a
named standard macro package. The standard macro packages are part of NASM, and are described in chapte
5.

Unlike the%include directive, package names for thause directive do not require quotes, but quotes are
permitted. In NASM 2.04 and 2.05 the unquoted form would be macro—expanded; this is no longer true. Thus,
the following lines are equivalent:

%use altreg
%use 'altreg’

Standard macro packages are protected from multiple inclusion. When a standard macro package is used, a
testable single—line macro of the formUSE_package is also defined, see section 4.12.8.

The Context Stack

Having labels that are local to a macro definition is sometimes not quite powerful enough: sometimes you
want to be able to share labels between several macro calls. An example migtiEBEAT... UNTIL loop,

in which the expansion of theEPEATmacro would need to be able to refer to a label whicHJR&IL

macro had defined. However, for such a macro you would also want to be able to nest these loops.

NASM provides this level of power by means oftantext stack The preprocessor maintains a stack of
contexts each of which is characterized by a name. You add a new context to the stack u$tmyshe
directive, and remove one usifigoop. You can define labels that are local to a particular context on the stack.

4.7.1 %push and %pop Creating and Removing Contexts

The %push directive is used to create a new context and place it on the top of the conteXgiastk takes
an optional argument, which is the name of the context. For example:

%push foobar

This pushes a new context calledbar on the stack. You can have several contexts on the stack with the
same name: they can still be distinguished. If no name is given, the context is unnamed (this is normally used
when both théopush and theopop are inside a single macro definition.)

The directive%pop, taking one optional argument, removes the top context from the context stack and
destroys it, along with any labels associated with it. If an argument is given, it must match the name of the
current context, otherwise it will issue an error.

4.7.2 Context—Local Labels

Just as the usagé%foo defines a label which is local to the particular macro call in which it is used, the
usage%$foo is used to define a label which is local to the context on the top of the context stack. So the
REPEATandUNTIL example given above could be implemented by means of:

%macro repeat O

%push repeat
%$begin:

%endmacro

%macro until 1

j%-1 %3$begin
%pop

%endmacro
and invoked by means of, for example,

mov c¢x,string
repeat

add c¢x,3
scasb

until e

which would scan every fourth byte of a string in search of the byk.in

If you need to define, or access, labels local to the cobilrivthe top one on the stack, you can use
%$$foo , or %$$$foo for the context below that, and so on.

4.7.3 Context-Local Single-Line Macros

NASM also allows you to define single-line macros which are local to a particular context, in just the same
way:

%define %%$localmac 3

will define the single-line macr&$localmac to be local to the top context on the stack. Of course, after a
subsequerfiopush, it can then still be accessed by the néag$localmac .

4.7.4 Context Fall-Through Lookup

Context fall-through lookup (automatic searching of outer contexts) is a feature that was added in NASM
version 0.98.03. Unfortunately, this feature is unintuitive and can result in buggy code that would have
otherwise been prevented by NASM'’s error reporting. As a result, this feature hadepeerated NASM

version 2.09 will issue a warning when usage of tiaprecatedfeature is detected. Starting with NASM
version 2.10, usage of thieprecatedeature will simply result in aexpression syntax error

An example usage of thieprecatedeature follows:

%macro ctxthru 0
%push ctx1
%assign %$external 1
%push ctx2
%assign %$internal 1
mov eax, %$external
mov eax, %S$internal
%pop
%pop
%endmacro

As demonstrated%$external is being defined in thetxl context and referenced within thogx2

context. With context fall-through lookup, referencing an undefined context—local macro like this implicitly
searches through all outer contexts until a match is made or isn't found in any context. As a result,
%3$external referenced within thetx2 context would implicitly us&e$external as defined irctx1 .

61

Most people would expect NASM to issue an error in this situation be#sbesaernal was never defined
within ctx2 and also isn’t qualified with the proper context deptB$external

Here is a revision of the above example with proper context depth:

%macro ctxthru 0
%push ctx1
%assign %$external 1
%push ctx2
%assign %$internal 1
mov eax, %$external
mov eax, %S$internal
%pop
%pop
%endmacro

As demonstratedo$external s still being defined in thetxl context and referenced within tlex2
context. However, the reference %$external within ctx2 has been fully qualified with the proper
context depth%$$external , and thus is no longer ambiguous, unintuitive or erroneous.

4.7.5 %repl : Renaming a Context

If you need to change the name of the top context on the stack (in order, for example, to have it respond
differently to%ifctx), you can execute @pop followed by a%push; but this will have the side effect of
destroying all context—local labels and macros associated with the context that was just popped.

NASM provides the directivéorepl , which replacesa context with a different name, without touching the
associated macros and labels. So you could replace the destructive code

%pop
%push newname

with the non—destructive versiéarepl newname .

4.7.6 Example Use of the Context Stack: Block IFs

This example makes use of almost all the context-stack features, including the conditional-assembly
constructifctx , to implement a block IF statement as a set of macros.

%macro if 1

%push if
j%-1 %$ifnot

%endmacro
%macro else 0

%ifctx if
%repl else
jmp %$ifend
%3ifnot:
%else
%error "expected ‘if’ before ‘else

%endif
%endmacro
%macro endif 0

%ifctx if
%3ifnot:
%pop
%elifctx else
%3ifend:
%pop
%else
%error "expected ‘if’ or ‘else’ before ‘endif
%endif

%endmacro

This code is more robust than tREPEATand UNTIL macros given in section 4.7.2, because it uses
conditional assembly to check that the macros are issued in the right order (for example, nardifiing
beforeif) and issues %error if they're not.

In addition, theendif macro has to be able to cope with the two distinct cases of either directly following an
if , or following anelse . It achieves this, again, by using conditional assembly to do different things
depending on whether the context on top of the stai€k w@relse .

Theelse macro has to preserve the context on the stack, in order to h2esithet referred to by thé
macro be the same as the one defined byetttif macro, but has to change the context's name so that
endif will know there was an intervenirgse . It does this by the use &repl .

A sample usage of these macros might look like:

cmp ax,bx
if ae
cmp bx,cx
if ae
mov ax,cx
else
mov ax,bx
endif
else

cmp ax,cx
if ae

mov ax,cx
endif

endif

63

64

The block+F macros handle nesting quite happily, by means of pushing another context, describing the inner
if , on top of the one describing the oufer, thuselse andendif always refer to the last unmatchiéd
orelse .

4.8 Stack Relative Preprocessor Directives

The following preprocessor directives provide a way to use labels to refer to local variables allocated on the
stack.

* %arg (see section 4.8.1)
» Opstacksize (see section 4.8.2)

* %local (see section 4.8.3)

4.8.1 %arg Directive

The%arg directive is used to simplify the handling of parameters passed on the stack. Stack based parameter
passing is used by many high level languages, including C, C++ and Pascal.

While NASM has macros which attempt to duplicate this functionality (see section 8.4.5), the syntax is not
particularly convenient to use and is not TASM compatible. Here is an example which shows tHbaige of
without any external macros:

some_function:
%push mycontext ; save the current context

%stacksize large ; tell NASM to use bp
%arg i:word, j_ptr:word

mov ax,|i]
mov bx,[j_ptr]
add ax,[bx]
ret
%pop ; restore original context

This is similar to the procedure defined in section 8.4.5 and adds the value in i to the value pointed to by |_ptr
and returns the sum in the ax register. See section 4.7.1 for an explanatiah cindpop and the use of
context stacks.

4.8.2 %stacksize Directive

The %stacksize directive is used in conjunction with théarg (see section 4.8.1) and thdocal (see
section 4.8.3) directives. It tells NASM the default size to use for subseifiaegtand%local directives.
The%stacksize directive takes one required argument which is orflabf , flaté4 ,large orsmall .

%stacksize flat

This form causes NASM to use stack-based parameter addressing relatiye dad it assumes that a near
form of call was used to get to this label (i.e. #igt is on the stack).

%stacksize flat64

This form causes NASM to use stack-based parameter addressing reldbpe dad it assumes that a near
form of call was used to get to this label (i.e. tiiyat is on the stack).

%stacksize large

This form use$p to do stack-based parameter addressing and assumes that a far form of call was used to get
to this address (i.e. thgt andcs are on the stack).

%stacksize small

This form also usebp to address stack parameters, but it is different flamge because it also assumes

that the old value of bp is pushed onto the stack (i.e. it expedEN&ERIinstruction). In other words, it
expects thabp, ip andcs are on the top of the stack, underneath any local space which may have been
allocated byENTER This form is probably most useful when used in combination witdbeal directive

(see section 4.8.3).

4.8.3 %local Directive

The %local directive is used to simplify the use of local temporary stack variables allocated in a stack
frame. Automatic local variables in C are an example of this kind of variable%lidual directive is most

useful when used with thisstacksize (see section 4.8.2 and is also compatible withotlaeg directive

(see section 4.8.1). It allows simplified reference to variables on the stack which have been allocated typically
by using theENTERinstruction. An example of its use is the following:

silly_swap:
%push mycontext ; save the current context
%stacksize small ; tell NASM to use bp
%assign %$localsize 0 ; see text for explanation

%local old_ax:word, old_dx:word

enter %$localsize,0 ; see text for explanation
mov [old_ax],ax ;swap ax & bx

mov [old_dx],dx ;and swap dx & cx

mov ax,bx

mov dx,cx

mov bx,[old_ax]

mov cx,[old_dx]

leave ; restore old bp
ret ;
%pop ; restore original context

The %%$localsize variable is used internally by tilocal directive andmustbe defined within the
current context before th#local directive may be used. Failure to do so will result in one expression
syntax error for eacPolocal variable declared. It then may be used in the construction of an appropriately
sized ENTER instruction as shown in the example.

4.9 Reporting User—-Defined Errors:%error , %warning , %fatal

The preprocessor directiiéerror will cause NASM to report an error if it occurs in assembled code. So if
other users are going to try to assemble your source files, you can ensure that they define the right macros by
means of code like this:

%ifdef F1
; do some setup

65

%elifdef F2

; do some different setup
%else

%error "Neither F1 nor F2 was defined."
%endif

Then any user who fails to understand the way your code is supposed to be assembled will be quickly warned
of their mistake, rather than having to wait until the program crashes on being run and then not knowing what
went wrong.

Similarly, %warning issues a warning, but allows assembly to continue:

%ifdef F1
; do some setup
%elifdef F2
; do some different setup
%else
%warning "Neither F1 nor F2 was defined, assuming F1."
%define F1
%endif

%error and %warning are issued only on the final assembly pass. This makes them safe to use in
conjunction with tests that depend on symbol values.

%fatal terminates assembly immediately, regardless of pass. This is useful when there is no point in
continuing the assembly further, and doing so is likely just going to cause a spew of confusing error messages.

It is optional for the message string afééerror , %warning or %fatal to be quoted. If it is1ot, then
single-line macros are expanded in it, which can be used to display more information to the user. For
example:

%if foo > 64

%assign foo_over foo-64

%error foo is foo_over bytes too large
%endif

4.10 Other Preprocessor Directives

NASM also has preprocessor directives which allow access to information from external sources. Currently
they include:

* %line enables NASM to correctly handle the output of another preprocessor (see section 4.10.1).

* %! enables NASM to read in the value of an environment variable, which can then be used in your
program (see section 4.10.2).

4.10.1 %line Directive

The %line directive is used to notify NASM that the input line corresponds to a specific line number in
another file. Typically this other file would be an original source file, with the current NASM input being the
output of a pre—processor. TB&line directive allows NASM to output messages which indicate the line
number of the original source file, instead of the file that is being read by NASM.

This preprocessor directive is not generally of use to programmers, by may be of interest to preprocessor
authors. The usage of th@line preprocessor directive is as follows:

%line nnn[+mmm] [filename]

In this directive,nnn identifies the line of the original source file which this line correspondsitaris an
optional parameter which specifies a line increment value; each line of the input file read in is considered to
correspond tommmiines of the original source file. Finalljilename is an optional parameter which
specifies the file name of the original source file.

After reading a&line preprocessor directive, NASM will report all file name and line numbers relative to
the values specified therein.

4.10.2 %!<env> : Read an environment variable.

The%!<env> directive makes it possible to read the value of an environment variable at assembly time. This
could, for example, be used to store the contents of an environment variable into a string, which could be used
at some other point in your code.

For example, suppose that you have an environment vaf&@ilpand you want the contents BOOto be
embedded in your program. You could do that as follows:

%defstr FOO %!FOO
See section 4.1.8 for notes on #defstr directive.

If the name of the environment variable contains non-identifier characters, you can use string quotes to
surround the name of the variable, for example:

%defstr C_colon %!'C:’

4.11 Comment Blocks%comment

The %comment and%endcomment directives are used to specify a block of commented (i.e. unprocessed)
code/text. Everything betwe&acommentand%endcomment will be ignored by the preprocessor.

%comment
; some code, text or data to be ignored
%endcomment

4.12 Standard Macros

NASM defines a set of standard macros, which are already defined when it starts to process any source file. If
you really need a program to be assembled with no pre-defined macros, you carttdeahedirective to
empty the preprocessor of everything but context-local preprocessor variables and single-line macros.

Most user—level assembler directives (see chapter 6) are implemented as macros which invoke primitive
directives; these are described in chapter 6. The rest of the standard macro set is described here.

4.12.1 NASM Version Macros

The single-line macros_ NASM_MAJOR, NASM MINOR_, NASM _SUBMINOR__ and
___NASM_PATCHLEVEL__expand to the major, minor, subminor and patch level parts of the version
number of NASM being used. So, under NASM 0.98.32p1 for examplRASM_MAJOR__would be
defined to be 0, NASM_MINOR__would be defined as 98, NASM_SUBMINOR_would be defined to

32,and __ NASM_PATCHLEVEL_would be defined as 1.

Additionally, the macro_ NASM_SNAPSHOT _is defined for automatically generated snapshot releases
only.

67

4.12.2 __NASM_VERSION_ID_: NASM Version ID

The single-line macro NASM_VERSION_ID __expands to a dword integer representing the full version
number of the version of nasm being used. The value is the equivalent NASM_MAJOR,
__NASM_MINOR_, NASM_SUBMINOR_and ___ NASM_PATCHLEVEL_ concatenated to produce a
single doubleword. Hence, for 0.98.32p1, the returned number would be equivalent to:

dd 0x00622001
or
db 1,32,98,0

Note that the above lines are generate exactly the same code, the second line is used just to give an indicatior
of the order that the separate values will be present in memory.

4.12.3 NASM_VER_: NASM Version string

The single-line macro NASM_VER__expands to a string which defines the version number of nasm being
used. So, under NASM 0.98.32 for example,

db __ NASM_VER__
would expand to
db "0.98.32"

4124 FILE__ and__LINE__ : File Name and Line Number

Like the C preprocessor, NASM allows the user to find out the file name and line number containing the
current instruction. The macro FILE__ expands to a string constant giving the name of the current input
file (which may change through the course of assemtiniiclude directives are used), and LINE___
expands to a numeric constant giving the current line number in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since invoking
__LINE__ inside a macro definition (either single-line or multi-line) will return the line number of the
macrocall, rather thardefinition So to determine where in a piece of code a crash is occurring, for example,
one could write a routinstillhere , Which is passed a line numberBAX and outputs something like

‘line 155: still here’. You could then write a macro

%macro notdeadyet O
push eax
mov eax,_ LINE
call stillhere
pop eax
%endmacro

and then pepper your code with callswtideadyet until you find the crash point.

4125 BITS _ : Current BITS Mode

The _BITS__ standard macro is updated every time that the BITS mode is set usiB§TBieXX or

[BITS XX] directive, where XX is a valid mode number of 16, 32 or 6BITS __ receives the specified

mode number and makes it globally available. This can be very useful for those who utilize mode—-dependent
macros.

4.12.6 __ OUTPUT_FORMAT : Current Output Format

The OUTPUT_FORMAT _standard macro holds the current Output Format, as given byf tgtion or
NASM'’s default. Typenasm —hf for a list.

%ifidn __ OUTPUT_FORMAT__, win32
%define NEWLINE 13, 10

%elifidn _ OUTPUT_FORMAT__, elf32
%define NEWLINE 10

%endif

4.12.7 Assembly Date and Time Macros

NASM provides a variety of macros that represent the timestamp of the assembly session.

The DATE___and__TIME__ macros give the assembly date and time as strings, in ISO 8601 format
("YYYY-MM-DD'and"HH:MM:SS" , respectively.)

The DATE_NUM__and__ TIME_NUM__macros give the assembly date and time in numeric form; in
the formatY YYYMMDBNdHHMMS &spectively.

The UTC _DATE__and__UTC_TIME__ macros give the assembly date and time in universal time
(UTC) as strings, in ISO 8601 formdtYYYY-MM-DD"and "HH:MM:SS" , respectively.) If the host
platform doesn’t provide UTC time, these macros are undefined.

The _ UTC_DATE_NUM_and _ UTC_TIME_NUM__ macros give the assembly date and time
universal time (UTC) in numeric form; in the forméayYYMMDRNnd HHMMSSespectively. If the host
platform doesn't provide UTC time, these macros are undefined.

The __POSIX_TIME__ macro is defined as a number containing the number of seconds since the POSIX
epoch, 1 January 1970 00:00:00 UTC; excluding any leap seconds. This is computed using UTC time if
available on the host platform, otherwise it is computed using the local time as if it was UTC.

All instances of time and date macros in the same assembly session produce consistent output. For example,
in an assembly session started at 42 seconds after midnight on January 1, 2010 in Moscow (timezone UTC+3)
these macros would have the following values, assuming, of course, a properly configured environment with a
correct clock:

__DATE__ "2010-01-01"
__TIME__ "00:00:42"
__DATE_NUM__ 20100101
__TIME_NUM__ 000042
__UTC_DATE__ "2009-12-31"
__UTC_TIME__ "21:00:42"

__UTC_DATE_NUM__ 20091231
__UTC_TIME_NUM__ 210042
__POSIX_TIME__ 1262293242

4.12.8 USE package : Package Include Test

When a standard macro package (see chapter 5) is included whbutieedirective (see section 4.6.4), a
single-line macro of the form USE_package is automatically defined. This allows testing if a particular
package is invoked or not.

69

For example, if thaaltreg package is included (see section 5.1), then the maddSE _ALTREG_ is
defined.

4.12.9 PASS _: Assembly Pass

The macro PASS__ is defined to b on preparatory passes, ahan the final pass. In preprocess—only
mode, it is set t@, and when running only to generate dependencies (due teMite ~-MGoption, see
section 2.1.4) it is set .

Avoid using this macro if at all possible. It is tremendously easy to generate very strange errors by misusing
it, and the semantics may change in future versions of NASM.

4.12.10 STRUCand ENDSTRUDeclaring Structure Data Types

70

The core of NASM contains no intrinsic means of defining data structures; instead, the preprocessor is
sufficiently powerful that data structures can be implemented as a set of macros. The Si&tsaand
ENDSTRUGre used to define a structure data type.

STRUCtakes one or two parameters. The first parameter is the name of the data type. The second, optional
parameter is the base offset of the structure. The name of the data type is defined as a symbol with the value
of the base offset, and the name of the data type with the ssffig appended to it is defined as BQU

giving the size of the structure. On8FRUChas been issued, you are defining the structure, and should
define fields using théRESB family of pseudo-instructions, and then invoE&IDSTRUQo finish the
definition.

For example, to define a structure callegtype containing a longword, a word, a byte and a string of bytes,
you might code

struc mytype

mt_long: resd 1
mt_word: resw 1
mt_byte: resb 1
mt_str: resb 32

endstruc

The above code defines six symbaid; long as 0 (the offset from the beginning ofrgtype structure to
the longword field)ymt_word as 4mt_byte as 6mt_str as 7mytype_size as 39, andnytype itself
as zero.

The reason why the structure type name is defined at zero by default is a side effect of allowing structures to
work with the local label mechanism: if your structure members tend to have the same names in more than
one structure, you can define the above structure like this:

struc mytype

Jong: resd 1

.word: resw 1

.byte: resb 1

.Str: resb 32
endstruc

This defines the offsets to the structure fieldsmagdype.long , mytype.word , mytype.byte and
mytype.str

NASM, since it has nintrinsic structure support, does not support any form of period notation to refer to the
elements of a structure once you have one (except the above local-label notation), so code such as
mov ax,[mystruc.mt_word] is not valid.mt_word is a constant just like any other constant, so the
correct syntax isnov ax,[mystruc+mt_word] or mov ax,[mystruc+mytype.word]

Sometimes you only have the address of the structure displaced by an offset. For example, consider this
standard stack frame setup:

push ebp
mov ebp, esp
sub esp, 40

In this case, you could access an element by subtracting the offset:

mov [ebp — 40 + mytype.word], ax

However, if you do not want to repeat this offset, you can use —40 as a base offset:
struc mytype, —40

And access an element this way:

mov [ebp + mytype.word], ax

4.12.11ISTRUC, AT and IEND: Declaring Instances of Structures

Having defined a structure type, the next thing you typically want to do is to declare instances of that structure
in your data segment. NASM provides an easy way to do this ihSthieUC mechanism. To declare a
structure of typenytype in a program, you code something like this:

mystruc:
istruc mytype

atmt_long,dd 123456

atmt_word, dw 1024

atmt_byte,db X

atmt_str, db ’hello, world’, 13, 10, O

iend

The function of theAT macro is to make use of tAR@MES prefix to advance the assembly position to the
correct point for the specified structure field, and then to declare the specified data. Therefore the structure
fields must be declared in the same order as they were specified in the structure definition.

If the data to go in a structure field requires more than one source line to specify, the remaining source lines
can easily come after th€T line. For example:

atmt_str, db 123,134,145,156,167,178,189
db 190,100,0

Depending on personal taste, you can also omit the code partAT the completely, and start the structure
field on the next line:

71

at mt_str
db "hello, world’
db 13,10,0

4.12.12 ALIGN and ALIGNB: Data Alignment

72

The ALIGN and ALIGNB macros provides a convenient way to align code or data on a word, longword,
paragraph or other boundary. (Some assemblers call this dir&dfiZz&l) The syntax of theALIGN and
ALIGNB macros is

align 4 ; align on 4-byte boundary

align 16 ; align on 16—byte boundary
align 8,db 0 ; pad with Os rather than NOPs
align 4,reshb 1 ; align to 4 in the BSS

alignb 4 ; equivalent to previous line

Both macros require their first argument to be a power of two; they both compute the number of additional
bytes required to bring the length of the current section up to a multiple of that power of two, and then apply
the TIMES prefix to their second argument to perform the alignment.

If the second argument is not specified, the defaultAioilGN is NOR and the default foALIGNB is

RESB 1. So if the second argument is specified, the two macros are equivalent. Normally, you can just use
ALIGN in code and data sections adIGNB in BSS sections, and never need the second argument except
for special purposes.

ALIGN and ALIGNB, being simple macros, perform no error checking: they cannot warn you if their first
argument fails to be a power of two, or if their second argument generates more than one byte of code. In each
of these cases they will silently do the wrong thing.

ALIGNB (or ALIGN with a second argument RESB 1) can be used within structure definitions:
struc mytype?2

mt_byte:
resb 1
alignb 2
mt_word:
resw 1l
alignb 4
mt_long:
resd 1
mt_str:
resb 32

endstruc

This will ensure that the structure members are sensibly aligned relative to the base of the structure.

A final caveat:ALIGN and ALIGNB work relative to the beginning of tteection not the beginning of the
address space in the final executable. Aligning to a 16—-byte boundary when the section you're in is only
guaranteed to be aligned to a 4-byte boundary, for example, is a waste of effort. Again, NASM does not
check that the section’s alignment characteristics are sensible for theAld&bf or ALIGNB.

Both ALIGN andALIGNB do call[SECTALIGNmacro implicitly. See section 4.12.13 for details.

See also themartalign standard macro package, section 5.2.

4.12.13 SECTALIGN Section Alignment

The SECTALIGN macros provides a way to modify alignment attribute of output file section. Unlike the
align= attribute (which is allowed at section definition only) ®EECTALIGNmacro may be used at any
time.

For example the directive
SECTALIGN 16

sets the section alignment requirements to 16 bytes. Once increased it can not be decreased, the magnituds
may grow only.

Note thatALIGN (see section 4.12.12) calls tBECTALIGNmacro implicitly so the active section alignment
requirements may be updated. This is by default behaviour, if for some reason you wertGNedo not
call SECTALIGNat all use the directive

SECTALIGN OFF
It is still possible to turn in on again by
SECTALIGN ON

73

74

5.1

5.2

Chapter 5: Standard Macro Packages

The %use directive (see section 4.6.4) includes one of the standard macro packages included with the NASM
distribution and compiled into the NASM binary. It operates likedtheclude directive (see section 4.6.1),
but the included contents is provided by NASM itself.

The names of standard macro packages are case insensitive, and can be quoted or not.

altreg : Alternate Register Names

Thealtreg standard macro package provides alternate register names. It provides numeric register names
for all registers (not jusR8-R15), the Intel-defined aliaseR8L-R15L for the low bytes of register (as
opposed to the NASM/AMD standard nam@8B-R15B), and the namefROH-R3H (by analogy with
ROL-R3L) for AH CH DH andBH

Example use:

%use altreg

proc:
mov r0l,r3h : mov al,bh
ret

See also section 11.1.

smartalign : Smart ALIGN Macro

The smartalign standard macro package provides forAamGN macro which is more powerful than the
default (and backwards—compatible) one (see section 4.12.12). Whemdhimlign package is enabled,
when ALIGN is used without a second argument, NASM will generate a sequence of instructions more
efficient than a series dIOP Furthermore, if the padding exceeds a specific threshold, then NASM will
generate a jump over the entire padding sequence.

The specific instructions generated can be controlled with theAbdGNMODENacro. This macro takes two
parameters: one mode, and an optional jump threshold override. If (for any reason) you need to turn off the
jump completely just set jump threshold value to —1 (or setiojtmp). The following modes are possible:

e generic : Works on all x86 CPUs and should have reasonable performance. The default jump threshold
is 8. This is the default.

e nop: Pad out withNOPinstructions. The only difference compared to the standat@N macro is that
NASM can still jump over a large padding area. The default jump threshold is 16.

« k7: Optimize for the AMD K7 (Athlon/Althon XP). These instructions should still work on all x86 CPUs.
The default jump threshold is 16.

« k8: Optimize for the AMD K8 (Opteron/Althon 64). These instructions should still work on all x86 CPUs.
The default jump threshold is 16.

e p6: Optimize for Intel CPUs. This uses the IoN@Pinstructions first introduced in Pentium Pro. This is
incompatible with all CPUs of family 5 or lower, as well as some VIA CPUs and several virtualization
solutions. The default jump threshold is 16.

The macro__ ALIGNMODE__is defined to contain the current alignment mode. A number of other macros
beginning with__ ALIGN_ are used internally by this macro package.

5.3 fp : Floating—point macros

This packages contains the following floating—point convenience macros:

%define Inf __Infinity
%define NaN __QNaN__
%define QNaN __ONaN__
%define SNaN __SNaN__
%define float8(x) __float8__ (x)
%define floatl6(x) _ floatl6 (X)
%define float32(x) _ float32_ (X)
%define float64(x) _ float64_ (x)

%define float80Om(x) _ float80m__ (x)
%define float80e(x) _ float80e_ (X)
%define float128I(x) _ float128l (x)
%define float128h(x) _ float128h_ (X)
5.4 ifunc : Integer functions

This package contains a set of macros which implement integer functions. These are actually implemented as
special operators, but are most conveniently accessed via this macro package.

The macros provided are:

5.4.1 Integer logarithms

These functions calculate the integer logarithm base 2 of their argument, considered as an unsigned integer.
The only differences between the functions is their behavior if the argument provided is not a power of two.

The functionilog2e() (aliasilog2()) generate an error if the argument is not a power of two.
The functionilog2w() generate a warning if the argument is not a power of two.

The functionilog2f() rounds the argument down to the nearest power of two; if the argument is zero it
returns zero.

The functionilog2c() rounds the argument up to the nearest power of two.

75

76

Chapter 6: Assembler Directives

NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is nevertheless
forced to support fewdirectives. These are described in this chapter.

NASM'’s directives come in two typesiser—level directives andprimitive directives. Typically, each
directive has a user-level form and a primitive form. In almost all cases, we recommend that users use the
user—level forms of the directives, which are implemented as macros which call the primitive forms.

Primitive directives are enclosed in square brackets; user-level directives are not.

In addition to the universal directives described in this chapter, each object file format can optionally supply
extra directives in order to control particular features of that file format. Thasat-specificdirectives are
documented along with the formats that implement them, in chapter 7.

6.1 BITS : Specifying Target Processor Mode

TheBITS directive specifies whether NASM should generate code designed to run on a processor operating
in 16-bit mode, 32-hit mode or 64-bit mode. The synt&ddT$S XX , where XX is 16, 32 or 64.

In most cases, you should not need to BEES explicitly. Theaout , coff , elf , macho, win32 and

win64 object formats, which are designed for use in 32-bit or 64-bit operating systems, all cause NASM to
select 32-bit or 64-bit mode, respectively, by default. ®bge object format allows you to specify each
segment you define as eithdE16 or USE32, and NASM will set its operating mode accordingly, so the
use of theBITS directive is once again unnecessary.

The most likely reason for using tB4TS directive is to write 32-bit or 64-bit code in a flat binary file; this
is because thbin output format defaults to 16-hit mode in anticipation of it being used most frequently to
write DOS.COMprograms, DOSSYS device drivers and boot loader software.

You donot need to specifBITS 32 merely in order to use 32-bit instructions in a 16—bit DOS program; if
you do, the assembler will generate incorrect code because it will be writing code targeted at a 32-bit
platform, to be run on a 16-bit one.

When NASM is inBITS 16 maode, instructions which use 32-bit data are prefixed with an 0x66 byte, and
those referring to 32-bit addresses have an 0x67 prefiBIT® 32 mode, the reverse is true: 32-hit
instructions require no prefixes, whereas instructions using 16-bit data need an 0x66 and those working on
16-bit addresses need an 0x67.

When NASM is inBITS 64 mode, most instructions operate the same as they dBIT& 32 mode.
However, there are 8 more general and SSE registers, and 16-hit addressing is no longer supported.

The default address size is 64 bits; 32-bit addressing can be selected with the 0x67 prefix. The default
operand size is still 32 bits, however, and the 0x66 prefix selects 16-bit operand siREXprefix is used

both to select 64-bit operand size, and to access the new registers. NASM automatically inserts REX prefixes
when necessary.

When theREXprefix is used, the processor does not know how to address the AH, BH, CH or DH (high 8-bit
legacy) registers. Instead, it is possible to access the the low 8-bits of the SP, BP Sl and DI registers as SPL,
BPL, SIL and DIL, respectively; but only when the REX prefix is used.

TheBITS directive has an exactly equivalent primitive fofBITS 16] , [BITS 32] and[BITS 64]
The user-level form is a macro which has no function other than to call the primitive form.

Note that the space is neccessary,Bl§S32 will notwork!

6.1.1 USE16& USE32 Aliases for BITS

The 'USE16 and ‘USE32 directives can be used in place 81TS 16 ' and ‘BITS 32 ’, for compatibility
with other assemblers.

6.2 DEFAULT Change the assembler defaults

The DEFAULT directive changes the assembler defaults. Normally, NASM defaults to a mode where the
programmer is expected to explicitly specify most features directly. However, this is occationally obnoxious,
as the explicit form is pretty much the only one one wishes to use.

Currently, the onlyDEFAULTthat is settable is whether or not registerless instructions in 64-bit mode are
RIP —relative or not. By default, they are absolute unless overridden wiREhapecifier (see section 3.3).
However, if DEFAULT REL is specified,REL is default, unless overridden with tRe8S specifier,except
when used with an FS or GS segment override

The special handling dfS and GS overrides are due to the fact that these registers are generally used as
thread pointers or other special functions in 64-bit mode, and geneRifgelative addresses would be
extremely confusing.

DEFAULT RELis disabled wittDEFAULT ABS
6.3 SECTIONor SEGMENTChanging and Defining Sections

The SECTIONdirective SEGMENTs an exactly equivalent synonym) changes which section of the output
file the code you write will be assembled into. In some object file formats, the number and names of sections
are fixed; in others, the user may make up as many as they wish. 56d¢ON may sometimes give an

error message, or may define a new section, if you try to switch to a section that does not (yet) exist.

The Unix object formats, and thén object format (but see section 7.1.3, all support the standardized section
names.text , .data and.bss for the code, data and uninitialized—data sections. diije format, by

contrast, does not recognize these section names as being special, and indeed will strip off the leading period
of any section name that has one.

6.3.1 The SECT__ Macro

The SECTION directive is unusual in that its user—level form functions differently from its primitive form.
The primitive form,[SECTION xyz] , simply switches the current target section to the one given. The
user—level formSECTION xyz , however, first defines the single-line macr’SECT___ to be the primitive
[SECTION] directive which it is about to issue, and then issues it. So the user-level directive

SECTION .text

expands to the two lines

%define __ SECT__ [SECTION .text]
[SECTION .text]
Users may find it useful to make use of this in their own macros. For exampleritbiie macro

defined in section 4.3.3 can be usefully rewritten in the following more sophisticated form:

77

78

%macro writefile 2+
[section .data]

%%0str: db %2
%%endstr:

__SECT__

mov dx,%%str

mov cx,%%endstr-%%str
mov bx,%1

mov ah,0x40

int 0x21

%endmacro

This form of the macro, once passed a string to output, first switches temporarily to the data section of the file,
using the primitive form of th€ECTIONdirective so as not to modify SECT__. It then declares its string

in the data section, and then invokesSSECT___ to switch back tavhicheversection the user was previously
working in. It thus avoids the need, in the previous version of the macro, to inclivieiastruction to jump

over the data, and also does not falil if, in a complic&Bd format module, the user could potentially be
assembling the code in any of several separate code sections.

6.4 ABSOLUTEDefining Absolute Labels

The ABSOLUTEdirective can be thought of as an alternative forn8BCTION it causes the subsequent
code to be directed at no physical section, but at the hypothetical section starting at the given absolute address.
The only instructions you can use in this mode ard&RtB&Bfamily.

ABSOLUTEHSs used as follows:
absolute Ox1A
kbuf chr resw 1

kbuf free resw 1
kbuf resw 16

This example describes a section of the PC BIOS data area, at segment address 0x40: the above code define
kbuf chr to be Ox1Akbuf free to be 0x1C, andbuf to be Ox1E.

The user—level form oABSOLUTE like that of SECTION redefines the SECT__ macro when it is
invoked.

STRUCandENDSTRUG@re defined as macros which us8SOLUTHand also SECT_).

ABSOLUTEdoesn't have to take an absolute constant as an argument: it can take an expression (actually, a
critical expression: see section 3.8) and it can be a value in a segment. For example, a TSR can re-use its
setup code as run-time BSS like this:

org 100h ; i's a .COM program

jmp setup ; setup code comes last

; the resident part of the TSR goes here
setup:
; now write the code that installs the TSR here

absolute setup

runtimevarl resw 1
runtimevar2 resd 20

tsr_end:

This defines some variables ‘on top of the setup code, so that after the setup has finished running, the space it
took up can be re—used as data storage for the running TSR. The symbol ‘tsr_end’ can be used to calculate the
total size of the part of the TSR that needs to be made resident.

6.5 EXTERNImporting Symbols from Other Modules

EXTERNSs similar to the MASM directiv&EXTRNand the C keywordxtern : it is used to declare a symbol

which is not defined anywhere in the module being assembled, but is assumed to be defined in some other
module and needs to be referred to by this one. Not every object—file format can support external variables:
thebin format cannot.

The EXTERNdirective takes as many arguments as you like. Each argument is the name of a symbol:

extern _printf
extern _sscanf,_fscanf

Some object-file formats provide extra features toEX&ERNdirective. In all cases, the extra features are
used by suffixing a colon to the symbol name followed by object-format specific text. For examplg, the
format allows you to declare that the default segment base of an external should be thdggropp by
means of the directive

extern _variable:wrt dgroup

The primitive form ofEXTERNdiffers from the user—level form only in that it can take only one argument at
a time: the support for multiple arguments is implemented at the preprocessor level.

You can declare the same variableE26TERNmore than once: NASM will quietly ignore the second and
later redeclarations. You can't declare a variablEXXEERNas well as something else, though.

6.6 GLOBAL Exporting Symbols to Other Modules

GLOBALIs the other end dEXTERN if one module declares a symbol BXTERNand refers to it, then in
order to prevent linker errors, some other module must actlefigethe symbol and declare it @& OBAL
Some assemblers use the n@BLIC for this purpose.

The GLOBALdirective applying to a symbol must appbaforethe definition of the symbol.

GLOBALuses the same syntaxEBXTERN except that it must refer to symbols whatle defined in the same
module as th6LOBALdirective. For example:

global _main
_main:
; some code

79

GLOBAL like EXTERN allows object formats to define private extensions by means of a colorelfThe
object format, for example, lets you specify whether global data items are functions or data:

global hashlookup:function, hashtable:data

Like EXTERN the primitive form ofGLOBALJdiffers from the user—level form only in that it can take only
one argument at a time.

6.7 COMMOMefining Common Data Areas

The COMMONMirective is used to declamommon variablesA common variable is much like a global
variable declared in the uninitialized data section, so that

common intvar 4

is similar in function to
global intvar

section .bss

intvar resd 1

The difference is that if more than one module defines the same common variable, then at link time those
variables will benerged and references fatvar in all modules will point at the same piece of memory.

Like GLOBALand EXTERN COMMOMNupports object-format specific extensions. For exampleplhe
format allows common variables to be NEAR or FAR, and @¢lie format allows you to specify the
alignment requirements of a common variable:

common commvar 4:near ; works in OBJ
common intarray 100:4 ; works in ELF: 4 byte aligned

Once again, likEXTERNandGLOBAL. the primitive form ofCOMMOUiffers from the user—level form only
in that it can take only one argument at a time.

6.8 CPU Defining CPU Dependencies
The CPUdirective restricts assembly to those instructions which are available on the specified CPU.
Options are:
« CPU 8086 Assemble only 8086 instruction set
* CPU 186 Assemble instructions up to the 80186 instruction set
« CPU 286 Assemble instructions up to the 286 instruction set
« CPU 386 Assemble instructions up to the 386 instruction set
» CPU 486 486 instruction set
* CPU 586 Pentium instruction set
 CPU PENTIUMSame as 586
* CPU 686 P6 instruction set
* CPU PPROSame as 686
* CPU P2 Same as 686

e CPU P3 Pentium lll (Katmai) instruction sets

*» CPU KATMAI Same as P3

e CPU P4 Pentium 4 (Willamette) instruction set

e CPU WILLAMETTESame as P4

* CPU PRESCOTPrescott instruction set

* CPU X64 x86-64 (x64/AMD64/Intel 64) instruction set
« CPU IA64 1A64 CPU (in x86 mode) instruction set

All options are case insensitive. All instructions will be selected only if they apply to the selected CPU or
lower. By default, all instructions are available.

6.9 FLOAT. Handling of floating—point constants

By default, floating—point constants are rounded to nearest, and IEEE denormals are supported. The following
options can be set to alter this behaviour:

* FLOAT DAZ Flush denormals to zero

¢ FLOAT NODAZDo not flush denormals to zero (default)
« FLOAT NEARRound to nearest (default)

e FLOAT UP Round up (toward +Infinity)

 FLOAT DOWNRound down (toward —Infinity)

* FLOAT ZERORound toward zero

* FLOAT DEFAULTRestore default settings

The standard macros FLOAT DAZ_, FLOAT ROUND , and__ FLOAT _ contain the current state,
as long as the programmer has avoided the use of the brackeded primitivéFb@AT]).

__FLOAT__ contains the full set of floating—point settings; this value can be saved away and invoked later to
restore the setting.

81

Chapter 7: Output Formats

NASM is a portable assembler, designed to be able to compile on any ANSI C-supporting platform and
produce output to run on a variety of Intel x86 operating systems. For this reason, it has a large number of
available output formats, selected using fieoption on the NASM command line. Each of these formats,
along with its extensions to the base NASM syntax, is detailed in this chapter.

As stated in section 2.1.1, NASM chooses a default name for your output file based on the input file name and
the chosen output format. This will be generated by removing the exterasan,(.s , or whatever you like

to use) from the input file name, and substituting an extension defined by the output format. The extensions
are given with each format below.

7.1 bin : Flat—Form Binary Output

The bin format does not produce object files: it generates nothing in the output file except the code you
wrote. Such ‘pure binary’ files are used by MS-DOSOM executables andSYS device drivers are pure
binary files. Pure binary output is also useful for operating system and boot loader development.

The bin format supports multiple section names. For details of how NASM handles sectionshin the
format, see section 7.1.3.

Using thebin format puts NASM by default into 16—bit mode (see section 6.1). In order fmirusto write
32-bit or 64-bit code, such as an OS kernel, you need to explicitly issBET®&82 orBITS 64 directive.

bin has no default output file name extension: instead, it leaves your file name as it is once the original
extension has been removed. Thus, the default is for NASM to asseimipleg.asm into a binary file
calledbinprog

7.1.1 ORGBIinary File Program Origin

Thebin format provides an additional directive to the list given in chapt@R85 The function of th@©ORG
directive is to specify the origin address which NASM will assume the program begins at when it is loaded
into memory.

For example, the following code will generate the longwax@0000104 :

org 0x100
dd label
label:

Unlike the ORGdirective provided by MASM-compatible assemblers, which allows you to jump around in
the object file and overwrite code you have already generated, NASRIGloes exactly what the directive
says:origin. Its sole function is to specify one offset which is added to all internal address references within
the section; it does not permit any of the trickery that MASM'’s version does. See section 12.1.3 for further
comments.

7.1.2 bin Extensions to theSECTIONDirective

Thebin output format extends tHRECTION (or SEGMEN)Tdirective to allow you to specify the alignment
requirements of segments. This is done by appendinglti@N qualifier to the end of the section—definition
line. For example,

section .data align=16
switches to the sectiadata and also specifies that it must be aligned on a 16-byte boundary.

The parameter tBLIGN specifies how many low bits of the section start address must be forced to zero. The
alignment value given may be any power of two.

7.1.3 Multisection Support for thebin Format

Thebin format allows the use of multiple sections, of arbitrary names, besides the "kbextn", .data
and.bss names.

« Sections may be designatebgbits or nobits . Default isprogbits (exceptbss , which defaults
tonobits , of course).

« Sections can be aligned at a specified boundary following the previous sectioaligiith , or at an
arbitrary byte—granular position withart=

e Sections can be given a virtual start address, which will be used for the calculation of all memory
references within that section witart=

e Sections can be ordered usifojjows=<section> or vfollows=<section> as an alternative to
specifying an explicit start address.

e Arguments toorg, start , vstart , andalign= are critical expressions. See section 3.8. E.g.
align=(1 << ALIGN_SHIFT) —ALIGN_SHIFT must be defined before it is used here.

« Any code which comes before an expliGECTION directive is directed by default into theext
section.

« If an ORGstatement is not give@QRG 0is used by default.

« The .bss section will be placed after the lagrogbits section, unlessstart= , vstart=
follows= , orvfollows= has been specified.

« All sections are aligned on dword boundaries, unless a different alignment has been specified.
« Sections may not overlap.

* NASM creates theection.<secname>.start for each section, which may be used in your code.

7.1.4 Map Files

Map files can be generated+fibin format by means of thgnap] option. Map types oéll (default),
brief , sections , segments , or symbols may be specified. Output may be directedstdout
(default), stderr , or a specified file. E.gmap symbols myfile.map] . No "user form" exists, the
square brackets must be used.

83

7.2 ith : Intel Hex Output

Theith file format produces Intel hex—format files. Just astie format, this is a flat memory image
format with no support for relocation or linking. It is usually used with ROM programmers and similar
utilities.

All extensions supported by tln file format is also supported by thik file format.

ith provides a default output file—name extensionthf

7.3 srec : Motorola S—Records Output

Thesrec file format produces Motorola S—records files. Just abihe format, this is a flat memory image
format with no support for relocation or linking. It is usually used with ROM programmers and similar
utilities.

All extensions supported by tlén file format is also supported by teeec file format.

srec provides a default output file—name extensiorsaéc

7.4 obj : Microsoft OMF Object Files

The obj file format (NASM calls itobj rather thanomf for historical reasons) is the one produced by
MASM and TASM, which is typically fed to 16—bit DOS linkers to produeXE files. It is also the format
used by OS/2.

obj provides a default output file—name extensiorobf .

obj is not exclusively a 16-bit format, though: NASM has full support for the 32-bit extensions to the
format. In particular, 32-bibbj format files are used by Borland’s Win32 compilers, instead of using
Microsoft's newemwin32 object file format.

The obj format does not define any special segment names: you can call your segments anything you like.
Typical names for segmentsabj format files aresCODEDATAandBSS

If your source file contains code before specifying an ex@EGMENTirective, then NASM will invent its
own segment called NASMDEFSEr you.

When you define a segment inalpj file, NASM defines the segment name as a symbol as well, so that you
can access the segment address of the segment. So, for example:

segment data
dvar: dw 1234

segment code

function:
mov ax,data ; get segment address of data
mov ds,ax ; and move it into DS
inc word [dvar] ; now this reference will work
ret

The obj format also enables the use of BiEGandWRToperators, so that you can write code which does
things like

extern foo

mov ax,seg foo ; get preferred segment of foo
mov ds,ax

mov ax,data ; a different segment

mov es,ax

mov ax,[ds:foo] ; this accesses ‘foo’

mov [es:foo wrt data],bx ; so does this

7.4.1 obj Extensions to theSEGMENTDirective

The obj output format extends thEEGMENTor SECTION directive to allow you to specify various
properties of the segment you are defining. This is done by appending extra qualifiers to the end of the
segment-definition line. For example,

segment code private align=16

defines the segmemide , but also declares it to be a private segment, and requires that the portion of it
described in this code module must be aligned on a 16—byte boundary.

The available qualifiers are:

PRIVATE, PUBLIC, COMMONMNNd STACK specify the combination characteristics of the segment.
PRIVATE segments do not get combined with any others by the liRkéBLIC andSTACKsegments get
concatenated together at link time; 22@MMOBEgments all get overlaid on top of each other rather than
stuck end-to—end.

ALIGN is used, as shown above, to specify how many low bits of the segment start address must be forced
to zero. The alignment value given may be any power of two from 1 to 4096; in reality, the only values
supported are 1, 2, 4, 16, 256 and 4096, so if 8 is specified it will be rounded up to 16, and 32, 64 and 128
will all be rounded up to 256, and so on. Note that alignment to 4096-byte boundaries is a PharLap
extension to the format and may not be supported by all linkers.

CLASScan be used to specify the segment class; this feature indicates to the linker that segments of the
same class should be placed near each other in the output file. The class name can be any word, e.g.
CLASS=CODE

OVERLAY like CLASS is specified with an arbitrary word as an argument, and provides overlay
information to an overlay—capable linker.

Segments can be declaredUS8E16 or USE32, which has the effect of recording the choice in the object
file and also ensuring that NASM'’s default assembly mode when assembling in that segment is 16-bit or
32-bit respectively.

When writing OS/2 object files, you should declare 32-bit segmerfd.A$, which causes the default
segment base for anything in the segment to be the special frddp and also defines the group if it is
not already defined.

The obj file format also allows segments to be declared as having a pre-defined absolute segment
address, although no linkers are currently known to make sensible use of this feature; nevertheless, NASM
allows you to declare a segment suctBEEMENT SCREEN ABSOLUTE=0xB80id you need to. The
ABSOLUTEandALIGN keywords are mutually exclusive.

NASM'’s default segment attributes &#&/BLIC, ALIGN=1, no class, no overlay, aiSE16.

85

7.4.2 GROUPDefining Groups of Segments

Theobj format also allows segments to be grouped, so that a single segment register can be used to refer to
all the segments in a group. NASM therefore supplieSROURIirective, whereby you can code

segment data
; some data
segment bss
; some uninitialized data

group dgroup data bss

which will define a group calledgroup to contain the segmentkata andbss . Like SEGMENTGROUP
causes the group name to be defined as a symbol, so that you can refer to aveariabbbhedata segment
asvar wrt data or asvar wrt dgroup , depending on which segment value is currently in your
segment register.

If you just refer tovar , however, andar is declared in a segment which is part of a group, then NASM will
default to giving you the offset ofar from the beginning of theroup not the segment Therefore
SEG var , also, will return the group base rather than the segment base.

NASM will allow a segment to be part of more than one group, but will generate a warning if you do this.
Variables declared in a segment which is part of more than one group will default to being relative to the first
group that was defined to contain the segment.

A group does not have to contain any segments; you can still WiRKeeferences to a group which does not
contain the variable you are referring to. OS/2, for example, defines the speciaFgfouvith no segments
in it.

7.4.3 UPPERCASHisabling Case Sensitivity in Output

Although NASM itself is case sensitive, some OMF linkers are not; therefore it can be useful for NASM to
output single—case object files. TRPPERCASHormat-specific directive causes all segment, group and
symbol names that are written to the object file to be forced to upper case just before being written. Within a
source file, NASM is still case—sensitive; but the object file can be written entirely in upper case if desired.

UPPERCASIHs used alone on a line; it requires no parameters.

7.4.4 IMPORT Importing DLL Symbols

The IMPORT format-specific directive defines a symbol to be imported from a DLL, for use if you are
writing a DLL’s import library in NASM. You still need to declare the symboEX§ ERNas well as using
theIMPORT(directive.

The IMPORTdirective takes two required parameters, separated by white space, which are (respectively) the
name of the symbol you wish to import and the name of the library you wish to import it from. For example:

import WSAStartup wsock32.dll

A third optional parameter gives the name by which the symbol is known in the library you are importing it
from, in case this is not the same as the name you wish the symbol to be known by to your code once you
have imported it. For example:

import asyncsel wsock32.dll WSAAsyncSelect
7.4.5 EXPORTExporting DLL Symbols

The EXPORTformat-specific directive defines a global symbol to be exported as a DLL symbol, for use if
you are writing a DLL in NASM. You still need to declare the symbolGA©BALas well as using the
EXPORTdirective.

EXPORTtakes one required parameter, which is the name of the symbol you wish to export, as it was defined
in your source file. An optional second parameter (separated by white space from the first) giwéertiad

name of the symbol: the name by which you wish the symbol to be known to programs using the DLL. If this
name is the same as the internal name, you may leave the second parameter off.

Further parameters can be given to define attributes of the exported symbol. These parameters, like the
second, are separated by white space. If further parameters are given, the external name must also be
specified, even if it is the same as the internal name. The available attributes are:

e resident indicates that the exported name is to be kept resident by the system loader. This is an
optimisation for frequently used symbols imported by name.

« nodata indicates that the exported symbol is a function which does not make use of any initialized data.

« parm=NNN whereNNNis an integer, sets the number of parameter words for the case in which the symbol
is a call gate between 32-bit and 16-bit segments.

e An attribute which is just a number indicates that the symbol should be exported with an identifying
number (ordinal), and gives the desired number.

For example:

export myfunc

export myfunc TheRealMoreFormalLookingFunctionName
export myfunc myfunc 1234 ; export by ordinal

export myfunc myfunc resident parm=23 nodata

7.4.6 ..start : Defining the Program Entry Point

OMFlinkers require exactly one of the object files being linked to define the program entry point, where
execution will begin when the program is run. If the object file that defines the entry point is assembled using
NASM, you specify the entry point by declaring the special symbtart at the point where you wish
execution to begin.

7.4.7 obj Extensions to theEXTERNDiIrective
If you declare an external symbol with the directive
extern foo

then references such amv ax,foo will give you the offset ofoo from its preferred segment base (as
specified in whichever modufeo is actually defined in). So to access the contenfemfyou will usually
need to do something like

mov ax,seg foo ; get preferred segment base
mov es,ax ; move it into ES
mov ax,[es:foo] ;and use offset ‘foo’ from it

87

88

This is a little unwieldy, particularly if you know that an external is going to be accessible from a given
segment or group, salgroup . So ifDSalready containedgroup , you could simply code

mov ax,[foo wrt dgroup]

However, having to type this every time you want to acfess can be a pain; so NASM allows you to
declarefoo in the alternative form

extern foo:wrt dgroup

This form causes NASM to pretend that the preferred segment bédse ofs in factdgroup ; so the
expressiorseg foo will now returndgroup , and the expressidno is equivalent tdoo wrt dgroup

This default¥WRTmechanism can be used to make externals appear to be relative to any group or segment in
your program. It can also be applied to common variables: see section 7.4.8.

7.4.8 obj Extensions to theCOMMORDirective

7.5

The obj format allows common variables to be either near or far; NASM allows you to specify which your
variables should be by the use of the syntax

common nearvar 2:near ; ‘nearvar’ is a near common
common farvar 10:far ; and ‘farvar’ is far

Far common variables may be greater in size than 64Kb, and so the OMF specification says that they are
declared as a number elementof a given size. So a 10-byte far common variable could be declared as ten
one-hyte elements, five two—byte elements, two five—byte elements or one ten-byte element.

SomeOMFlinkers require the element size, as well as the variable size, to match when resolving common
variables declared in more than one module. Therefore NASM must allow you to specify the element size on
your far common variables. This is done by the following syntax:

common c_5hby2 10:far5 ; two five—byte elements
common c_2by5 10:far 2 ; five two—byte elements

If no element size is specified, the default is 1. AlsoRARkeyword is not required when an element size is
specified, since only far commons may have element sizes at all. So the above declarations could equivalently
be

common c_5by2 10:5 ; two five—byte elements
common c_2by5 10:2 ; five two—byte elements

In addition to these extensions, t@®MMONMNirective inobj also supports defaul¥RTspecification like
EXTERNdoes (explained in section 7.4.7). So you can also declare things like

common foo 10:wrt dgroup
common bar 16:far 2:wrt data
common baz 24:wrt data:6

win32 : Microsoft Win32 Object Files

The win32 output format generates Microsoft Win32 object files, suitable for passing to Microsoft linkers
such as Visual C++. Note that Borland Win32 compilers do not use this format, bobjusastead (see
section 7.4).

win32 provides a default output file—name extensiorobf .

Note that although Microsoft say that Win32 object files follow @@FF(Common Object File Format)
standard, the object files produced by Microsoft Win32 compilers are not compatible with COFF linkers such
as DJGPP’s, and vice versa. This is due to a difference of opinion over the precise semantics of PC-relative
relocations. To produce COFF files suitable for DJGPP, use NA8Mfs output format; conversely, the

coff format does not produce object files that Win32 linkers can generate correct output from.

7.5.1 win32 Extensions to theSECTIONDirective

Like theobj format,win32 allows you to specify additional information on tBECTIONdirective line, to

control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section namtest , .data and.bss , but may still be
overridden by these qualifiers.

The available qualifiers are:

e code, or equivalentiytext , defines the section to be a code section. This marks the section as readable
and executable, but not writable, and also indicates to the linker that the type of the section is code.

« data andbss define the section to be a data section, analogouslgde . Data sections are marked as
readable and writable, but not executabkta declares an initialized data section, whetess declares
an uninitialized data section.

e rdata declares an initialized data section that is readable but not writable. Microsoft compilers use this
section to place constants in it.

« info defines the section to be an informational section, which is not included in the executable file by the
linker, but may (for example) pass informatimrthe linker. For example, declaring erflo —type section
called.drectve causes the linker to interpret the contents of the section as command-line options.

e align= , used with a trailing number as abj , gives the alignment requirements of the section. The
maximum you may specify is 64: the Win32 object file format contains no means to request a greater
section alignment than this. If alignment is not explicitly specified, the defaults are 16-byte alignment for
code sections, 8-byte alignment for rdata sections and 4-byte alignment for data (and BSS) sections.
Informational sections get a default alignment of 1 byte (no alignment), though the value does not matter.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text code align=16
section .data data align=4
section .rdata rdata align=8
section .bss bss align=4

Any other section name is treated by default ltkeat

7.5.2 win32 : Safe Structured Exception Handling

Among other improvements in Windows XP SP2 and Windows Server 2003 Microsoft has introduced
concept of "safe structured exception handling." General idea is to collect handlers’ entry points in designated
read-only table and have alleged entry point verified against this table prior exception control is passed to the
handler. In order for an executable module to be equipped with such "safe exception handler table," all object
modules on linker command line has to comply with certain criteria. If one single module among them does
not, then the table in question is omitted and above mentioned run-time checks will not be performed for
application in question. Table omission is by default silent and therefore can be easily overlooked. One can
instruct linker to refuse to produce binary without such table by passifassgeh command line option.

89

90

Without regard to this run-time check merits it's natural to expect NASM to be capable of generating
modules suitable fatsafeseh linking. From developer’s viewpoint the problem is two—fold:

« how to adapt modules not deploying exception handlers of their own;

« how to adapt/develop modules utilizing custom exception handling;

Former can be easily achieved with any NASM version by adding following line to source code:
$@feat.00 equ 1

As of version 2.03 NASM adds this absolute symbol automatically. If it's not already present to be precise.
l.e. if for whatever reason developer would choose to assign another value in source file, it would still be
perfectly possible.

Registering custom exception handler on the other hand requires certain "magic." As of version 2.03
additional directive is implementedafeseh , which instructs the assembler to produce appropriately
formatted input data for above mentioned "safe exception handler table." Its typical use would be:

section .text
extern _MessageBoxA@16
%if _ NASM_VERSION_ID__ >=0x02030000
safeseh handler ; register handler as "safe handler"
%endif
handler:
push DWORD 1 ; MB_OKCANCEL
push DWORD caption
push DWORD text
push DWORDO0
call _MessageBoxA@16
sub eax,1 ;incidentally suits as return value
; for exception handler
ret
global _main
_main:
push DWORD handler
push DWORD [fs:0]
mov DWORD [fs:0],esp ; engage exception handler
XOr eax,eax
mov eax,DWORDJ[eax] ; cause exception
pop DWORD [fs:0] ;disengage exception handler
add esp4
ret
text: db 'OK to rethrow, CANCEL to generate core dump’,0
caption:db 'SEGV’,0

section .drectve info
db '/defaultlib:user32.lib /defaultlib:msvert.lib ’

As you might imagine, it's perfectly possible to produce .exe binary with "safe exception handler table" and
yet engage unregistered exception handler. Indeed, handler is engaged by simply manjfsi@iting
location at run—time, something linker has no power over, run-time that is. It should be explicitly mentioned
that such failure to register handler's entry point wstifeseh directive has undesired side effect at

run—time. If exception is raised and unregistered handler is to be executed, the application is abruptly
terminated without any notification whatsoever. One can argue that system could at least have logged some
kind "non-safe exception handler in x.exe at address n" message in event log, but no, literally no notification
is provided and user is left with no clue on what caused application failure.

Finally, all mentions of linker in this paragraph refer to Microsoft linker version 7.x and later. Presence of
@feat.00 symbol and input data for "safe exception handler table" causes no backward incompatibilities
and "safeseh" modules generated by NASM 2.03 and later can still be linked by earlier versions or
non—-Microsoft linkers.

7.6 win64 : Microsoft Win64 Obiject Files

The win64 output format generates Microsoft Win64 object files, which is nearly 100% identical to the
win32 object format (section 7.5) with the exception that it is meant to target 64-bit code and the x86-64
platform altogether. This object file is used exactly the same awitt32 object format (section 7.5), in
NASM, with regard to this exception.

7.6.1 win64 : Writing Position—Independent Code

While REL takes good care of RIP-relative addressing, there is one aspect that is easy to overlook for a
Win64 programmer: indirect references. Consider a switch dispatch table:

jmp qword [dsptch+rax*8]

dsptch: dq caseO
dg casel

Even a novice Win64 assembler programmer will soon realize that the code is not 64-bit savvy. Most notably
linker will refuse to link it with

'ADDR32’ relocation to ".text’ invalid without /LARGEADDRESSAWARE:NO
So [s]he will have to split jmp instruction as following:

lea rbx,[rel dsptch]
jmp gword [rbx+rax*8]

What happens behind the scene is that effective addréess irs encoded relative to instruction pointer, or in
perfectly position-independent manner. But this is only part of the problem! Trouble is that in .dll context
caseN relocations will make their way to the final module and might have to be adjusted at .dll load time. To
be specific when it can't be loaded at preferred address. And when this occurs, pages with such relocations
will be rendered private to current process, which kind of undermines the idea of sharing .dll. But no worry,
it's trivial to fix:

lea rbx,[rel dsptch]

add rbx,[rbx+rax*8]

jmp rbx

dsptch: dqg caseO-dsptch
dg casel-dsptch

NASM version 2.03 and later provides another alternatint,..imagebase operator, which returns
offset from base address of the current image, be it .exe or .dll module, therefore the name. For those

91

92

acquainted with PE-COFF format base address denotes stAfiAGIEE_DOS HEADERtructure. Here is
how to implement switch with these image-relative references:

lea rbx,[rel dsptch]

mov eax,[rbx+rax*4]

sub rbx,dsptch wrt ..imagebase
add rbx,rax

jmp rbx

dsptch: dd caseO wrt ..imagebase
dd casel wrt..imagebase

One can argue that the operator is redundant. Indeed, snippet before last works just fine with any NASM
version and is not even Windows specific... The real reason for implemewntingmagebase will
become apparent in next paragraph.

It should be noted thairt ..imagebase is defined as 32-bit operand only:
dd label wrt ..imagebase ; ok
dg label wrt ..imagebase ; bad
mov eax,label wrt ..imagebase ; ok
mov rax,label wrt ..imagebase ; bad

7.6.2 win64 : Structured Exception Handling

Structured exception handing in Win64 is completely different matter from Win32. Upon exception program
counter value is noted, and linker—generated table comprising start and end addresses of all the functions [in
given executable module] is traversed and compared to the saved program counter. Thus so called
UNWIND_ INFGstructure is identified. If it's not found, then offending subroutine is assumed to be "leaf" and
just mentioned lookup procedure is attempted for its caller. In Win64 leaf function is such function that does
not call any other functionor modifies any Win64 non-volatile registers, including stack pointer. The latter
ensures that it's possible to identify leaf function’s caller by simply pulling the value from the top of the stack.

While majority of subroutines written in assembler are not calling any other function, requirement for
non-volatile registers’ immutability leaves developer with not more than 7 registers and no stack frame,
which is not necessarily what [s]he counted with. Customarily one would meet the requirement by saving
non-volatile registers on stack and restoring them upon return, so what can go wrong? If [and only if] an
exception is raised at run—time and WhlWIND_INFOstructure is associated with such "leaf" function, the

stack unwind procedure will expect to find caller’s return address on the top of stack immediately followed by
its frame. Given that developer pushed caller’s non-volatile registers on stack, would the value on top point at
some code segment or even addressable space? Well, developer can attempt copying caller’s return address t
the top of stack and this would actually work in some very specific circumstances. But unless developer can
guarantee that these circumstances are always met, it's more appropriate to assume worst case scenario, i.€
stack unwind procedure going berserk. Relevant question is what happens then? Application is abruptly
terminated without any natification whatsoever. Just like in Win32 case, one can argue that system could at
least have logged "unwind procedure went berserk in x.exe at address n" in event log, but no, no trace of
failure is left.

Now, when we understand significance of idWIND_INFOstructure, let's discuss what's in it and/or how
it's processed. First of all it is checked for presence of reference to custom language—specific exception
handler. If there is one, then it's invoked. Depending on the return value, execution flow is resumed
(exception is said to be "handleddr; rest of UNWIND_INFOstructure is processed as following. Beside
optional reference to custom handler, it carries information about current callee’'s stack frame and where

non-volatile registers are saved. Information is detailed enough to be able to reconstruct contents of caller's
non-volatile registers upon call to current callee. And so caller's context is reconstructed, and then unwind
procedure is repeated, i.e. anoth®WIND _INFOstructure is associated, this time, with caller’s instruction
pointer, which is then checked for presence of reference to language—specific handler, etc. The procedure is
recursively repeated till exception is handled. As last resort system "handles" it by generating memory core
dump and terminating the application.

As for the moment of this writing NASM unfortunately does not facilitate generation of above mentioned

detailed information about stack frame layout. But as of version 2.03 it implements building blocks for

generating structures involved in stack unwinding. As simplest example, here is how to deploy custom
exception handler for leaf function:

default rel
section .text
extern MessageBoxA

handler:
sub rsp,40
mov rcx,0

lea rdx,[text]

lea r8,[caption]

mov 19,1 ; MB_OKCANCEL

call MessageBoxA

sub eax,1 ;incidentally suits as return value
; for exception handler

add rsp,40
ret
global main

main:
XOr rax,rax
mov rax,QWORDJ[rax] ; cause exception
ret
main_end:
text: db 'OK to rethrow, CANCEL to generate core dump’,0
caption:db 'SEGV’,0

section .pdata rdata align=4
dd main wrt ..imagebase
dd main_end wrt ..imagebase
dd xmain wrt ..imagebase
section .xdata rdata align=8
xmain: db 9,0,0,0
dd handler wrt ..imagebase
section .drectve info
db ‘'/defaultlib:user32.lib /defaultlib:msvcert.lib ’

What you see inpdata section is element of the "table comprising start and end addresses of function
along with reference to associatetNWIND_INFOstructure. And what you see imdata section is
UNWIND_INFO structure describing function with no frame, but with designated exception handler.
References arerequired to be image-relative (which is the real reason for implementing
wrt ..imagebase operator). It should be noted thatdata align=n , as well as

93

94

wrt ..imagebase , are optional in these two segments’ contexts, i.e. can be omitted. Latter meafls that
32-bit references, not only above listed required ones, placed into these two segments turn out
image-relative. Why is it important to understand? Developer is allowed to append handler—specific data to
UNWIND_INFOstructure, and if [s]he adds a 32-bit reference, then [s]he will have to remember to adjust its
value to obtain the real pointer.

As already mentioned, in Win64 terms leaf function is one that does not call any other faoctioodifies

any non-volatile register, including stack pointer. But it's not uncommon that assembler programmer plans to
utilize every single register and sometimes even have variable stack frame. Is there anything one can do with
bare building blocks? I.e. besides manually composing fully—fletldéd/IND_INFOstructure, which would

surely be considered error—prone? Yes, there is. Recall that exception handler is called first, before stack
layout is analyzed. As it turned out, it's perfectly possible to manipulate current callee’s context in custom
handler in manner that permits further stack unwinding. General idea is that handler would not actually
"handle" the exception, but instead restore callee’s context, as it was at its entry point and thus mimic leaf
function. In other words, handler would simply undertake part of unwinding procedure. Consider following
example:

function:
mov rax,rsp ; copy rsp to volatile register
push r15 ; save non-volatile registers
push rbx
push rbp
mov rll,rsp ; prepare variable stack frame
sub rll,rcx
and rll,-64
mov QWORDI[r11],rax ; check for exceptions
mov rsp,r1l ; allocate stack frame
mov QWORDIrsp],rax ; save original rsp value
magic_point:

mov r11,QWORDIrsp] ; pull original rsp value
mov rbp,QWORDI[r11-24]

mov rbx,QWORD[r11-16]

mov r15,QWORDI[r11-8]

mov rsp,r1l ; destroy frame

ret

The keyword is that up tenagic_point original rsp value remains in chosen volatile register and no
non-volatile register, except fosp , is modified. While pasiagic_point rsp remains constant till the
very end of thdunction . In this case custom language-specific exception handler would look like this:

EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
CONTEXT *context,DISPATCHER_CONTEXT *disp)
{ ULONG®64 *rsp;
if (context—>Rip<(ULONG64)magic_point)
rsp = (ULONG64 *)context—>Rax;
else
{ rsp = ((ULONG64 **)context—>Rsp)[0];
context—>Rbp = rsp[-3];
context—>Rbx = rsp[-2];
context—->R15 = rsp[-1];

}
context—>Rsp = (ULONG64)rsp;

memcpy (disp—>ContextRecord,context,sizeof(CONTEXT));
RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp—>ImageBase,
dips—>ControlPc,disp—>FunctionEntry,disp—>ContextRecord,
&disp—>HandlerData,&disp—>EstablisherFrame,NULL);
return ExceptionContinueSearch;

}

As custom handler mimics leaf function, correspondiidWIND_INFOstructure does not have to contain
any information about stack frame and its layout.

7.7 coff : Common Object File Format
Thecoff output type producegSOFFobject files suitable for linking with the DJGPP linker.
coff provides a default output file—name extensioroof

The coff format supports the same extensions toSE€TION directive aswin32 does, except that the
align qualifier and thénfo section type are not supported.

7.8 macho32 and macho64: Mach Obiject File Format

The macho32 and macho64 output formts produceMach-O object files suitable for linking with the
MacOS X linkermacho is a synonym fomacho32.

macho provides a default output file—-name extensioroof

7.9 elf32 ,elf64 ,elfx32 : Executable and Linkable Format Object Files

Theelf32 , elf64 andelfx32 output formats generatel F32 and ELF64 (Executable and Linkable
Format) object files, as used by Linux as well as Unix System V, including Solaris x86, UnixWare and SCO
Unix. elf provides a default output file—name extensioroofelf is a synonym foelf32

Theelfx32 format is used for the x32 ABI, which is a 32—-bit ABI with the CPU in 64—bit mode.
7.9.1 ELF specific directiveosabi

The ELF header specifies the application binary interface for the target operating system (OSABI). This field
can be set by using tlisabi directive with the numeric value (0-255) of the target system. If this directive

is not used, the default value will be "UNIX System V ABI" (0) which will work on most systems which
support ELF.

7.9.2 elf Extensions to theSECTIONDirective

Like theobj format,elf allows you to specify additional information on t8&CTION directive line, to
control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section names, but may still be overridden by these qualifiers.

The available qualifiers are:

e alloc defines the section to be one which is loaded into memory when the program nsallwc
defines it to be one which is not, such as an informational or comment section.

95

96

« exec defines the section to be one which should have execute permission when the program is run.
noexec defines it as one which should not.

« write defines the section to be one which should be writable when the programriewuite defines
it as one which should not.

e progbits defines the section to be one with explicit contents stored in the object file: an ordinary code
or data section, for examplegbits defines the section to be one with no explicit contents given, such as
a BSS section.

« align= , used with a trailing number asabj , gives the alignment requirements of the section.
« tls defines the section to be one which contains thread local variables.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text progbits alloc exec nowrite align=16
section .rodata progbits alloc noexec nowrite align=4
section .Irodata progbits alloc noexec nowrite align=4
section .data progbits alloc noexec write align=4
section .Idata progbits alloc noexec write align=4
section .bss nobits alloc noexec write align=4
section .lbss nobits alloc noexec write align=4
section .tdata progbits alloc noexec write align=4 tls
section .thss nobits alloc noexec write align=4 tls
section .comment progbits noalloc noexec nowrite align=1
section other progbits alloc noexec nowrite align=1

(Any section name other than those in the above table is treated by defaathéke in the above table.
Please note that section names are case sensitive.)

7.9.3 Position—Independent Codeelf Special Symbols andVRT

The ELF specification contains enough features to allow position—independent code (PIC) to be written,
which makes ELF shared libraries very flexible. However, it also means NASM has to be able to generate a
variety of ELF specific relocation types in ELF object files, if it is to be an assembler which can write PIC.

SinceELF does not support segment-base referencedViR€perator is not used for its normal purpose;
therefore NASM'self output format makes use WRTfor a different purpose, namely the PIC-specific
relocation types.

elf defines five special symbols which you can use as the right-hand sideVéRffoperator to obtain PIC
relocation types. They aregotpc , ..gotoff , ..got , .plt and ..sym . Their functions are
summarized here:

« Referring to the symbol marking the global offset table base wsinggotpc will end up giving the
distance from the beginning of the current section to the global offset table.
(_GLOBAL_OFFSET_TABLE.s the standard symbol name used to refer to the GOT.) So you would then
need to ad&$ to the result to get the real address of the GOT.

« Referring to a location in one of your own sections using..gotoff will give the distance from the
beginning of the GOT to the specified location, so that adding on the address of the GOT would give the
real address of the location you wanted.

« Referring to an external or global symbol usimg ..got causes the linker to build an enirythe
GOT containing the address of the symbol, and the reference gives the distance from the beginning of the
GOT to the entry; so you can add on the address of the GOT, load from the resulting address, and end up
with the address of the symbol.

« Referring to a procedure name using ..plt causes the linker to build a procedure linkage table
entry for the symbol, and the reference gives the address of the PLT entry. You can only use this in
contexts which would generate a PC-relative relocation normally (i.e. as the destinatiéw fosr IMP),
since ELF contains no relocation type to refer to PLT entries absolutely.

« Referring to a symbol name usiagt ..sym causes NASM to write an ordinary relocation, but instead
of making the relocation relative to the start of the section and then adding on the offset to the symbol, it
will write a relocation record aimed directly at the symbol in question. The distinction is a necessary one
due to a peculiarity of the dynamic linker.

A fuller explanation of how to use these relocation types to write shared libraries entirely in NASM is given in

section 9.2.
7.9.4 Thread Local Storageelf Special Symbols andVRT
« In ELF32 mode, referring to an external or global symbol usirig.tisie causes the linker to build

an entryin the GOT containing the offset of the symbol within the TLS block, so you can access the value
of the symbol with code such as:

mov eax,[tid wrt ..tlsie]
mov [gs:eax],ebx

e In ELF64 or ELFx32 mode, referring to an external or global symbol wsihggottpoff causes
the linker to build an entrin the GOT containing the offset of the symbol within the TLS block, so you
can access the value of the symbol with code such as:

mov rax,[rel tid wrt ..gottpoff]
mov rcx,[fs:rax]

7.9.5elf Extensions to theGLOBALDirective

ELF object files can contain more information about a global symbol than just its address: they can contain
the size of the symbol and its type as well. These are not merely debugger conveniences, but are actually
necessary when the program being written is a shared library. NASM therefore supports some extensions to
the GLOBALdirective, allowing you to specify these features.

You can specify whether a global variable is a function or a data object by suffixing the name with a colon
and the wordunction ordata . (object is a synonym fodata .) For example:

global hashlookup:function, hashtable:data
exports the global symbblshlookup as a function andashtable as a data object.

Optionally, you can control the ELF visibility of the symbol. Just add one of the visibility keywords:
default ,internal , hidden , orprotected . The default iglefault of course. For example, to make
hashlookup hidden:

global hashlookup:function hidden

You can also specify the size of the data associated with the symbol, as a numeric expression (which may
involve labels, and even forward references) after the type specifier. Like this:

97

98

global hashtable:data (hashtable.end — hashtable)

hashtable:
db this,that,theother ; some data here
.end:

This makes NASM automatically calculate the length of the table and place that information iRld~the
symbol table.

Declaring the type and size of global symbols is necessary when writing shared library code. For more
information, see section 9.2.4.

7.9.6 elf Extensions to theCOMMORNirective

ELF also allows you to specify alignment requirements on common variables. This is done by putting a
number (which must be a power of two) after the name and size of the common variable, separated (as usual)
by a colon. For example, an array of doublewords would benefit from 4-byte alignment:

common dwordarray 128:4

This declares the total size of the array to be 128 bytes, and requires that it be aligned on a 4-byte boundary.

7.9.7 16-bit code and ELF

The ELF32 specification doesn't provide relocations for 8— and 16-bit values, but thel&NInker adds

these as an extension. NASM can generate GNU-compatible relocations, to allow 16-bit code to be linked as
ELF using GNUId . If NASM is used with the-w+gnu—elf-extensions option, a warning is issued

when one of these relocations is generated.

7.9.8 Debug formats and ELF

ELF provides debug information BTABSandDWARFormats. Line number information is generated for all
executable sections, but please note that only the ".text" section is executable by default.

7.10 aout : Linux a.out Object Files

The aout format generatea.out object files, in the form used by early Linux systems (current Linux
systems use ELF, see section 7.9.) These differ from atbet object files in that the magic number in the
first four bytes of the file is different; also, some implementatiorsait , for example NetBSD’s, support
position—-independent code, which Linux’s implementation does not.

a.out provides a default output file—name extensioroof

a.out is a very simple object format. It supports no special directives, no special symbols, n&HESoof
WRT and no extensions to any standard directives. It supports only the three standard secticiextames
.data and.bss .

7.11 aoutb : NetBSD/FreeBSD/OpenBS[a.out Object Files

The aoutb format generatea.out object files, in the form used by the various fB®D Unix clones,
NetBSD, FreeBSD andOpenBSD For simple object files, this object format is exactly the sanmsoat

except for the magic number in the first four bytes of the file. Howeveratimth format supports
position—-independent code in the same way aslftheformat, so you can use it to wrBSDshared libraries.

aoutb provides a default output file—name extensioroof

aoutb supports no special directives, no special symbols, and only the three standard sectiotexames
.data and .bss . However, it also supports the same use WRT as elf does, to provide
position—-independent code relocation types. See section 7.9.3 for full documentation of this feature.

aoutb also supports the same extensions to Gh€BALdirective aself does: see section 7.9.5 for
documentation of this.

7.12 as86 : Minix/Linux as86 Object Files

The Minix/Linux 16-bit assembleas86 has its own non-standard object file format. Although its
companion linkerld86 produces something close to ordinaryut binaries as output, the object file
format used to communicate betwees86 andld86 is not itselfa.out .

NASM supports this format, just in case it is usefulaa86 . as86 provides a default output file—name
extension ofo .

as86 is a very simple object format (from the NASM user’s point of view). It supports no special directives,
no use oSEGor WRT and no extensions to any standard directives. It supports only the three standard section
namestext ,.data and.bss . The only special symbol supported.&art

7.13 rdf : Relocatable Dynamic Object File Format

Therdf output format produceRDOFFobject files.RDOFHRelocatable Dynamic Object File Format) is a
home-grown object-file format, designed alongside NASM itself and reflecting in its file format the internal
structure of the assembler.

RDOFFis not used by any well-known operating systems. Those writing their own systems, however, may
well wish to useRDOFFas their object format, on the grounds that it is designed primarily for simplicity and
contains very little file—header bureaucracy.

The Unix NASM archive, and the DOS archive which includes sources, both contaoffan subdirectory
holding a set of RDOFF utilities: an RDF linker, RDF static—library manager, an RDF file dump utility,
and a program which will load and execute an RDF executable under Linux.

rdf supports only the standard section nartee¢ , .data and.bss .

7.13.1 Requiring a Library: The LIBRARY Directive

RDOFFcontains a mechanism for an object file to demand a given library to be linked to the module, either at
load time or run time. This is done by thlBRARY directive, which takes one argument which is the name
of the module:

library mylib.rdl
7.13.2 Specifying a Module Name: Th®IODULBDiIrective

Special RDOFFheader record is used to store the name of the module. It can be used, for example, by
run—time loader to perform dynamic linkinfylODULHlirective takes one argument which is the name of
current module:

module mymodname

Note that when you statically link modules and tell linker to strip the symbols from output file, all module
names will be stripped too. To avoid it, you should start module name$ Wiite:

module $kernel.core

99

7.13.3rdf Extensions to theGLOBALDirective

RDOFFglobal symbols can contain additional information needed by the static linker. You can mark a global
symbol as exported, thus telling the linker do not strip it from target executable or library file. IBkE,in
you can also specify whether an exported symbol is a procedure (function) or data object.

Suffixing the name with a colon and the wesgort you make the symbol exported:
global sys open:export

To specify that exported symbol is a procedure (function), you add the pwocd or function after
declaration:

global sys open:export proc
Similarly, to specify exported data object, add the va@th orobject to the directive:

global kernel_ticks:export data

7.13.4 rdf Extensions to theEXTERNDirective

100

By default theEXTERNdirective in RDOFFdeclares a "pure external" symbol (i.e. the static linker will
complain if such a symbol is not resolved). To declare an "imported" symbol, which must be resolved later
during a dynamic linking phasBDOFFoffers an additionalmport maodifier. As inGLOBAL. you can also
specify whether an imported symbol is a procedure (function) or data object. For example:

library $libc

extern _open:import
extern _printf:import proc
extern _errno:import data

Here the directivelIBRARY is also included, which gives the dynamic linker a hint as to where to find
requested symbols.

7.14 dbg: Debugging Format

The dbg output format is not built into NASM in the default configuration. If you are building your own
NASM executable from the sources, you can defdte DBGin output/outform.h or on the compiler
command line, and obtain tbg output format.

Thedbg format does not output an object file as such; instead, it outputs a text file which contains a complete
list of all the transactions between the main body of NASM and the output—-format back end module. It is

primarily intended to aid people who want to write their own output drivers, so that they can get a clearer idea
of the various requests the main program makes of the output driver, and in what order they happen.

For simple files, one can easily use thg format like this:
nasm —f dbg filename.asm

which will generate a diagnostic file calldietname.dbg . However, this will not work well on files

which were designed for a different object format, because each object format defines its own macros (usually
user—level forms of directives), and those macros will not be defined ibthdormat. Therefore it can be

useful to run NASM twice, in order to do the preprocessing with the native object format selected:

nasm —e —f rdf —o rdfprog.i rdfprog.asm
nasm -a —f dbg rdfprog.i

This preprocesseddfprog.asm into rdfprog.i , keeping therdf object format selected in order to
make sure RDF special directives are converted into primitive form correctly. Then the preprocessed source is
fed through thelbg format to generate the final diagnostic output.

This workaround will still typically not work for programs intended fasj format, because thebj
SEGMENBNdGROURIirectives have side effects of defining the segment and group names as sgibpols;

will not do this, so the program will not assemble. You will have to work around that by defining the symbols
yourself (usingEXTERN for example) if you really need to getig trace of arobj —specific source file.

dbg accepts any section name and any directives at all, and logs them all to its output file.

101

102

Chapter 8: Writing 16—bit Code (DOS, Windows 3/3.1)

This chapter attempts to cover some of the common issues encountered when writing 16—bit code to run
underMS-DOSr Windows 3.x . It covers how to link programs to produ@eXE or .COMfiles, how to

write .SYS device drivers, and how to interface assembly language code with 16-bit C compilers and with
Borland Pascal.

8.1 Producing.EXE Files

Any large program written under DOS needs to be built &X& file: only .EXE files have the necessary
internal structure required to span more than one 64K segment. Windows programs, also, have to be built as
.EXE files, since Windows does not support i8®Mformat.

In general, you generateEXE files by using thebj output format to produce one or mo@BJ files, and

then linking them together using a linker. However, NASM also supports the direct generation of simple DOS
.EXE files using thebin output format (by usin®B andDWo construct theEXE file header), and a macro
package is supplied to do this. Thanks to Yann Guidon for contributing the code for this.

NASM may also supporEXE natively as another output format in future releases.

8.1.1 Using theobj Format To Generate.EXE Files

This section describes the usual method of generaiiXg files by linking.OBJ files together.

Most 16-bit programming language packages come with a suitable linker; if you have none of these, there is a
free linker called VAL, available ihZH archive format fromx2ftp.oulu.fi . An LZH archiver can be

found atftp.simtel.net . There is another ‘free’ linker (though this one doesn’t come with sources)
called FREELINK, available fromvww.pcorner.com . A third, djlink , written by DJ Delorie, is
available atvww.delorie.com . A fourth linker,ALINK, written by Anthony A.J. Williams, is available at
alink.sourceforge.net

When linking severalOBJ files into a.EXE file, you should ensure that exactly one of them has a start point
defined (using the.start special symbol defined by thabj format: see section 7.4.6). If no module
defines a start point, the linker will not know what value to give the entry—point field in the output file header;
if more than one defines a start point, the linker will not kmévchvalue to use.

An example of a NASM source file which can be assembled@Ba file and linked on its own to &£XE

is given here. It demonstrates the basic principles of defining a stack, initialising the segment registers, and
declaring a start point. This file is also provided intist subdirectory of the NASM archives, under the
nameobjexe.asm

segment code

..Start:
mov ax,data
mov ds,ax
mov ax,stack
mov ss,ax
mov sp,stacktop

ftp://x2ftp.oulu.fi/pub/msdos/programming/lang/
ftp://ftp.simtel.net/pub/simtelnet/msdos/arcers
http://www.pcorner.com/tpc/old/3-101.html
http://www.delorie.com/djgpp/16bit/djlink/
http://alink.sourceforge.net

This initial piece of code sets W5 to point to the data segment, and initialig&sandSP to point to the top
of the provided stack. Notice that interrupts are implicitly disabled for one instruction after a mo8&,into
precisely for this situation, so that there’s no chance of an interrupt occurring between the 8fadadGP
and not having a stack to execute on.

Note also that the special symbgaitart is defined at the beginning of this code, which means that will be
the entry point into the resulting executable file.

mov dx,hello
mov ah,9
int 0x21

The above is the main program: loB&:DX with a pointer to the greeting messagellp is implicitly
relative to the segmemfata , which was loaded int®Sin the setup code, so the full pointer is valid), and
call the DOS print=string function.

mov ax,0x4c00
int 0x21

This terminates the program using another DOS system call.

segment data

hello: db ’hello, world’, 13, 10, '$’
The data segment contains the string we want to display.

segment stack stack
resb 64
stacktop:

The above code declares a stack segment containing 64 bytes of uninitialized stack space, and points
stacktop at the top of it. The directiveegment stack stack defines a segmertlled stack , and

also oftype STACK The latter is not necessary to the correct running of the program, but linkers are likely to
issue warnings or errors if your program has no segment oSHAEK

The above file, when assembled intoc0BJ file, will link on its own to a validEXE file, which when run
will print ‘hello, world’ and then exit.

8.1.2 Using thébin Format To Generate.EXE Files

The .EXE file format is simple enough that it's possible to buildEXE file by writing a pure—binary
program and sticking a 32-byte header on the front. This header is simple enough that it can be generated
usingDB andDWcommands by NASM itself, so that you can useline output format to directly generate

.EXE files.

Included in the NASM archives, in tmisc subdirectory, is a filexebin.mac of macros. It defines three
macrosEXE_begin , EXE_stack andEXE_end.

To produce aEXE file using this method, you should start by ustmclude to load theexebin.mac

macro package into your source file. You should then issu&Xte begin macro call (which takes no
arguments) to generate the file header data. Then write code as normaltfior tfermat — you can use all

three standard sectiortext , .data and.bss . At the end of the file you should call tB&E_end macro

(again, no arguments), which defines some symbols to mark section sizes, and these symbols are referred to in
the header code generatedEE_begin .

103

104

In this model, the code you end up writing start®xdt00 , just like a.COMfile — in fact, if you strip off the
32-byte header from the resultitigXE file, you will have a validCOM program. All the segment bases are
the same, so you are limited to a 64K program, again just likeOM file. Note that arORGdirective is
issued by th&XE_begin macro, so you should not explicitly issue one of your own.

You can't directly refer to your segment base value, unfortunately, since this would require a relocation in the
header, and things would get a lot more complicated. So you should get your segment base by copying it out
of CSinstead.

On entry to yourEXE file, SS:SP are already set up to point to the top of a 2Kb stack. You can adjust the
default stack size of 2Kb by calling tleXE_stack macro. For example, to change the stack size of your
program to 64 bytes, you would cBKE_stack 64

A sample program which generatesEXE file in this way is given in théest subdirectory of the NASM
archive, adinexe.asm

8.2 Producing.COMFiles

While large DOS programs must be written.BXE files, small ones are often better written.@®Mfiles.
.COMfiles are pure binary, and therefore most easily produced usiintheutput format.

8.2.1 Using thébin Format To Generate. COMFiles

.COM files expect to be loaded at offs€00h into their segment (though the segment may change).
Execution then begins 400h, i.e. right at the start of the program. So to writ€@M program, you would
create a source file looking like

org 100h
section .text

start:
; put your code here

section .data
; put data items here
section .bss

; put uninitialized data here

The bin format puts thetext section first in the file, so you can declare data or BSS items before
beginning to write code if you want to and the code will still end up at the front of the file where it belongs.

The BSS (uninitialized data) section does not take up space i@@hdfile itself: instead, addresses of BSS

items are resolved to point at space beyond the end of the file, on the grounds that this will be free memory
when the program is run. Therefore you should not rely on your BSS being initialized to all zeros when you
run.

To assemble the above program, you should use a command line like

nasm myprog.asm —fbin —o myprog.com

The bin format would produce a file calledyprog if no explicit output file name were specified, so you
have to override it and give the desired file name.

8.2.2 Using theobj Format To Generate. COMFiles

If you are writing a.COM program as more than one module, you may wish to assemble s©@¥afiles

and link them together into a&£OM program. You can do this, provided you have a linker capable of
outputting.COMfiles directly (TLINK does this), or alternatively a converter program sudbX&2BIN to
transform theEXE file output from the linker into &COMfile.

If you do this, you need to take care of several things:

« The first object file containing code should start its code segment with a liNRE&8 100h. This is to
ensure that the code begins at offs@dh relative to the beginning of the code segment, so that the linker
or converter program does not have to adjust address references within the file when gener&tdiyl the
file. Other assemblers use @RGdirective for this purpose, b®RGin NASM is a format-specific
directive to thebin output format, and does not mean the same thing as it does in MASM-compatible
assemblers.

* You don't need to define a stack segment.

« All your segments should be in the same group, so that every time your code or data references a symbol
offset, all offsets are relative to the same segment base. This is because, @@bffite is loaded, all the
segment registers contain the same value.

8.3 Producing.SYS Files

MS-DOS device drivers -SYS files — are pure binary files, similar t6OM files, except that they start at
origin zero rather thatOOh . Therefore, if you are writing a device driver using lite format, you do not
need theORGdirective, since the default origin foin is zero. Similarly, if you are usingpj , you do not
need theRESB 100h at the start of your code segment.

.SYS files start with a header structure, containing pointers to the various routines inside the driver which do
the work. This structure should be defined at the start of the code segment, even though it is not actually code.

For more information on the format BYS files, and the data which has to go in the header structure, a list
of books is given in the Frequently Asked Questions list for the newsgroup
comp.os.msdos.programmer

8.4 Interfacing to 16—bit C Programs

This section covers the basics of writing assembly routines that call, or are called from, C programs. To do
this, you would typically write an assembly module aO8J file, and link it with your C modules to
produce a mixed-language program.

8.4.1 External Symbol Names

C compilers have the convention that the names of all global symbols (functions or data) they define are

formed by prefixing an underscore to the name as it appears in the C program. So, for example, the function a
C programmer thinks of gwintf appears to an assembly language programmepragf . This means

that in your assembly programs, you can define symbols without a leading underscore, and not have to worry
about name clashes with C symbols.

If you find the underscores inconvenient, you can define macros to replaceL@BAL and EXTERN
directives as follows:

105

news:comp.os.msdos.programmer

106

%macro cglobal 1

global %1
%define %1 %1

%endmacro
%macro cextern 1

extern _%1
%define %1 %1
%endmacro
(These forms of the macros only take one argument at a tihes@construct could solve this.)
If you then declare an external like this:
cextern printf
then the macro will expand it as

extern _printf
%define printf _printf

Thereafter, you can referengeintf as if it was a symbol, and the preprocessor will put the leading
underscore on where necessary.

The cglobal macro works similarly. You must usglobal before defining the symbol in question, but
you would have had to do that anyway if you uS@DBAL

Also see section 2.1.27.

8.4.2 Memory Models

NASM contains no mechanism to support the various C memory models directly; you have to keep track
yourself of which one you are writing for. This means you have to keep track of the following things:

* In models using a single code segment (tiny, small and compact), functions are near. This means that
function pointers, when stored in data segments or pushed on the stack as function arguments, are 16 bits
long and contain only an offset field (th&S register never changes its value, and always gives the segment
part of the full function address), and that functions are called using ordinar€Akhrinstructions and
return usingRETN(which, in NASM, is synonymous WItRET anyway). This means both that you should
write your own routines to return wiRETN and that you should call external C routines with @8kl
instructions.

« In models using more than one code segment (medium, large and huge), functions are far. This means that
function pointers are 32 bits long (consisting of a 16-hit offset followed by a 16-bit segment), and that
functions are called usinGALL FAR (or CALL seg:offset) and return usindRETFE Again, you
should therefore write your own routines to return VREBTFand useCALL FAR to call external routines.

« In models using a single data segment (tiny, small and medium), data pointers are 16 bits long, containing
only an offset field (th&©Sregister doesn’t change its value, and always gives the segment part of the full
data item address).

In models using more than one data segment (compact, large and huge), data pointers are 32 bits long,
consisting of a 16-bit offset followed by a 16-bit segment. You should still be careful not to m&dify

your routines without restoring it afterwards, 8 is free for you to use to access the contents of 32-hit

data pointers you are passed.

The huge memory model allows single data items to exceed 64K in size. In all other memory models, you
can access the whole of a data item just by doing arithmetic on the offset field of the pointer you are given,
whether a segment field is present or not; in huge model, you have to be more careful of your pointer
arithmetic.

In most memory models, there iglafaultdata segment, whose segment address is k& throughout

the program. This data segment is typically the same segment as the stack,3&pdrthat functions’

local variables (which are stored on the stack) and global data items can both be accessed easily without
changingDS Particularly large data items are typically stored in other segments. However, some memory
models (though not the standard ones, usually) allow the assumpti@sthatiDS hold the same value to

be removed. Be careful about functions’ local variables in this latter case.

In models with a single code segment, the segment is callEXT, so your code segment must also go by
this name in order to be linked into the same place as the main code segment. In models with a single data
segment, or with a default data segment, it is call28TA

8.4.3 Function Definitions and Function Calls

The C calling convention in 16-bit programs is as follows. In the following description, the eadketsand
calleeare used to denote the function doing the calling and the function which gets called.

The caller pushes the function’s parameters on the stack, one after another, in reverse order (right to left, so
that the first argument specified to the function is pushed last).

The caller then executesGALL instruction to pass control to the callee. TB&LL is either near or far
depending on the memory model.

The callee receives control, and typically (although this is not actually necessary, in functions which do not
need to access their parameters) starts by saving the vaéieinnBP so as to be able to uB® as a base
pointer to find its parameters on the stack. However, the caller was probably doing this too, so part of the
calling convention states thBP must be preserved by any C function. Hence the callee, if it is going to set
up BP as aframe pointey must push the previous value first.

The callee may then access its parameters relatBP.tdhe word afBP] holds the previous value B8P

as it was pushed; the next word[BP+2] , holds the offset part of the return address, pushed implicitly

by CALL. In a small-model (near) function, the parameters start after tH&Pa#] ; in a large—model

(far) function, the segment part of the return address livgBRit4] , and the parameters begin at
[BP+6] . The leftmost parameter of the function, since it was pushed last, is accessible at this offset from
BP; the others follow, at successively greater offsets. Thus, in a function specimths which takes a

variable number of parameters, the pushing of the parameters in reverse order means that the function
knows where to find its first parameter, which tells it the number and type of the remaining ones.

The callee may also wish to decre&$efurther, so as to allocate space on the stack for local variables,
which will then be accessible at negative offsets fBin

The callee, if it wishes to return a value to the caller, should leave the valdle, iAX or DX:AX
depending on the size of the value. Floating—point results are sometimes (depending on the compiler)
returned inSTO.

107

108

* Once the callee has finished processing, it rest8ReBom BP if it had allocated local stack space, then
pops the previous value BP, and returns viRETNor RETFdepending on memory model.

« When the caller regains control from the callee, the function parameters are still on the stack, so it typically
adds an immediate constant 8P to remove them (instead of executing a number of SR@P
instructions). Thus, if a function is accidentally called with the wrong number of parameters due to a
prototype mismatch, the stack will still be returned to a sensible state since the callerkivafnisnow
many parameters it pushed, does the removing.

It is instructive to compare this calling convention with that for Pascal programs (described in section 8.5.1).
Pascal has a simpler convention, since no functions have variable numbers of parameters. Therefore the callee
knows how many parameters it should have been passed, and is able to deallocate them from the stack itself
by passing an immediate argument to REET or RETF instruction, so the caller does not have to do it. Also,

the parameters are pushed in left-to—right order, not right-to-left, which means that a compiler can give
better guarantees about sequence points without performance suffering.

Thus, you would define a function in C style in the following way. The following example is for small model:

global _myfunc

_myfunc:
push bp
mov bp,sp
sub sp,0x40 ; 64 bytes of local stack space
mov bx,[bp+4] ; first parameter to function

; some more code

mov sp,bp ; undo "sub sp,0x40" above
pop bp
ret

For a large—-model function, you would repldRET by RETF, and look for the first parameter [@P+6]

instead of BP+4] . Of course, if one of the parameters is a pointer, then the offsetbsfquenparameters

will change depending on the memory model as well: far pointers take up four bytes on the stack when passed
as a parameter, whereas near pointers take up two.

At the other end of the process, to call a C function from your assembly code, you would do something like
this:

extern _printf

; and then, further down...

push word [myint] ; one of my integer variables
push word mystring ; pointer into my data segment
call _printf

add sp,byte 4 ; ‘byte’ saves space

: then those data items...

segment _DATA

myint dw 1234
mystring db 'This number —> %d <- should be 1234',10,0

This piece of code is the small-model assembly equivalent of the C code

int myint = 1234;
printf("This number —> %d <- should be 1234\n", myint);

In large model, the function—call code might look more like this. In this example, it is assuméSthat
already holds the segment base of the segni2AT A If not, you would have to initialize it first.

push word [myint]

push word seg mystring ; Now push the segment, and...
push word mystring ; ... Offset of "mystring"

call far _printf

add sp,byte 6

The integer value still takes up one word on the stack, since large model does not affect the sin¢ of the

data type. The first argument (pushed lastptimtf , however, is a data pointer, and therefore has to
contain a segment and offset part. The segment should be stored second in memory, and therefore must be
pushed first. (Of course, PUSH DS would have been a shorter instruction than

PUSH WORD SEG mystring , if DS was set up as the above example assumed.) Then the actual call
becomes a far call, since functions expect far calls in large mode§Rihds to be increased by 6 rather than

4 afterwards to make up for the extra word of parameters.

8.4.4 Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only declare the
names assLOBALor EXTERN (Again, the names require leading underscores, as stated in section 8.4.1.)
Thus, a C variable declarediasi can be accessed from assembler as

extern _i

mov ax,[_i]

And to declare your own integer variable which C programs can accesdeas int | , you do this
(making sure you are assembling in ti®ATAsegment, if necessary):

global _j

j dw O

To access a C array, you need to know the size of the components of the array. For exameables

are two bytes long, so if a C program declares an arrayt @§10] , You can accesa[3] by coding

mov ax,[_a+6] . (The byte offset 6 is obtained by multiplying the desired array index, 3, by the size of the
array element, 2.) The sizes of the C base types in 16—bit compilers areharfqr2 forshort andint , 4
forlong andfloat , and 8 fordouble .

To access a C data structure, you need to know the offset from the base of the structure to the field you are
interested in. You can either do this by converting the C structure definition into a NASM structure definition
(usingSTRUGQ, or by calculating the one offset and using just that.

109

110

To do either of these, you should read your C compiler's manual to find out how it organizes data structures.
NASM gives no special alignment to structure members in its 8WRUCmacro, so you have to specify
alignment yourself if the C compiler generates it. Typically, you might find that a structure like

struct {

char c;

int i;
} foo;
might be four bytes long rather than three, sinceirthe field would be aligned to a two—byte boundary.
However, this sort of feature tends to be a configurable option in the C compiler, either using command-line
options orfpragma lines, so you have to find out how your own compiler does it.

8.4.5 c1l6.mac : Helper Macros for the 16-bit C Interface

Included in the NASM archives, in tmeisc directory, is a filecl6.mac of macros. It defines three macros:
proc , arg andendproc . These are intended to be used for C-style procedure definitions, and they
automate a lot of the work involved in keeping track of the calling convention.

(An alternative, TASM compatible form afrg is also now built into NASM'’s preprocessor. See section 4.8
for details.)

An example of an assembly function using the macro set is given here:

proc _nearproc

%% arg

%$] arg
mov ax,[bp + %$i]
mov bx,[bp + %$j]
add ax,[bx]

endproc

This defines nearproc to be a procedure taking two arguments, the firsa6 integer and the secorjd (
a pointer to an integer. It returns *j

Note that thearg macro has aBQUas the first line of its expansion, and since the label before the macro call
gets prepended to the first line of the expanded macrd @tewvorks, defining%$i to be an offset fronBP.

A context-local variable is used, local to the context pushed byithe macro and popped by the
endproc macro, so that the same argument name can be used in later procedures. Of course, lyaedon't
to do that.

The macro set produces code for near functions (tiny, small and compact-model code) by default. You can
have it generate far functions (medium, large and huge-model code) by means of coding
%define FARCODE . This changes the kind of return instruction generateenofpproc , and also changes

the starting point for the argument offsets. The macro set contains no intrinsic dependency on whether data
pointers are far or not.

arg can take an optional parameter, giving the size of the argument. If no size is given, 2 is assumed, since it
is likely that many function parameters will be of type .

The large—-model equivalent of the above function would look like this:

%define FARCODE

proc _farproc

%% arg
%% arg 4

mov ax,[bp + %$i]
mov bx,[bp + %$j]
mov es,[bp + %$j + 2]
add ax,[bx]

endproc

This makes use of the argument to #rg macro to define a parameter of size 4, becausenow a far
pointer. When we load froin, we must load a segment and an offset.

8.5

Interfacing to Borland Pascal Programs

Interfacing to Borland Pascal programs is similar in concept to interfacing to 16-bit C programs. The
differences are:

The leading underscore required for interfacing to C programs is not required for Pascal.

The memory model is always large: functions are far, data pointers are far, and no data item can be more
than 64K long. (Actually, some functions are near, but only those functions that are local to a Pascal unit
and never called from outside it. All assembly functions that Pascal calls, and all Pascal functions that
assembly routines are able to call, are far.) However, all static data declared in a Pascal program goes into
the default data segment, which is the one whose segment address wil®wlmen control is passed to

your assembly code. The only things that do not live in the default data segment are local variables (they
live in the stack segment) and dynamically allocated variables. Alpdaiters however, are far.

The function calling convention is different — described below.
Some data types, such as strings, are stored differently.

There are restrictions on the segment names you are allowed to use — Borland Pascal will ignore code or
data declared in a segment it doesn’t like the name of. The restrictions are described below.

8.5.1 The Pascal Calling Convention

The 16-bit Pascal calling convention is as follows. In the following description, the waltdsandcallee
are used to denote the function doing the calling and the function which gets called.

The caller pushes the function’s parameters on the stack, one after another, in normal order (left to right, so
that the first argument specified to the function is pushed first).

The caller then executes a f2ALL instruction to pass control to the callee.

The callee receives control, and typically (although this is not actually necessary, in functions which do not
need to access their parameters) starts by saving the vaéieinnBP so as to be able to uB® as a base
pointer to find its parameters on the stack. However, the caller was probably doing this too, so part of the
calling convention states thBP must be preserved by any function. Hence the callee, if it is going to set
up BP as a frame pointer, must push the previous value first.

111

112

« The callee may then access its parameters relatBE.tdhe word afBP] holds the previous value B8P
as it was pushed. The next word[B#®+2] , holds the offset part of the return address, and the next one at
[BP+4] the segment part. The parameters begi[BRt-6] . The rightmost parameter of the function,
since it was pushed last, is accessible at this offset BBthe others follow, at successively greater
offsets.

« The callee may also wish to decre&®further, so as to allocate space on the stack for local variables,
which will then be accessible at negative offsets fBin

e The callee, if it wishes to return a value to the caller, should leave the vale, iAX or DX:AX
depending on the size of the value. Floating—point results are returr@@0inResults of typeReal
(Borland’'s own custom floating—point data type, not handled directly by the FPU) are returned in
DX:BX:AX. To return a result of typString , the caller pushes a pointer to a temporary string before
pushing the parameters, and the callee places the returned string value at that location. The pointer is not a
parameter, and should not be removed from the stack EMEinstruction.

« Once the callee has finished processing, it rest8ReBom BP if it had allocated local stack space, then
pops the previous value @&P, and returns VieRETFE It uses the form oRETF with an immediate
parameter, giving the number of bytes taken up by the parameters on the stack. This causes the parameter:
to be removed from the stack as a side effect of the return instruction.

* When the caller regains control from the callee, the function parameters have already been removed from
the stack, so it needs to do nothing further.

Thus, you would define a function in Pascal style, taking lwweger —type parameters, in the following
way:

global myfunc

myfunc: push bp

mov bp,sp

sub sp,0x40 ; 64 bytes of local stack space
mov bx,[bp+8] ; first parameter to function
mov bx,[bp+6] ; second parameter to function

; some more code

mov sp,bp ; undo "sub sp,0x40" above
pop bp
retf 4 ; total size of params is 4

At the other end of the process, to call a Pascal function from your assembly code, you would do something
like this:

extern SomeFunc
; and then, further down...

push word seg mystring ; Now push the segment, and...
push word mystring ; ... Offset of "mystring"

push word [myint] ; one of my variables

call far SomeFunc

This is equivalent to the Pascal code

procedure SomeFunc(String: PChar; Int: Integer);
SomeFunc(@mystring, myint);

8.5.2 Borland Pascal Segment Name Restrictions

Since Borland Pascal’s internal unit file format is completely different f@RJ, it only makes a very
sketchy job of actually reading and understanding the various information contained i®BJé&& when it

links that in. Therefore an object file intended to be linked to a Pascal program must obey a number of
restrictions:

« Procedures and functions must be in a segment whose name IEHDEBICSEG or something ending in
_TEXT.

« initialized data must be in a segment whose name is €A_ISTor something ending iNDATA
< Uninitialized data must be in a segment whose name is &¥EA DSEG or something ending inBSS.

« Any other segments in the object file are completely ignde&IDURIirectives and segment attributes are
also ignored.

8.5.3 Usingcl6.mac With Pascal Programs

Thecl6.mac macro package, described in section 8.4.5, can also be used to simplify writing functions to be
called from Pascal programs, if you cdodbelefine PASCAL . This definition ensures that functions are far
(it implies FARCODE and also causes procedure return instructions to be generated with an operand.

Defining PASCALdoes not change the code which calculates the argument offsets; you must declare your
function’s arguments in reverse order. For example:

%define PASCAL
proc _pascalproc

%$] arg4

%% arg
mov ax,[bp + %$i]
mov bx,[bp + %$j]
mov es,[bp + %$j + 2]
add ax,[bx]

endproc

This defines the same routine, conceptually, as the example in section 8.4.5: it defines a function taking two
arguments, an integer and a pointer to an integer, which returns the sum of the integer and the contents of the
pointer. The only difference between this code and the large-model C version FAB@ALis defined

instead oFARCODEand that the arguments are declared in reverse order.

113

114

Chapter 9: Writing 32—-bit Code (Unix, Win32, DJGPP)

This chapter attempts to cover some of the common issues involved when writing 32-bit code, to run under
Win32 or Unix, or to be linked with C code generated by a Unix—style C compiler such as DJGPP. It covers
how to write assembly code to interface with 32-hit C routines, and how to write position-independent code
for shared libraries.

Almost all 32-bit code, and in particular all code running undé@m32, DIJGPPor any of the PC Unix

variants, runs iflat memory model. This means that the segment registers and paging have already been set
up to give you the same 32-bit 4Gb address space no matter what segment you work relative to, and that you
should ignore all segment registers completely. When writing flat—-model application code, you never need to
use a segment override or modify any segment register, and the code—section addresses yoAldaasdo

JMP live in the same address space as the data—section addresses you access your variables by and th
stack—section addresses you access local variables and procedure parameters by. Every address is 32 bits lon
and contains only an offset part.

9.1 Interfacing to 32-bit C Programs

A lot of the discussion in section 8.4, about interfacing to 16-bit C programs, still applies when working in 32
bits. The absence of memory models or segmentation worries simplifies things a lot.

9.1.1 External Symbol Names

Most 32-hit C compilers share the convention used by 16-bit compilers, that the names of all global symbols
(functions or data) they define are formed by prefixing an underscore to the name as it appears in the C
program. However, not all of them do: tB&F specification states that C symbols mimt have a leading
underscore on their assembly—language names.

The older Linuxa.out C compiler, allWin32 compilers,DJGPR andNetBSD andFreeBSD, all use the
leading underscore; for these compilers, the mamestern andcglobal , as given in section 8.4.1, will
still work. ForELF, though, the leading underscore should not be used.

See also section 2.1.27.

9.1.2 Function Definitions and Function Calls

The C calling convention in 32-bit programs is as follows. In the following description, the eadietsand
calleeare used to denote the function doing the calling and the function which gets called.

« The caller pushes the function’s parameters on the stack, one after another, in reverse order (right to left, so
that the first argument specified to the function is pushed last).

« The caller then executes a n€&LL instruction to pass control to the callee.

« The callee receives control, and typically (although this is not actually necessary, in functions which do not
need to access their parameters) starts by saving the vdligPaf EBP so as to be able to uEBPas a
base pointer to find its parameters on the stack. However, the caller was probably doing this too, so part of
the calling convention states tHaBP must be preserved by any C function. Hence the callee, if it is going
to set ugEEBP as a frame pointer, must push the previous value first.

e The callee may then access its parameters relatieBk The doubleword §EBP] holds the previous
value of EBP as it was pushed; the next doubleword[EBP+4] , holds the return address, pushed
implicitly by CALL. The parameters start after that[EBP+8] . The leftmost parameter of the function,
since it was pushed last, is accessible at this offset EBR the others follow, at successively greater
offsets. Thus, in a function such pgntf ~ which takes a variable number of parameters, the pushing of
the parameters in reverse order means that the function knows where to find its first parameter, which tells
it the number and type of the remaining ones.

« The callee may also wish to decre&®P further, so as to allocate space on the stack for local variables,
which will then be accessible at negative offsets fEBR.

« The callee, if it wishes to return a value to the caller, should leave the vallie AX or EAX depending
on the size of the value. Floating—point results are typically return®din

« Once the callee has finished processing, it reste8&#from EBPif it had allocated local stack space, then
pops the previous value BBP, and returns viRET (equivalently RETN.

« When the caller regains control from the callee, the function parameters are still on the stack, so it typically
adds an immediate constant ESP to remove them (instead of executing a number of JROP
instructions). Thus, if a function is accidentally called with the wrong number of parameters due to a
prototype mismatch, the stack will still be returned to a sensible state since the callerkivafnisnow
many parameters it pushed, does the removing.

There is an alternative calling convention used by Win32 programs for Windows API calls, and also for
functions calledby the Windows APl such as window procedures: they follow what Microsoft calls the
__stdcall convention. This is slightly closer to the Pascal convention, in that the callee clears the stack by
passing a parameter to tRET instruction. However, the parameters are still pushed in right-to-left order.

Thus, you would define a function in C style in the following way:

global _myfunc

_myfunc:
push ebp
mov ebp,esp
sub esp,0x40 ; 64 bytes of local stack space

mov ebx,[ebp+8] ; first parameter to function
; some more code

leave ; mov esp,ebp / pop ebp
ret

At the other end of the process, to call a C function from your assembly code, you would do something like
this:

extern _printf
; and then, further down...
push dword [myint] ; one of my integer variables

push dword mystring ; pointer into my data segment
call _printf

115

116

add esp,byte 8 ;‘byte’ saves space
; then those data items...
segment _DATA

myint dd 1234
mystring db 'This number —> %d <- should be 1234',10,0
This piece of code is the assembly equivalent of the C code

int myint = 1234;
printf("This number —> %d <- should be 1234\n", myint);

9.1.3 Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only declare the
names assLOBALor EXTERN (Again, the names require leading underscores, as stated in section 9.1.1.)
Thus, a C variable declarediasi can be accessed from assembler as

extern _i

mov eax,[_i]
And to declare your own integer variable which C programs can accesdeas int | , you do this
(making sure you are assembling in ti®ATAsegment, if necessary):

global _j
_j ddo

To access a C array, you need to know the size of the components of the array. For edxameables

are four bytes long, so if a C program declares an arrayt @10] , you can accesa[3] by coding

mov ax,[_a+12] . (The byte offset 12 is obtained by multiplying the desired array index, 3, by the size of
the array element, 4.) The sizes of the C base types in 32—bit compilers areharfor2 for short , 4 for

int ,long andfloat , and 8 fodouble . Pointers, being 32-bit addresses, are also 4 bytes long.

To access a C data structure, you need to know the offset from the base of the structure to the field you are
interested in. You can either do this by converting the C structure definition into a NASM structure definition
(usingSTRUGQ, or by calculating the one offset and using just that.

To do either of these, you should read your C compiler's manual to find out how it organizes data structures.
NASM gives no special alignment to structure members in its 8WRUCmacro, so you have to specify
alignment yourself if the C compiler generates it. Typically, you might find that a structure like

struct {

char c;

int i;
} foo;
might be eight bytes long rather than five, sinceittte field would be aligned to a four—byte boundary.
However, this sort of feature is sometimes a configurable option in the C compiler, either using
command-line options éfpragma lines, so you have to find out how your own compiler does it.

9.1.4 c32.mac : Helper Macros for the 32-bit C Interface

Included in the NASM archives, in tmeisc directory, is a filec32.mac of macros. It defines three macros:
proc , arg andendproc . These are intended to be used for C-style procedure definitions, and they
automate a lot of the work involved in keeping track of the calling convention.

An example of an assembly function using the macro set is given here:

proc _proc32

%% arg

%$] arg
mov eax,[ebp + %3$i]
mov ebx,[ebp + %3]
add eax,[ebx]

endproc

This defines proc32 to be a procedure taking two arguments, the firstaf integer and the secorjd) @
pointer to an integer. It returing *j

Note that thearg macro has aBQUas the first line of its expansion, and since the label before the macro call
gets prepended to the first line of the expanded macrd @tewvorks, defining%$i to be an offset fronBP.

A context-local variable is used, local to the context pushed byithe macro and popped by the
endproc macro, so that the same argument name can be used in later procedures. Of course, lyaedon't
to do that.

arg can take an optional parameter, giving the size of the argument. If no size is given, 4 is assumed, since it
is likely that many function parameters will be of type or pointers.

9.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries

ELF replaced the oldera.out object file format under Linux because it contains support for
position—-independent code (PIC), which makes writing shared libraries much easier. NASM supidtEs the
position—-independent code features, so you can write LEhixshared libraries in NASM.

NetBSD, and its close cousins FreeBSD and OpenBSD, take a different approach by hacking PIC support into
thea.out format. NASM supports this as tl@utb output format, so you can write BSD shared libraries
in NASM too.

The operating system loads a PIC shared library by memory—mapping the library file at an arbitrarily chosen
point in the address space of the running process. The contents of the library’s code section must therefore not
depend on where it is loaded in memory.

Therefore, you cannot get at your variables by writing code like this:
mov eax,[myvar] ; WRONG

Instead, the linker provides an area of memory calledlttzal offset tableor GOT; the GOT is situated at a
constant distance from your library’s code, so if you can find out where your library is loaded (which is
typically done using £ALL andPOPcombination), you can obtain the address of the GOT, and you can then
load the addresses of your variables out of linker—generated entries in the GOT.

The data section of a PIC shared library does not have these restrictions: since the data section is writable, it
has to be copied into memory anyway rather than just paged in from the library file, so as long as it's being

117

118

copied it can be relocated too. So you can put ordinary types of relocation in the data section without too
much worry (but see section 9.2.4 for a caveat).

9.2.1 Obtaining the Address of the GOT

Each code module in your shared library should define the GOT as an external symbol:

extern _GLOBAL_OFFSET_TABLE_ ;in ELF
extern __GLOBAL_OFFSET_TABLE_ :in BSD a.out

At the beginning of any function in your shared library which plans to access your data or BSS sections, you
must first calculate the address of the GOT. This is typically done by writing the function in this form:

func: push ebp
mov ebp,esp
push ebx
call .get GOT
.get_GOT:
pop ebx
add ebx, GLOBAL OFFSET _TABLE_+$$-.get GOT wrt ..gotpc

; the function body comes here

mov ebx,[ebp—-4]
mov esp,ebp
pop ebp

ret

(For BSD, again, the symboGLOBAL_OFFSET_TABLEequires a second leading underscore.)

The first two lines of this function are simply the standard C prologue to set up a stack frame, and the last
three lines are standard C function epilogue. The third line, and the fourth to last line, save and restore the
EBXregister, because PIC shared libraries use this register to store the address of the GOT.

The interesting bit is th€ALL instruction and the following two lines. TH@ALL and POP combination
obtains the address of the labget GOT , without having to know in advance where the program was
loaded (since th€ALL instruction is encoded relative to the current position). ADBinstruction makes use

of one of the special PIC relocation types: GOTPC relocation. WithViR& ..gotpc qualifier specified,

the symbol referenced (her&6LOBAL_OFFSET_TABLE, the special symbol assigned to the GOT) is given
as an offset from the beginning of the section. (Actudly encodes it as the offset from the operand field
of the ADDinstruction, but NASM simplifies this deliberately, so you do things the same way foEbBth
andBSD) So the instruction theaddsthe beginning of the section, to get the real address of the GOT, and
subtracts the value afjet GOT which it knows is inEBX Therefore, by the time that instruction has
finished,EBXcontains the address of the GOT.

If you didn’t follow that, don’t worry: it's never necessary to obtain the address of the GOT by any other
means, so you can put those three instructions into a macro and safely ignore them:

%macro get_GOT O

call %%getgot
%%getgot:
pop ebx
add ebx, GLOBAL OFFSET_TABLE_+$$-%%getgot wrt ..gotpc

%endmacro

9.2.2 Finding Your Local Data Items

Having got the GOT, you can then use it to obtain the addresses of your data items. Most variables will reside
in the sections you have declared; they can be accessed usingpthi speciaWRTtype. The way this
works is like this:

lea eax,[ebx+myvar wrt ..gotoff]

The expressiomyvar wrt ..gotoff is calculated, when the shared library is linked, to be the offset to
the local variablenyvar from the beginning of the GOT. Therefore, adding EBX as above will place the
real address ahyvar in EAX

If you declare variables #&LOBALwithout specifying a size for them, they are shared between code modules

in the library, but do not get exported from the library to the program that loaded it. They will still be in your
ordinary data and BSS sections, so you can access them in the same way as local variables, using the abov:
..gotoff mechanism.

Note that due to a peculiarity of the way B@@ut format handles this relocation type, there must be at
least one non-local symbol in the same section as the address you're trying to access.

9.2.3 Finding External and Common Data Items

If your library needs to get at an external variable (external tdiitey, not just to one of the modules
within it), you must use thegot type to get at it. Thegot type, instead of giving you the offset from
the GOT base to the variable, gives you the offset from the GOT base to arf@@dontaining the address

of the variable. The linker will set up this GOT entry when it builds the library, and the dynamic linker will
place the correct address in it at load time. So to obtain the address of an external exdriable in EAX

you would code

mov eax,[ebx+extvar wrt ..got]

This loads the address ektvar out of an entry in the GOT. The linker, when it builds the shared library,
collects together every relocation of typgot , and builds the GOT so as to ensure it has every necessary
entry present.

Common variables must also be accessed in this way.

9.2.4 Exporting Symbols to the Library User

If you want to export symbols to the user of the library, you have to declare whether they are functions or
data, and if they are data, you have to give the size of the data item. This is because the dynamic linker has to
build procedure linkage table entries for any exported functions, and also moves exported data items away
from the library’s data section in which they were declared.

So to export a function to users of the library, you must use

global func:function ; declare it as a function
func: push ebp

; etc.

And to export a data item such as an array, you would have to code

119

global array:data array.end-array ; give the size too
array: resd 128
.end:

Be careful: If you export a variable to the library user, by declaring @la8BALand supplying a size, the
variable will end up living in the data section of the main program, rather than in your library’s data section,
where you declared it. So you will have to access your own global variable witgdhe mechanism rather
than..gotoff |, as if it were external (which, effectively, it has become).

Equally, if you need to store the address of an exported global in one of your data sections, you can’t do it by
means of the standard sort of code:

dataptr: dd global_data item ; WRONG

NASM will interpret this code as an ordinary relocation, in whytdbal data_item is merely an offset
from the beginning of thedata section (or whatever); so this reference will end up pointing at your data
section instead of at the exported global which resides elsewhere.

Instead of the above code, then, you must write
dataptr: dd global_data_item wrt ..sym

which makes use of the specidRTtype..sym to instruct NASM to search the symbol table for a particular
symbol at that address, rather than just relocating by section base.

Either method will work for functions: referring to one of your functions by means of
funcptr: dd my_function

will give the user the address of the code you wrote, whereas

funcptr: dd my_function wrt ..sym

will give the address of the procedure linkage table for the function, which is where the calling program will
believethe function lives. Either address is a valid way to call the function.

9.2.5 Calling Procedures Outside the Library

Calling procedures outside your shared library has to be done by meaprooédure linkage tabjeor PLT.

The PLT is placed at a known offset from where the library is loaded, so the library code can make calls to the
PLT in a position—independent way. Within the PLT there is code to jump to offsets contained in the GOT, so
function calls to other shared libraries or to routines in the main program can be transparently passed off to
their real destinations.

To call an external routine, you must use another special PIC relocationNig¥e,..plt . This is much
easier than the GOT-based ones: you simply replace calls su@ALasprintf with the PLT-relative
versionCALL printf WRT ..plt

9.2.6 Generating the Library File

Having written some code modules and assembled them files, you then generate your shared library
with a command such as

Id —shared -o library.so modulel.0 module2.0 # for ELF
Id —Bshareable —o library.so modulel.o0 module2.0 # for BSD

120

For ELF, if your shared library is going to reside in system directories sutlsrdgh or/lib ,itis
usually worth using the-soname flag to the linker, to store the final library file name, with a version
number, into the library:

Id —shared —soname library.so.1 —o library.s0.1.2 *.0

You would then copylibrary.so.1.2 into the library directory, and creatirary.so.1 as a
symbolic link to it.

121

122

Chapter 10: Mixing 16 and 32 Bit Code

This chapter tries to cover some of the issues, largely related to unusual forms of addressing and jump
instructions, encountered when writing operating system code such as protected—mode initialisation routines,
which require code that operates in mixed segment sizes, such as code in a 16-bit segment trying to modify
data in a 32-hit one, or jumps between different-size segments.

10.1 Mixed-Size Jumps

The most common form of mixed-size instruction is the one used when writing a 32-bit OS: having done
your setup in 16-bit mode, such as loading the kernel, you then have to boot it by switching into protected
mode and jumping to the 32-bit kernel start address. In a fully 32—bit OS, this tends tohly thixed-size
instruction you need, since everything before it can be done in pure 16-bit code, and everything after it can be
pure 32-bit.

This jump must specify a 48-bit far address, since the target segment is a 32-bit one. However, it must be
assembled in a 16-bit segment, so just coding, for example,

jmp 0x1234:0x56789ABC ; wrong!

will not work, since the offset part of the address will be truncate@k®A\BC and the jump will be an
ordinary 16-bit far one.

The Linux kernel setup code gets round the inabilitgs6 to generate the required instruction by coding it
manually, usingDB instructions. NASM can go one better than that, by actually generating the right
instruction itself. Here’s how to do it right:

jmp dword 0x1234:0x56789ABC ; right

The DWORrefix (strictly speaking, it should conaéter the colon, since it is declaring thésetfield to be a
doubleword; but NASM will accept either form, since both are unambiguous) forces the offset part to be
treated as far, in the assumption that you are deliberately writing a jump from a 16-bit segment to a 32-hit
one.

You can do the reverse operation, jumping from a 32-bit segment to a 16-bit one, by meand/©Rbe
prefix:

jmp word 0x8765:0x4321 ; 32 to 16 bit

If the WORIDprefix is specified in 16—bit mode, or tVORPrefix in 32-bit mode, they will be ignored,
since each is explicitly forcing NASM into a mode it was in anyway.

10.2 Addressing Between Different-Size Segments

If your OS is mixed 16 and 32-bit, or if you are writing a DOS extender, you are likely to have to deal with
some 16-bit segments and some 32-bit ones. At some point, you will probably end up writing code in a
16-bit segment which has to access data in a 32-bit segment, or vice versa.

If the data you are trying to access in a 32-bit segment lies within the first 64K of the segment, you may be
able to get away with using an ordinary 16-bit addressing operation for the purpose; but sooner or later, you
will want to do 32-bit addressing from 16—bit mode.

The easiest way to do this is to make sure you use a register for the address, since any effective address
containing a 32-bit register is forced to be a 32-bit address. So you can do

mov eax,offset_into_32_bit_segment_specified_by fs
mov dword [fs:eax],0x11223344

This is fine, but slightly cumbersome (since it wastes an instruction and a register) if you already know the
precise offset you are aiming at. The x86 architecture does allow 32-hit effective addresses to specify nothing
but a 4-byte offset, so why shouldn't NASM be able to generate the best instruction for the purpose?

It can. As in section 10.1, you need only prefix the address witb\t@RReyword, and it will be forced to
be a 32-bit address:

mov dword [fs:dword my_offset],0x11223344

Also as in section 10.1, NASM is not fussy about whetheriORrefix comes before or after the
segment override, so arguably a nicer-looking way to code the above instruction is

mov dword [dword fs:my_offset],0x11223344

Don't confuse thddWORIrefix outsidethe square brackets, which controls the size of the data stored at the
address, with the orieside the square brackets which controls the length of the address itself. The two can
quite easily be different:

mov word [dword 0x12345678],0x9ABC
This moves 16 bits of data to an address specified by a 32-bit offset.

You can also speciffWORD@r DWORDPrefixes along with th&AR prefix to indirect far jumps or calls. For
example:

call dword far [fs:word 0x4321]

This instruction contains an address specified by a 16-bit offset; it loads a 48-bit far pointer from that (16-bit
segment and 32-bit offset), and calls that address.

10.3 Other Mixed-Size Instructions

The other way you might want to access data might be using the string instruc@@Sx STOSxand so
on) or theXLATB instruction. These instructions, since they take no parameters, might seem to have no easy
way to make them perform 32-bit addressing when assembled in a 16—bit segment.

This is the purpose of NASM'al6, a32 anda64 prefixes. If you are codingODSBIn a 16-bit segment
but it is supposed to be accessing a string in a 32—-bit segment, you should load the desired add®&iss into
and then code

a32 lodsb

The prefix forces the addressing size to 32 bits, meaningLBBSBloads from[DS:ESI] instead of
[DS:SI] . To access a string in a 16-bit segment when coding in a 32-bit one, the correspbfdmgfix
can be used.

Theal6, a32 andab64 prefixes can be applied to any instruction in NASM's instruction table, but most of
them can generate all the useful forms without them. The prefixes are necessary only for instructions with
implicit addressingCMPSx SCASx LODSx STOSx MOVSxINSx , OUTSx andXLATB. Also, the various

push and pop instructionBSHAandPOPFas well as the more uslRUSHandPOB can accepal6, a32

123

124

or a64 prefixes to force a particular one P, ESP or RSPto be used as a stack pointer, in case the stack
segment in use is a different size from the code segment.

PUSHandPOR when applied to segment registers in 32—-bit mode, also have the slightly odd behaviour that
they push and pop 4 bytes at a time, of which the top two are ignored and the bottom two give the value of the
segment register being manipulated. To force the 16-bit behaviour of segment-register push and pop
instructions, you can use the operand-size puoeféx:

016 push ss
016 push ds

This code saves a doubleword of stack space by fitting two segment registers into the space which would
normally be consumed by pushing one.

(You can also use the32 prefix to force the 32-bit behaviour when in 16-bit mode, but this seems less
useful.)

Chapter 11: Writing 64—bit Code (Unix, Win64)

This chapter attempts to cover some of the common issues involved when writing 64-bit code, to run under
Win64 or Unix. It covers how to write assembly code to interface with 64-hit C routines, and how to write
position—-independent code for shared libraries.

All 64-bit code uses a flat memory model, since segmentation is not available in 64-bit mode. The one
exception is th&S andGSregisters, which still add their bases.

Position independence in 64-bit mode is significantly simpler, since the processor siRipertslative
addressing directly; see tiREL keyword (section 3.3). On most 64-bit platforms, it is probably desirable to
make that the default, using the directid FAULT REL (section 6.2).

64-bit programming is relatively similar to 32-bit programming, but of course pointers are 64 bits long;
additionally, all existing platforms pass arguments in registers rather than on the stack. Furthermore, 64-bit
platforms use SSE2 by default for floating point. Please see the ABI documentation for your platform.

64-hit platforms differ in the sizes of the fundamental datatypes, not just from 32-bit platforms but from each
other. If a specific size data type is desired, it is probably best to use the types defined in the Standard C
headekinttypes.h>

In 64-bit mode, the default instruction size is still 32 bits. When loading a value into a 32-bit register (but not
an 8- or 16-bit register), the upper 32 bits of the corresponding 64-bit register are set to zero.

11.1 Register Names in 64-bit Mode

NASM uses the following names for general-purpose registers in 64-bit mode, for 8-, 16—, 32— and 64-hit
references, respecitively:

AL/AH, CL/CH, DL/DH, BL/BH, SPL, BPL, SIL, DIL, R8B-R15B
AX, CX, DX, BX, SP, BP, SI, DI, RBW-R15W

EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, R8D-R15D

RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8-R15

This is consistent with the AMD documentation and most other assemblers. The Intel documentation,
however, uses the namB8L—-R15L for 8-bit references to the higher registers. It is possible to use those
names by definiting them as macros; similarly, if one wants to use numeric names for the low 8 registers,
define them as macros. The standard macro pactaigg (see section 5.1) can be used for this purpose.

11.2 Immediates and Displacements in 64—bit Mode

In 64-bit mode, immediates and displacements are generally only 32 bits wide. NASM will therefore truncate
most displacements and immediates to 32 bits.

The only instruction which takes a full 64-bit immediate is:
MOV reg64,imm64

NASM will produce this instruction whenever the programmer h468/with an immediate into a 64-bit
register. If this is not desirable, simply specify the equivalent 32-hit register, which will be automatically
zero—extended by the processor, or specify the immedi&i®V&RD

125

126

mov rax,foo ; 64—bit immediate

mov rax,qword foo ; (identical)
mov eax,foo ; 32-bit immediate, zero—extended
mov rax,dword foo ; 32-bit immediate, sign—extended

The length of these instructions are 10, 5 and 7 bytes, respectively.

The only instructions which take a full 64-kisplacements loading or storing, usinglOV AL, AX, EAX or

RAX (but no other registers) to an absolute 64-bit address. Since this is a relatively rarely used instruction
(64-bit code generally uses relative addressing), the programmer has to explicitly declare the displacement
size aQWORD

default abs
mov eax,[foo] ; 32-bit absolute disp, sign—extended
mov eax,[a32 foo] ; 32-bit absolute disp, zero—extended

mov eax,[gword foo] ; 64-bit absolute disp

default rel
mov eax,[foo] ; 32-bit relative disp
mov eax,[a32 foo] ; d:0, address truncated to 32 bits(!)

mov eax,[gword foo] ; error
mov eax,[abs gword foo] ; 64-bit absolute disp

A sign—extended absolute displacement can access from -2 GB to +2 GB; a zero—extended absolute
displacement can access from 0 to 4 GB.

11.3 Interfacing to 64-bit C Programs (Unix)

On Unix, the 64-bit ABI is defined by the document:
http://www.nasm.us/links/unix64abi

Although written for AT&T-syntax assembly, the concepts apply equally well for NASM-style assembly.
What follows is a simplified summary.

The first six integer arguments (from the left) are passé&Dh RSI, RDX RCX R8, andR9, in that order.
Additional integer arguments are passed on the stack. These registeRAKIERL0 andR11 are destroyed
by function calls, and thus are available for use by the function without saving.

Integer return values are passe®#XandRDX in that order.

Floating point is done using SSE registers, exceploftg double . Floating—point arguments are passed
in XMMQOto XMM7 return isXMMGandXMM1long double are passed on the stack, and returnegiTi@
andST1.

All SSE and x87 registers are destroyed by function calls.

On 64-bit Unix,long is 64 bits.

Integer and SSE register arguments are counted separately, so for the case of
void foo(long a, double b, int c)

a is passed iRDI, b in XMMOQandc in ESI.

http://www.nasm.us/links/unix64abi

11.4 Interfacing to 64-bit C Programs (Win64)
The Win64 ABI is described at:
http://www.nasm.us/links/win64abi
What follows is a simplified summary.

The first four integer arguments are passedR@X RDX R8 and R9, in that order. Additional integer
arguments are passed on the stack. These registerR4¥IR10 andR11 are destroyed by function calls,
and thus are available for use by the function without saving.

Integer return values are passe@iXonly.

Floating point is done using SSE registers, exceploftg double . Floating—point arguments are passed
in XMM@Qo XMM3return isXMMGonly.

On Win64,long is 32 bitsjong long or_int64 is 64 bits.

Integer and SSE register arguments are counted together, so for the case of
void foo(long long a, double b, int c)

a is passed iRCX b in XMM1andc in R8D.

127

http://www.nasm.us/links/win64abi

Chapter 12: Troubleshooting

This chapter describes some of the common problems that users have been known to encounter with NASM,
and answers them. It also gives instructions for reporting bugs in NASM if you find a difficulty that isn't
listed here.

12.1 Common Problems

12.1.1 NASM Generates Inefficient Code

We sometimes get ‘bug’ reports about NASM generating inefficient, or even ‘wrong’, code on instructions
such asADD ESP,8. This is a deliberate design feature, connected to predictability of output: NASM, on
seeingADD ESP,8, will generate the form of the instruction which leaves room for a 32-bit offset. You
need to codADD ESP,BYTE 8 if you want the space—efficient form of the instruction. This isn't a bug, it's
user error: if you prefer to have NASM produce the more efficient code automatically enable optimization
with the—O option (see section 2.1.22).

12.1.2 My Jumps are Out of Range

Similarly, people complain that when they issue conditional jumps (whicBR@RTby default) that try to
jump too far, NASM reports ‘short jump out of range’ instead of making the jumps longer.

This, again, is partly a predictability issue, but in fact has a more practical reason as well. NASM has no
means of being told what type of processor the code it is generating will be run on; so it cannot decide for
itself that it should generafiec NEAR type instructions, because it doesn’t know that it's working for a 386

or above. Alternatively, it could replace the out-of-range sBMIE instruction with a very shorfE
instruction that jumps over @MP NEAR this is a sensible solution for processors below a 386, but hardly
efficient on processors which have good branch predietmitould have usedNE NEAR instead. So, once

again, it's up to the user, not the assembler, to decide what instructions should be generated. See section
2.1.22.

12.1.3 ORGDoesn’t Work

128

People writing boot sector programs in thie format often complain thadRGdoesn’t work the way they’d
like: in order to place thexAA55 signature word at the end of a 512-byte boot sector, people who are used
to MASM tend to code

ORG 0
; some boot sector code

ORG 510
DW OxAA55

This is not the intended use of t&RGdirective in NASM, and will not work. The correct way to solve this
problem in NASM is to use thHEIMES directive, like this:

ORG O

; some boot sector code

TIMES 510—($-$$) DB 0
DW OXAA55

The TIMES directive will insert exactly enough zero bytes into the output to move the assembly point up to
510. This method also has the advantage that if you accidentally fill your boot sector too full, NASM will
catch the problem at assembly time and report it, so you won't end up with a boot sector that you have to
disassemble to find out what's wrong with it.

12.1.4 TIMES Doesn’t Work

The other common problem with the above code is people who writéNHeS line as
TIMES 510-$DB 0

by reasoning thab should be a pure number, just like 510, so the difference between them is also a pure
number and can happily be fedRIMES.

NASM is amodularassembler: the various component parts are designed to be easily separable for re-use, so
they don't exchange information unnecessarily. In consequencejrth@utput format, even though it has

been told by th©RGdirective that thetext section should start at 0, does not pass that information back to
the expression evaluator. So from the evaluator’'s point of \Beisn’'t a pure number: it's an offset from a
section base. Therefore the difference betwkemd 510 is also not a pure number, but involves a section
base. Values involving section bases cannot be passed as argurniévis$o

The solution, as in the previous section, is to codd lKES line in the form
TIMES 510—-($-$3$) DB O

in which$ and$$ are offsets from the same section base, and so their difference is a pure number. This will
solve the problem and generate sensible code.

12.2 Bugs

We have never yet released a version of NASM withkarownbugs. That doesn’t usually stop there being
plenty we didn’'t know about, though. Any that you find should be reported firstly viaudpeacker at
http://www.nasm.us/ (click on "Bug Tracker"), or if that fails then through one of the contacts in
section 1.2.

Please read section 2.2 first, and don’t report the bug if it's listed in there as a deliberate feature. (If you think
the feature is badly thought out, feel free to send us reasons why you think it should be changed, but don't just
send us mail saying ‘This is a bug’ if the documentation says we did it on purpose.) Then read section 12.1,
and don’t bother reporting the bug if it's listed there.

If you do report a bugpleasegive us all of the following information:

« What operating system you’re running NASM under. DOS, Linux, NetBSD, Win16, Win32, VMS (I'd be
impressed), whatever.

e If you're running NASM under DOS or Win32, tell us whether you've compiled your own executable from
the DOS source archive, or whether you were using the standard distribution binaries out of the archive. If
you were using a locally built executable, try to reproduce the problem using one of the standard binaries,
as this will make it easier for us to reproduce your problem prior to fixing it.

129

http://www.nasm.us/

130

Which version of NASM you're using, and exactly how you invoked it. Give us the precise command line,
and the contents of titASMENnvironment variable if any.

Which versions of any supplementary programs you'’re using, and how you invoked them. If the problem
only becomes visible at link time, tell us what linker you're using, what version of it you've got, and the

exact linker command line. If the problem involves linking against object files generated by a compiler, tell
us what compiler, what version, and what command line or options you used. (If you're compiling in an
IDE, please try to reproduce the problem with the command-line version of the compiler.)

If at all possible, send us a NASM source file which exhibits the problem. If this causes copyright
problems (e.g. you can only reproduce the bug in restricted—distribution code) then bear in mind the
following two points: firstly, we guarantee that any source code sent to us for the purposes of debugging
NASM will be usedonly for the purposes of debugging NASM, and that we will delete all our copies of it
as soon as we have found and fixed the bug or bugs in question; and secondly, we wouhdttefes

mailed large chunks of code anyway. The smaller the file, the better. A three-line sample file that does
nothing usefulexcept demonstrate the problem is much easier to work with than a fully fledged
ten—thousand-line program. (Of course, some emorsnly crop up in large files, so this may not be
possible.)

A description of what the problem actuaidy ‘It doesn’t work’ isnot a helpful description! Please describe
exactly what is happening that shouldn’t be, or what isn't happening that should. Examples might be:
‘NASM generates an error message saying Line 3 for an error that's actually on Line 5’; ‘'NASM generates
an error message that | believe it shouldn’t be generating at all’; ‘NASM fails to generate an error message
that | believe itshouldbe generating’; ‘the object file produced from this source code crashes my linker’;
‘the ninth byte of the output file is 66 and | think it should be 77 instead'.

If you believe the output file from NASM to be faulty, send it to us. That allows us to determine whether
our own copy of NASM generates the same file, or whether the problem is related to portability issues
between our development platforms and yours. We can handle binary files mailed to us as MIME
attachments, uuencoded, and even BinHex. Alternatively, we may be able to provide an FTP site you can
upload the suspect files to; but mailing them is easier for us.

Any other information or data files that might be helpful. If, for example, the problem involves NASM
failing to generate an object file while TASM can generate an equivalent file without trouble, then send us
bothobject files, so we can see what TASM is doing differently from us.

Appendix A: Ndisasm

The Netwide Disassembler, NDISASM

A.1 Introduction

The Netwide Disassembler is a small companion program to the Netwide Assembler, NASM. It seemed a
shame to have an x86 assembler, complete with a full instruction table, and not make as much use of it as
possible, so here’s a disassembler which shares the instruction table (and some other bits of code) with NASM.

The Netwide Disassembler does nothing except to produce disassemilirargfsource files. NDISASM
does not have any understanding of object file formatspliigump , and it will not understanBOS .EXE
files like debug will. It just disassembles.

A.2 Getting Started: Installation

See section 1.3 for installation instructions. NDISASM, like NASM, hasa page which you may want
to put somewhere useful, if you are on a Unix system.

A.3 Running NDISASM
To disassemble a file, you will typically use a command of the form
ndisasm —b {16|32|64} filename

NDISASM can disassemble 16—, 32— or 64-bit code equally easily, provided of course that you remember to
specify which it is to work with. If ne-b switch is present, NDISASM works in 16—bit mode by default. The
—u switch (for USE32) also invokes 32-bit mode.

Two more command line options are which reports the version number of NDISASM you are running, and
—h which gives a short summary of command line options.

A.3.1 COM Files: Specifying an Origin

To disassemble BOS .COMfile correctly, a disassembler must assume that the first instruction in the file is
loaded at addres¥x100 , rather than at zero. NDISASM, which assumes by default that any file you give it is
loaded at zero, will therefore need to be informed of this.

The—o option allows you to declare a different origin for the file you are disassembling. Its argument may be
expressed in any of the NASM numeric formats: decimal by default, if it begins$tidr ‘0Ox’ or ends in
‘H it's hex, ifitends in Q it's octal , and if it ends inB' it's binary

Hence, to disassemble@OMfile:
ndisasm —0100h filename.com
will do the trick.

131

A.3.2 Code Following Data: Synchronisation

Suppose you are disassembling a file which contains some data which isn't machine cdtluen ematains

some machine code. NDISASM will faithfully plough through the data section, producing machine
instructions wherever it can (although most of them will look bizarre, and some may have unusual prefixes,
e.g. FS OR AX,0x240A), and generating ‘DB’ instructions ever so often if it's totally stumped. Then it
will reach the code section.

Supposing NDISASM has just finished generating a strange machine instruction from part of the data section,
and its file position is now one bybeforethe beginning of the code section. It's entirely possible that another

spurious instruction will get generated, starting with the final byte of the data section, and then the correct first
instruction in the code section will not be seen because the starting point skipped over it. This isn’t really ideal.

To avoid this, you can specify aynchronisation ' point, or indeed as many synchronisation points as
you like (although NDISASM can only handle 2147483647 sync points internally). The definition of a sync
point is this: NDISASM guarantees to hit sync points exactly during disassembly. If it is thinking about
generating an instruction which would cause it to jump over a sync point, it will discard that instruction and
output a b’ instead. So itwill start disassembly exactly from the sync point, and sowibbusee all the
instructions in your code section.

Sync points are specified using the option: they are measured in terms of the program origin, not the file
position. So if you want to synchronize after 32 bytes.@f@Mfile, you would have to do

ndisasm —0100h —s120h file.com
rather than
ndisasm —0100h —s20h file.com

As stated above, you can specify multiple sync markers if you need to, just by repeats@gtien.

A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation

Suppose you are disassembling the boot sector @O&floppy (maybe it has a virus, and you need to
understand the virus so that you know what kinds of damage it might have done you). Typically, this will
contain aJMP instruction, then some data, then the rest of the code. So there is a very good chance of
NDISASM beingmisalignedwhen the data ends and the code begins. Hence a sync point is needed.

On the other hand, why should you have to specify the sync point manually? What you'd do in order to find
where the sync point would be, surely, would be to readMtinstruction, and then to use its target address
as a sync point. So can NDISASM do that for you?

The answer, of course, is yes: using either of the synonymous switehifsr automatic sync) ori (for

intelligent sync) will enabl@auto-sync mode. Auto—sync mode automatically generates a sync point for

any forward-referring PC-relative jump or call instruction that NDISASM encounters. (Since NDISASM is
one-pass, if it encounters a PC-relative jump whose target has already been processed, there isn't much it car
do about it...)

Only PC-relative jumps are processed, since an absolute jump is either through a register (in which case
NDISASM doesn’t know what the register contains) or involves a segment address (in which case the target
code isn't in the same segment that NDISASM is working in, and so the sync point can’t be placed anywhere
useful).

132

For some kinds of file, this mechanism will automatically put sync points in all the right places, and save you
from having to place any sync points manually. However, it should be stressed that auto—syncrobde is
guaranteed to catch all the sync points, and you may still have to place some manually.

Auto-sync mode doesn’t prevent you from declaring manual sync points: it just adds automatically generated
ones to the ones you provide. It's perfectly feasible to spetifgnd some-s options.

Another caveat with auto—sync mode is that if, by some unpleasant fluke, something in your data section
should disassemble to a PC-relative call or jump instruction, NDISASM may obediently place a sync point in
a totally random place, for example in the middle of one of the instructions in your code section. So you may
end up with a wrong disassembly even if you use auto—sync. Again, there isn't much | can do about this. If
you have problems, you'll have to use manual sync points, or usekthgption (documented below) to
suppress disassembly of the data area.

A.3.4 Other Options

A.4

The —e option skips a header on the file, by ignoring the first N bytes. This means that the heaater is
counted towards the disassembly offset: if you gig&0 —010 , disassembly will start at byte 10 in the file,
and this will be given offset 10, not 20.

The -k option is provided with two comma-separated numeric arguments, the first of which is an assembly
offset and the second is a number of bytes to skip. Witliscount the skipped bytes towards the assembly
offset: its use is to suppress disassembly of a data section which wouldn’t contain anything you wanted to see
anyway.

Bugs and Improvements

There are no known bugs. However, any you find, with patches if possible, should be sent to
nasm-bugs@lists.sourceforge.net , or to the developer’s site attp://www.nasm.us/ and
we'll try to fix them. Feel free to send contributions and new features as well.

133

mailto:nasm-bugs@lists.sourceforge.net
http://www.nasm.us/

Appendix B: Instruction List

B.1 Introduction

The following sections show the instructions which NASM currently supports. For each instruction, there is a
separate entry for each supported addressing mode. The third column shows the processor type in which the
instruction was introduced and, when appropriate, one or more usage flags.

B.1.1 Special instructions...

134

DB
DW
DD
DQ

DT
DO
DY
RESB
RESW
RESD
RESQ
REST
RESO
RESY

imm

8086

B.1.2 Conventional instructions

AAA 8086,NOLONG
AAD 8086,NOLONG
AAD imm 8086,NOLONG
AAM 8086,NOLONG
AAM imm 8086,NOLONG
AAS 8086,NOLONG
ADC mem,reg8 8086,LOCK
ADC reg8,reg8 8086

ADC mem,regl6 8086,LOCK
ADC regl6,regl6 8086

ADC mem,reg32 386,LOCK
ADC reg32,reg32 386

ADC mem,reg64 X64,LOCK
ADC reg64,reg64 X64

ADC reg8,mem 8086

ADC reg8,reg8 8086

ADC regl6,mem 8086

ADC regl6,regl6 8086

ADC reg32,mem 386

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

reg32,reg32
reg64,mem
reg64,reg64
rmi16,imm8
rm32,imm8
rmé64,imm8
reg_al,imm
reg_ax,sbytel6
reg_ax,imm
reg_eax,sbyte32
reg_eax,imm
reg_rax,sbyte64
reg_rax,imm
rm8,imm
rmi16,imm
rm32,imm
rmé64,imm
mem,imm8
mem,imm16
mem,imm32
rm8,imm
mem,reg8
reg8,reg8
mem,reg16
regl6,regl6
mem,reg32
reg32,reg32
mem,reg64
reg64,reg64
reg8,mem
reg8,reg8
regl6,mem
regl6,regl6
reg32,mem
reg32,reg32
reg64,mem
reg64,reg64
rmi16,imm8
rm32,imm8
rmé64,imm8
reg_al,imm
reg_ax,sbytel6
reg_ax,imm
reg_eax,sbyte32
reg_eax,imm
reg_rax,sbyte64
reg_rax,imm
rm8,imm
rmi16,imm

386
X64
X64
8086,LOCK
386,LOCK
X64,LOCK
8086
8086
8086
386
386
X64
X64
8086,LOCK
8086,LOCK
386,LOCK
X64,LOCK
8086,LOCK

8086,LOCK

386,LOCK

8086,LOCK,ND,NOLONG

8086,LOCK
8086
8086,LOCK
8086
386,LOCK
386
X64,LOCK
X64
8086
8086
8086
8086
386
386
X64
X64
8086,LOCK
386,LOCK
X64,LOCK
8086
8086
8086
386
386
X64
X64
8086,LOCK
8086,LOCK

135

136

ADD rm32,imm

ADD rmé64,imm
ADD mem,imm8
ADD mem,imm16
ADD mem,imm32
ADD rm8,imm
AND mem,reg8
AND reg8,reg8
AND mem,regl16
AND regl6,regl6
AND mem,reg32
AND reg32,reg32
AND mem,reg64
AND reg64,reg64
AND reg8,mem
AND reg8,reg8
AND regl6,mem
AND regl6,regl6
AND reg32,mem
AND reg32,reg32
AND reg64,mem
AND reg64,reg64
AND rmi16,imm8
AND rm32,imm8
AND rmé64,imm8
AND reg_al,imm
AND reg_ax,sbytel6
AND reg_ax,imm
AND reg_eax,sbyte32
AND reg_eax,imm
AND reg_rax,sbyte64
AND reg_rax,imm
AND rm8,imm
AND rmi16,imm
AND rm32,imm
AND rmé64,imm
AND mem,imm8
AND mem,imm16
AND mem,imm32
AND rm8,imm
ARPL mem,regl6
ARPL regl6,regl6
BBO_RESET

BB1_RESET

BOUND regl6é,mem
BOUND reg32,mem
BSF reglé,mem
BSF regl6,regl6
BSF reg32,mem

386,LOCK
X64,LOCK
8086,LOCK
8086,LOCK
386,LOCK
8086,LOCK,ND,NOLONG
8086,LOCK
8086
8086,LOCK
8086
386,LOCK
386
X64,LOCK
X64
8086
8086
8086
8086
386
386
X64
X64
8086,LOCK
386,LOCK
X64,LOCK
8086
8086
8086
386
386
X64
X64
8086,LOCK
8086,LOCK
386,LOCK
X64,LOCK
8086,LOCK
8086,LOCK
386,LOCK
8086,LOCK,ND,NOLONG
286,PROT,NOLONG
286,PROT,NOLONG
PENT,CYRIX,ND
PENT,CYRIX,ND
186,NOLONG
386,NOLONG
386
386
386

BSF reg32,reg32

BSF reg64,mem
BSF reg64,reg64
BSR reglé,mem
BSR regl6,regl6
BSR reg32,mem
BSR reg32,reg32
BSR reg64,mem
BSR reg64,reg64
BSWAP reg32
BSWAP reg64

BT mem,regl1l6
BT regl6,regl6
BT mem,reg32
BT reg32,reg32
BT mem,reg64
BT reg64,reg64
BT rml16,imm
BT rm32,imm
BT rmé64,imm
BTC mem,regl6
BTC regl6,regl6
BTC mem,reg32
BTC reg32,reg32
BTC mem,reg64
BTC reg64,reg64
BTC rml16,imm
BTC rm32,imm
BTC rmé64,imm
BTR mem,regl6
BTR regl6,regl6
BTR mem,reg32
BTR reg32,reg32
BTR mem,reg64
BTR reg64,reg64
BTR rml16,imm
BTR rm32,imm
BTR rmé64,imm
BTS mem,regl6
BTS regl6,regl6
BTS mem,reg32
BTS reg32,reg32
BTS mem,reg64
BTS reg64,reg64
BTS rml16,imm
BTS rm32,imm
BTS rmé4,imm
CALL imm

CALL imm|near

386
X64
X64
386
386
386
386
X64
X64
486
X64
386
386
386
386
X64
X64
386
386
X64
386,LOCK
386
386,LOCK
386
X64,LOCK
X64
386,LOCK
386,LOCK
X64,LOCK
386,LOCK
386
386,LOCK
386
X64,LOCK
X64
386,LOCK
386,LOCK
X64,LOCK
386,LOCK
386
386,LOCK
386
X64,LOCK
X64
386,LOCK
386,LOCK
X64,LOCK

8086

8086

138

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CBW
CDQ
CDQE
cLC
CLD
CLGI
cLI
CLTS
cMC
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP

imm|far
imm16
imm216|near
imm216|far
imm32
imma32|near
imm32|far
imm:imm
imm16:imm
imm:imm16
imm32:imm
imm:imm32
meml|far
meml|far
mem16|far
mem32|far
mem64|far
mem|near
mem16|near
mem32|near
mem64|near
regl6

reg32

reg64

mem
mem16
mema32
mem
memo64

mem,reg8
reg8,reg8
mem,reg1l6
regl6,regl6
mem,reg32
reg32,reg32
mem,reg64
reg64,reg64
reg8,mem
reg8,reg8
reglé,mem

8086,ND,NOLONG
8086
8086
8086,ND,NOLONG
386
386
386,ND,NOLONG
8086,NOLONG
8086,NOLONG
8086,NOLONG
386,NOLONG
386,NOLONG
8086,NOLONG
X64
8086
386
X64
8086,ND
8086,ND
386,NOLONG,ND
X64,ND
8086
386,NOLONG
X64
8086
8086
386,NOLONG
X64
X64
8086
386
X64
8086
8086
X64,AMD

8086

286,PRIV
8086
8086
8086
8086
8086
386
386
X64
X64
8086
8086
8086

CMP regl6,regl6 8086

CMP reg32,mem 386

CMP reg32,reg32 386

CMP reg64,mem X64

CMP reg64,reg64 X64

CMP rml16,imm8 8086

CMP rm32,imm8 386

CMP rm64,imm8 X64

CMP reg_al,imm 8086

CMP reg_ax,sbytel6 8086

CMP reg_ax,imm 8086

CMP reg_eax,sbyte32 386

CMP reg_eax,imm 386

CMP reg_rax,shyte64 X64

CMP reg_rax,imm X64

CMP rm8,imm 8086

CMP rml16,imm 8086

CMP rm32,imm 386

CMP rmé64,imm X64

CMP mem,imm8 8086

CMP mem,imm16 8086

CMP mem,imm32 386

CMP rm8,imm 8086,ND,NOLONG
CMPSB 8086

CMPSD 386

CMPSQ X64

CMPSW 8086

CMPXCHG mem,reg8 PENT,LOCK
CMPXCHG reg8,reg8 PENT

CMPXCHG mem,regl6 PENT,LOCK
CMPXCHG regl6,regl6 PENT
CMPXCHG mem,reg32 PENT,LOCK
CMPXCHG reg32,reg32 PENT
CMPXCHG mem,reg64 X64,LOCK
CMPXCHG reg64,reg64 X64
CMPXCHG486 mem,reg8 486,UNDOC,ND,LOCK
CMPXCHG486 reg8,reg8 486,UNDOC,ND
CMPXCHG486 mem,regl6 486,UNDOC,ND,LOCK
CMPXCHG486 reglé,regl6 486,UNDOC,ND
CMPXCHG486 mem,reg32 486,UNDOC,ND,LOCK
CMPXCHG486 reg32,reg32 486,UNDOC,ND
CMPXCHGS8B mem PENT,LOCK
CMPXCHG16B mem X64,LOCK
CPUID PENT

CPU_READ PENT,CYRIX
CPU_WRITE PENT,CYRIX

CQO X64

CwWD 8086

CWDE 386

139

140

DAA
DAS

DEC

DEC

DEC

DEC

DEC

DEC

DIV

DIV

DIV

DIV
DMINT
EMMS
ENTER
EQU

EQU
F2XM1
FABS
FADD
FADD
FADD
FADD
FADD
FADD
FADD
FADDP
FADDP
FADDP
FBLD
FBLD
FBSTP
FBSTP
FCHS
FCLEX
FCMOVB
FCMOVB
FCMOVB
FCMOVBE
FCMOVBE
FCMOVBE
FCMOVE
FCMOVE
FCMOVE
FCMOVNB
FCMOVNB
FCMOVNB
FCMOVNBE
FCMOVNBE

8086,NOLONG
8086,NOLONG

regl6 8086,NOLONG
reg32 386,NOLONG
rm8 8086,LOCK
rml16 8086,LOCK
rm32 386,LOCK
rmé64 X64,LOCK
rm8 8086
rml6 8086
rm32 386
rme4 X64
P6,CYRIX
PENT,MMX
imm,imm 186
imm 8086
imm:imm 8086
8086,FPU
8086,FPU
mem32 8086,FPU
memo64 8086,FPU
fpureg|to 8086,FPU
fpureg 8086,FPU
fpureg,fpu0 8086,FPU
fpuO,fpureg 8086,FPU
8086,FPU,ND
fpureg 8086,FPU
fpureg,fpu0 8086,FPU
8086,FPU,ND
mem80 8086,FPU
mem 8086,FPU
mem80 8086,FPU
mem 8086,FPU
8086,FPU
8086,FPU
fpureg P6,FPU
fpuO,fpureg P6,FPU
P6,FPU,ND
fpureg P6,FPU
fpuO,fpureg P6,FPU
P6,FPU,ND
fpureg P6,FPU
fpuO,fpureg P6,FPU
P6,FPU,ND
fpureg P6,FPU
fpuO,fpureg P6,FPU
P6,FPU,ND
fpureg P6,FPU
fpuO,fpureg P6,FPU

FCMOVNBE
FCMOVNE
FCMOVNE
FCMOVNE
FCMOVNU
FCMOVNU
FCMOVNU
FCMOVU
FCMOVU
FCMOVU
FCOM
FCOM
FCOM
FCOM
FCOM
FCOMI
FCOMI
FCOMI
FCOMIP
FCOMIP
FCOMIP
FCOMP
FCOMP
FCOMP
FCOMP
FCOMP
FCOMPP
FCOS
FDECSTP
FDISI
FDIV
FDIV
FDIV
FDIV
FDIV
FDIV
FDIV
FDIVP
FDIVP
FDIVP
FDIVR
FDIVR
FDIVR
FDIVR
FDIVR
FDIVR
FDIVR
FDIVRP
FDIVRP

P6,FPU,ND
fpureg P6,FPU
fpuO,fpureg P6,FPU

P6,FPU,ND
fpureg P6,FPU
fpuO,fpureg P6,FPU

P6,FPU,ND

fpureg P6,FPU
fpuO,fpureg P6,FPU
P6,FPU,ND
mem32 8086,FPU
mem64 8086,FPU
fpureg 8086,FPU
fpuO,fpureg 8086,FPU
8086,FPU,ND
fpureg P6,FPU
fpuO,fpureg P6,FPU
P6,FPU,ND
fpureg P6,FPU
fpuO,fpureg P6,FPU
P6,FPU,ND
mem32 8086,FPU
mem64 8086,FPU
fpureg 8086,FPU
fpuO,fpureg 8086,FPU
8086,FPU,ND
8086,FPU
386,FPU
8086,FPU
8086,FPU
mem32 8086,FPU
mem64 8086,FPU
fpureg|to 8086,FPU
fpureg 8086,FPU
fpureg,fpu0 8086,FPU
fpuO,fpureg 8086,FPU
8086,FPU,ND
fpureg 8086,FPU
fpureg,fpu0 8086,FPU
8086,FPU,ND
mem32 8086,FPU
mem64 8086,FPU
fpureg|to 8086,FPU
fpureg,fpu0 8086,FPU
fpureg 8086,FPU
fpuO,fpureg 8086,FPU
8086,FPU,ND
fpureg 8086,FPU
fpureg,fpu0 8086,FPU

141

142

FDIVRP
FEMMS
FENI
FFREE
FFREE
FFREEP
FFREEP
FIADD
FIADD
FICOM
FICOM
FICOMP
FICOMP
FIDIV
FIDIV
FIDIVR
FIDIVR
FILD
FILD
FILD
FIMUL
FIMUL
FINCSTP
FINIT
FIST
FIST
FISTP
FISTP
FISTP
FISTTP
FISTTP
FISTTP
FISUB
FISUB
FISUBR
FISUBR
FLD
FLD
FLD
FLD
FLD
FLD1
FLDCW
FLDENV
FLDL2E
FLDL2T
FLDLG2
FLDLN2
FLDPI

fpureg
fpureg

mem32
meml16
mem32
mem16
mem32
mem16
mem32
mem16
mem32
meml16
mem32
meml16
mem64
mem32
meml16

mem32
meml16
mema32
meml16
mem64
meml16
mem32
mem64
mem32
mem16
mem32
mem16
mem32
mem64
mem80
fpureg

mem
mem

8086,FPU,ND
PENT,3DNOW
8086,FPU
8086,FPU
8086,FPU
286,FPU,UNDOC
286,FPU,UNDOC
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
PRESCOTT,FPU
PRESCOTT,FPU
PRESCOTT,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU,ND
8086,FPU
8086,FPU,SW
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU

FLDZ
FMUL
FMUL
FMUL
FMUL
FMUL
FMUL
FMUL
FMULP
FMULP
FMULP
FNCLEX
FNDISI
FNENI
FNINIT
FNOP
FNSAVE
FNSTCW
FNSTENV
FNSTSW
FNSTSW
FPATAN
FPREM
FPREM1
FPTAN
FRNDINT
FRSTOR
FSAVE
FSCALE
FSETPM
FSIN
FSINCOS
FSQRT
FST
FST
FST
FST
FSTCW
FSTENV
FSTP
FSTP
FSTP
FSTP
FSTP
FSTSW
FSTSW
FSUB
FSUB
FSUB

8086,FPU
mem32 8086,FPU
memo64 8086,FPU
fpureg|to 8086,FPU
fpureg,fpu0 8086,FPU
fpureg 8086,FPU
fpuO,fpureg 8086,FPU
8086,FPU,ND
fpureg 8086,FPU
fpureg,fpu0 8086,FPU
8086,FPU,ND
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
mem 8086,FPU
mem 8086,FPU,SW
mem 8086,FPU
mem 8086,FPU,SW
reg_ax 286,FPU
8086,FPU
8086,FPU
386,FPU
8086,FPU
8086,FPU
mem 8086,FPU
mem 8086,FPU
8086,FPU
286,FPU
386,FPU
386,FPU
8086,FPU
mem32 8086,FPU
mem64 8086,FPU
fpureg 8086,FPU
8086,FPU,ND
mem 8086,FPU,SW
mem 8086,FPU
mem32 8086,FPU
memo64 8086,FPU
mem80 8086,FPU
fpureg 8086,FPU
8086,FPU,ND
mem 8086,FPU,SW
reg_ax 286,FPU
mem32 8086,FPU
mem64 8086,FPU
fpureglto 8086,FPU

143

144

FSuUB
FSuUB
FSuUB
FSuUB
FSUBP
FSUBP
FSUBP
FSUBR
FSUBR
FSUBR
FSUBR
FSUBR
FSUBR
FSUBR
FSUBRP
FSUBRP
FSUBRP
FTST
FUCOM
FUCOM
FUCOM
FUCOMI
FUCOMI
FUCOMI
FUCOMIP
FUCOMIP
FUCOMIP
FUCOMP
FUCOMP
FUCOMP
FUCOMPP
FXAM
FXCH
FXCH
FXCH
FXCH
FXTRACT
FYL2X
FYL2XP1
HLT
IBTS
IBTS
IBTS
IBTS
ICEBP
IDIV

IDIV

IDIV

IDIV

fpureg,fpu0
fpureg
fpuO,fpureg

fpureg

fpureg,fpu0

mema32
memo64
fpureg|to

fpureg,fpu0

fpureg

fpuO,fpureg

fpureg

fpureg,fpu0

fpureg

fpuO,fpureg

fpureg

fpuO,fpureg

fpureg

fpuO,fpureg

fpureg

fpuO,fpureg

fpureg
fpureg,fpu0
fpuO,fpureg

mem,regl6
regl6,regl6
mem,reg32
reg32,reg32

rm8

rml6
rm32
rmé4

8086,FPU
8086,FPU
8086,FPU
8086,FPU,ND
8086,FPU
8086,FPU
8086,FPU,ND
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU,ND
8086,FPU
8086,FPU
8086,FPU,ND
8086,FPU
386,FPU
386,FPU
386,FPU,ND
P6,FPU
P6,FPU
P6,FPU,ND
P6,FPU
P6,FPU
P6,FPU,ND
386,FPU
386,FPU
386,FPU,ND
386,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU
8086,FPU,ND
8086,FPU
8086,FPU
8086,FPU
8086,PRIV
386,SW,UNDOC,ND
386,UNDOC,ND
386,SD,UNDOC,ND
386,UNDOC,ND
386,ND
8086
8086
386
X64

IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IN

IN

rm8 8086

rmileé 8086

rm32 386

rme4 X64
regl6,mem 386
regl6,regl6 386
reg32,mem 386
reg32,reg32 386
reg64,mem X64
reg64,reg64 X64
regl6,mem,imm8 186
regl6,mem,shytel6 186,ND
regl6,mem,imm1l6 186
regl6,mem,imm 186,ND
regl6,regl6,imms8 186

regl6,regl6,sbytel6 186,ND
regl6,regl6,imm16 186
regl6,regl6,imm 186,ND
reg32,mem,imm8 386
reg32,mem,shyte32 386,ND
reg32,mem,imm32 386
reg32,mem,imm 386,ND
reg32,reg32,imm8 386
reg32,reg32,sbyte32 386,ND
reg32,reg32,imma32 386
reg32,reg32,imm 386,ND
reg64,mem,imm8 X64
reg64,mem,shyte64 X64,ND
reg64,mem,imma32 X64
reg64,mem,imm X64,ND
reg64,reg64,imm8 X64
reg64,reqg64,sbyte64 X64,ND
reg64,reg64,imma32 X64
reg64,reg64,imm X64,ND
regl6,imm8 186
regl6,sbytel6 186,ND
regl6,immi16 186
regl6,imm 186,ND
reg32,imm8 386
reg32,shyte32 386,ND
reg32,imm32 386
reg32,imm 386,ND
reg64,imm8 X64
reg64,sbyte64 X64,ND
reg64,imm32 X64
reg64,imm X64,ND
reg_al,imm 8086
reg_ax,imm 8086
reg_eax,imm 386

145

IN reg_al,reg_dx 8086

IN reg_ax,reg_dx 8086

IN reg_eax,reg_dx 386

INC regl6 8086,NOLONG

INC reg32 386,NOLONG

INC rm8 8086,LOCK

INC rml6 8086,LOCK

INC rm32 386,LOCK

INC rmé64 X64,LOCK

INCBIN

INSB 186

INSD 386

INSW 186

INT imm 8086

INTO1 386,ND

INT1 386

INTO3 8086,ND

INT3 8086

INTO 8086,NOLONG

INVD 486,PRIV

INVPCID reg32,mem128 FUTURE,INVPCID,PRIV,NOLONG
INVPCID reg64,mem128 FUTURE,INVPCID,PRIV,LONG
INVLPG mem 486,PRIV
INVLPGA reg_ax,reg_ecx X86_64,AMD,NOLONG
INVLPGA reg_eax,reg_ecx X86_64,AMD
INVLPGA reg_rax,reg_ecx X64,AMD
INVLPGA X86_64,AMD

IRET 8086

IRETD 386

IRETQ X64

IRETW 8086

JCXZ imm 8086,NOLONG
JECXZ imm 386

JRCXZ imm X64

JMP imm|short 8086

JMP imm 8086,ND

JMP imm 8086

JMP imm|near 8086,ND

JMP imm|far 8086,ND,NOLONG
JMP imm216 8086

JMP imm16|near 8086,ND

JMP imm216|far 8086,ND,NOLONG
JMP imma32 386

JMP imm32|near 386,ND

JMP imm32|far 386,ND,NOLONG
JMP imm:imm 8086,NOLONG
JMP imm216:imm 8086,NOLONG
JMP imm:imm16 8086,NOLONG
JMP imm32:imm 386,NOLONG

146

JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMPE
JMPE
JMPE
JMPE
JMPE
LAHF
LAR
LAR
LAR
LAR
LAR
LAR
LAR
LAR
LAR
LAR
LAR
LAR
LDS
LDS
LEA
LEA
LEA
LEAVE
LES
LES
LFENCE
LFS
LFS
LFS
LGDT

imm:imm32
memlfar
memlfar
mem16|far
mem32|far
mem64|far
mem|near
mem1l6|near
mem32|near
memo64|near
regl6é
reg32
reg64
mem
mem16
mema32
mem
memo64

imm

imm16

imm32

rmi16

rm32

reglé,mem
regl6,regl6
regl6,reg32
regl6,reg64
reg32,mem
reg32,regl6
reg32,reg32
reg32,reg64
reg64,mem
reg64,regl6
reg64,reg32
reg64,reg64
reglé,mem
reg32,mem
reglé,mem
reg32,mem
reg64,mem

reglé,mem
reg32,mem

reglé,mem

reg32,mem

reg64,mem
mem

386,NOLONG
8086,NOLONG
X64
8086
386
X64
8086,ND
8086,ND
386,NOLONG,ND
X64,ND
8086
386,NOLONG
X64
8086
8086
386,NOLONG
X64
X64
IAG4
IA64
IA64
IAG4
IAG4
8086
286,PROT,SW
286,PROT
386,PROT
X64,PROT,ND
386,PROT,SW
386,PROT
386,PROT
X64,PROT,ND
X64,PROT,SW
X64,PROT
X64,PROT
X64,PROT
8086,NOLONG
386,NOLONG
8086
386
X64
186
8086,NOLONG
386,NOLONG
X64,AMD
386
386
X64
286,PRIV

148

LGS reglé,mem
LGS reg32,mem
LGS reg64,mem
LIDT mem

LLDT mem

LLDT mem16

LLDT regl6é

LMSW mem

LMSW mem16
LMSW regl6é
LOADALL

LOADALLZ286

LODSB

LODSD

LODSQ

LODSW

LOOP imm

LOOP imm,reg_cx
LOOP imm,reg_ecx
LOOP imm,reg_rcx
LOOPE imm

LOOPE imm,reg_cx
LOOPE imm,reg_ecx
LOOPE imm,reg_rcx
LOOPNE imm
LOOPNE imm,reg_cx
LOOPNE imm,reg_ecx
LOOPNE imm,reg_rcx
LOOPNZ imm
LOOPNZ imm,reg_cx
LOOPNZ imm,reg_ecx
LOOPNZ imm,reg_rcx
LOOPZ imm

LOOPZ imm,reg_cx
LOOPZ imm,reg_ecx
LOOPZ imm,reg_rcx
LSL reglé,mem
LSL regl6,regl6
LSL regl6,reg32
LSL regl6,reg64
LSL reg32,mem
LSL reg32,regl6
LSL reg32,reg32
LSL reg32,reg64
LSL reg64,mem
LSL reg64,regl6
LSL reg64,reg32
LSL reg64,reg64
LSS reglé,mem

386
386
X64
286,PRIV
286,PROT,PRIV
286,PROT,PRIV
286,PROT,PRIV
286,PRIV
286,PRIV
286,PRIV
386,UNDOC
286,UNDOC
8086
386
X64
8086
8086
8086,NOLONG
386
X64
8086
8086,NOLONG
386
X64
8086
8086,NOLONG
386
X64
8086
8086,NOLONG
386
X64
8086
8086,NOLONG
386
X64
286,PROT,SW
286,PROT
386,PROT
X64,PROT,ND
386,PROT,SW
386,PROT
386,PROT
X64,PROT,ND
X64,PROT,SW
X64,PROT
X64,PROT
X64,PROT
386

LSS reg32,mem 386

LSS reg64,mem X64

LTR mem 286,PROT,PRIV

LTR mem16 286,PROT,PRIV

LTR regl6 286,PROT,PRIV
MFENCE X64,AMD

MONITOR PRESCOTT

MONITOR reg_eax,reg_ecx,reqg_edx PRESCOTT,ND
MONITOR reg_rax,reg_ecx,reg_edx X64,ND
MOV mem,reg_sreg 8086,SW

MOV regl6,reg_sreg 8086

MOV reg32,reg_sreg 386

MOV reg64,reg_sreg X64,0PT,ND

MOV rm64,reg_sreg X64

MOV reg_sreg,mem 8086,SW

MOV reg_sreg,regl6 8086,0PT,ND

MOV reg_sreg,reg32 386,0PT,ND

MOV reg_sreg,reg64 X64,0PT,ND

MOV reg_sreg,regl6 8086

MOV reg_sreg,reg32 386

MOV reg_sreg,rmo4 X64

MOV reg_al,mem_offs 8086

MOV reg_ax,mem_offs 8086

MOV reg_eax,mem_offs 386

MOV reg_rax,mem_offs X64

MOV mem_offs,reg_al 8086,NOHLE

MOV mem_offs,reg_ax 8086,NOHLE
MOV mem_offs,reg_eax 386,NOHLE

MOV mem_offs,reg_rax X64,NOHLE

MOV reg32,reg_creg 386,PRIV,NOLONG
MOV reg64,reg_creg X64,PRIV

MOV reg_creg,reg32 386,PRIV,NOLONG
MOV reg_creg,reg64 X64,PRIV

MOV reg32,reg_dreg 386,PRIV,NOLONG
MOV reg64,reg_dreg X64,PRIV

MOV reg_dreg,reg32 386,PRIV,NOLONG
MOV reg_dreg,reg64 X64,PRIV

MOV reg32,reg_treg 386,NOLONG,ND
MOV reg_treg,reg32 386,NOLONG,ND
MOV mem,reg8 8086

MOV reg8,reg8 8086

MOV mem,regl1l6 8086

MOV regl6,regl6 8086

MOV mem,reg32 386

MOV reg32,reg32 386

MOV mem,reg64 X64

MOV reg64,reg64 X64

MOV reg8,mem 8086

MOV reg8,reg8 8086

149

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOVD
MOVD
MOVD
MOVD
MOVQ
MOVQ
MOVQ
MOVQ
MOVSB
MOVSD
MOVSQ
MOVSW
MOVSX
MOVSX
MOVSX
MOVSX
MOVSX
MOVSX
MOVSXD
MOVSX
MOVZX
MOVZX
MOVZX
MOVZX
MOVZX
MOVZX
MUL
MUL
MUL

150

regl6,mem
regl6,regl6
reg32,mem
reg32,reg32
reg64,mem
reg64,reg64
reg8,imm
regl6,imm
reg32,imm
reg64,udword64
reg64,sdword64
reg64,imm
rm8,imm
rml16,imm
rm32,imm
rmé64,imm
rmé64,imm32
mem,imm8
mem,imm16
mem,imm32
mmxreg,rm32
rm32,mmxreg
mmxreg,rm64
rmé64,mmxreg
mmxreg,mmxrm
mmxrm,mmxreg
mmxreg,rm64
rm64,mmxreg

reglé,mem
regl6,reg8
reg32,rm8
reg32,rml16
reg64,rm8
reg64,rmle6
reg64,rm32

reg64,rm3z2
regl6,mem
regl6,reg8
reg32,rm8
reg32,rm16
reg64,rm8
reg64,rm16

rm8

rmleé

rm32

8086
8086
386
386
X64
X64
8086
8086
386
X64,0PT,ND
X64,0PT,ND
X64
8086
8086
386
X64
X64
8086
8086
386
PENT,MMX,SD
PENT,MMX,SD
X64,MMX,SX,ND
X64,MMX,SX,ND
PENT,MMX
PENT,MMX
X64,MMX
X64,MMX
8086
386
X64
8086
386
386
386
386
X64
X64
X64
X64,ND
386
386
386
386
X64
X64
8086
8086
386

MUL
MWAIT
MWAIT
NEG
NEG
NEG
NEG
NOP
NOP
NOP
NOP
NOT
NOT
NOT
NOT
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR

rme4 X64
PRESCOTT
reg_eax,reg_ecx
rm8 8086,LOCK
rmi6 8086,LOCK
rm32 386,LOCK
rmeé4 X64,LOCK
8086
rmle P6
rm32 P6
rmeé4 X64
rm8 8086,LOCK
rmil6é 8086,LOCK
rm32 386,LOCK
rme4 X64,LOCK
mem,reg8 8086,LOCK
reg8,reg8 8086
mem,regl6 8086,LOCK
regl6,regl6 8086
mem,reg32 386,LOCK
reg32,reg32 386
mem,reg64 X64,LOCK
reg64,reg64 X64
reg8,mem 8086
reg8,reg8 8086
regle,mem 8086
regl6,regl6 8086
reg32,mem 386
reg32,reg32 386
reg64,mem X64
reg64,reg64 X64
rm16,imm8 8086,LOCK
rm32,imm8 386,LOCK
rmé64,imm8 X64,LOCK
reg_al,imm 8086
reg_ax,sbytel6 8086
reg_ax,imm 8086
reg_eax,sbyte32 386
reg_eax,imm 386
reg_rax,shyte64 X64
reg_rax,imm X64
rm8,imm 8086,LOCK
rml16,imm 8086,LOCK
rm32,imm 386,LOCK
rmé4,imm X64,LOCK
mem,imm8 8086,LOCK
mem,imm16 8086,LOCK
mem,imm32 386,LOCK
rm8,imm

8086,LOCK,ND,NOLONG

PRESCOTT,ND

152

ouT imm,reg_al 8086

ouT imm,reg_ax 8086

ouT imm,reg_eax 386

ouT reg_dx,reg_al 8086

ouT reg_dx,reg_ax 8086

ouT reg_dx,reg_eax 386

OUTSB 186

OUTSD 386

OUTSW 186

PACKSSDW mmxreg,mmxrm PENT,MMX
PACKSSWB mmxreg,mmxrm PENT,MMX
PACKUSWB mmxreg,mmxrm PENT,MMX
PADDB mmxreg,mmxrm PENT,MMX
PADDD mmxreg,mmxrm PENT,MMX
PADDSB mmxreg,mmxrm PENT,MMX
PADDSIW mmxreg,mmxrm PENT,MMX,CYRIX
PADDSW mmxreg,mmxrm PENT,MMX
PADDUSB mmxreg,mmxrm PENT,MMX
PADDUSW mmxreg,mmxrm PENT,MMX
PADDW mmxreg,mmxrm PENT,MMX
PAND mmxreg,mmxrm PENT,MMX
PANDN mmxreg,mmxrm PENT,MMX

PAUSE 8086

PAVEB mmxreg,mmxrm
PAVGUSB mmxreg,mmxrm
PCMPEQB mmxreg,mmxrm
PCMPEQD mmxreg,mmxrm
PCMPEQW mmxreg,mmxrm
PCMPGTB mmxreg,mmxrm
PCMPGTD mmxreg,mmxrm
PCMPGTW mmxreg,mmxrm
PDISTIB mmxreg,mem
PF2ID mmxreg,mmxrm
PFACC mmxreg,mmxrm
PFADD mmxreg,mmxrm
PFCMPEQ mmxreg,mmxrm
PFCMPGE mmxreg,mmxrm
PFCMPGT mmxreg,mmxrm
PFMAX mmxreg,mmxrm
PFEMIN mmxreg,mmxrm
PFMUL mmxreg,mmxrm
PFRCP mmxreg,mmxrm
PFRCPIT1 mmxreg,mmxrm
PFRCPIT2 mmxreg,mmxrm
PFRSQIT1 mmxreg,mmxrm
PFRSQRT mmxreg,mmxrm
PFSUB mmxreg,mmxrm
PFSUBR mmxreg,mmxrm
PI2FD mmxreg,mmxrm

PENT,MMX,CYRIX
PENT,3DNOW
PENT,MMX
PENT,MMX
PENT,MMX
PENT,MMX
PENT,MMX
PENT,MMX
PENT,MMX,CYRIX
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW
PENT,3DNOW

PMACHRIW
PMADDWD
PMAGW
PMULHRIW
PMULHRWA
PMULHRWC
PMULHW
PMULLW
PMVGEZB
PMVLZB
PMVNZB
PMVZB
POP

POP

POP

POP

POP

POP

POP

POP

POP

POPA
POPAD
POPAW
POPF
POPFD
POPFQ
POPFW
POR
PREFETCH

mmxreg,mem

mmxreg,mmxrm
mmxreg,mmxrm

mmxreg,mmxrm

PENT,MMX,CYRIX
PENT,MMX
PENT,MMX,CYRIX
PENT,MMX,CYRIX

mmxreg,mmxrm PENT,3DNOW

mmxreg,mmxrm PENT,MMX,CYRIX
mmxreg,mmxrm PENT,MMX
mmxreg,mmxrm PENT,MMX

mmxreg,mem
mmxreg,mem
mmxreg,mem
mmxreg,mem

PENT,MMX,CYRIX
PENT,MMX,CYRIX
PENT,MMX,CYRIX

PENT,MMX,CYRIX

PREFETCHW mem

PSLLD
PSLLD
PSLLQ
PSLLQ
PSLLW
PSLLW
PSRAD
PSRAD
PSRAW
PSRAW
PSRLD
PSRLD
PSRLQ
PSRLQ
PSRLW
PSRLW
PSUBB
PSUBD

regl6 8086
reg32 386,NOLONG
reg64 X64
rmileé 8086
rm32 386,NOLONG
rme4 X64
reg_cs 8086,UNDOC,ND
reg_dess 8086,NOLONG
reg_fsgs 386
186,NOLONG
386,NOLONG
186,NOLONG
8086
386,NOLONG
X64
8086
mmxreg,mmxrm PENT,MMX
mem PENT,3DNOW
PENT,3DNOW
mmxreg,mmxrm PENT,MMX
mmxreg,imm PENT,MMX
mmxreg,mmxrm PENT,MMX
mmxreg,imm PENT,MMX
mmxreg,mmxrm PENT,MMX
mmxreg,imm PENT,MMX
mmxreg,mmxrm PENT,MMX
mmxreg,imm PENT,MMX
mmxreg,mmxrm PENT,MMX
mmxreg,imm PENT,MMX
mmxreg,mmxrm PENT,MMX
mmxreg,imm PENT,MMX
mmxreg,mmxrm PENT,MMX
mmxreg,imm PENT,MMX
mmxreg,mmxrm PENT,MMX
mmxreg,imm PENT,MMX
mmxreg,mmxrm PENT,MMX
mmxreg,mmxrm PENT,MMX

153

154

PSUBSB mmxreg,mmxrm PENT,MMX
PSUBSIW mmxreg,mmxrm PENT,MMX,CYRIX
PSUBSW mmxreg,mmxrm PENT,MMX
PSUBUSB mmxreg,mmxrm PENT,MMX
PSUBUSW mmxreg,mmxrm PENT,MMX
PSUBW mmxreg,mmxrm PENT,MMX
PUNPCKHBW mmxreg,mmxrm PENT,MMX
PUNPCKHDQ mmxreg,mmxrm PENT,MMX
PUNPCKHWD mmxreg,mmxrm PENT,MMX
PUNPCKLBW mmxreg,mmxrm PENT,MMX
PUNPCKLDQ mmxreg,mmxrm PENT,MMX
PUNPCKLWD mmxreg,mmxrm PENT,MMX
PUSH regl6 8086

PUSH reg32 386,NOLONG

PUSH reg64 X64

PUSH rmi16 8086

PUSH rm32 386,NOLONG

PUSH rmeé4 X64

PUSH reg_cs 8086,NOLONG

PUSH reg_dess 8086,NOLONG
PUSH reg_fsgs 386

PUSH imm8 186

PUSH imm216 186,AR0,SZ

PUSH imm32 386,NOLONG,AR0,SZ
PUSH imm32 386,NOLONG,SD
PUSH imm32 X64,AR0,SZ

PUSH imm64 X64,AR0,SZ

PUSHA 186,NOLONG

PUSHAD 386,NOLONG
PUSHAW 186,NOLONG

PUSHF 8086

PUSHFD 386,NOLONG
PUSHFQ X64

PUSHFW 8086

PXOR mmxreg,mmxrm PENT,MMX
RCL rm8,unity 8086

RCL rm8,reg_cl 8086

RCL rm8,imm 186

RCL rm16,unity 8086

RCL rmi16,reg_cl 8086

RCL rml16,imm 186

RCL rm32,unity 386

RCL rm32,reg_cl 386

RCL rm32,imm 386

RCL rmé4,unity X64

RCL rm64,reg_cl X64

RCL rmé64,imm X64

RCR rm8,unity 8086

RCR rm8,reg_cl 8086

RCR
RCR
RCR
RCR
RCR
RCR
RCR
RCR
RCR
RCR
RDSHR
RDMSR
RDPMC
RDTSC
RDTSCP
RET
RET
RETF
RETF
RETN
RETN
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
RDM
RSDC
RSLDT
RSM

rm8,imm 186
rmi6,unity 8086
rmi16,reg_cl 8086
rml16,imm 186
rm32,unity 386
rm32,reg_cl 386
rm32,imm 386
rm64,unity X64
rm64,reg_cl X64
rmé64,imm X64
rm32 P6,CYRIXM
PENT,PRIV
P6
PENT
X86_64
8086
imm 8086,SW
8086
imm 8086,SW
8086
imm 8086,SW
rm8,unity 8086
rm8,reg_cl 8086
rm8,imm 186
rm16,unity 8086
rm16,reg_cl 8086
rml16,imm 186
rm32,unity 386
rm32,reg_cl 386
rm32,imm 386
rm64,unity X64
rm6é4,reg_cl X64
rmé64,imm X64
rma8,unity 8086
rm8,reg_cl 8086
rm8,imm 186
rmi16,unity 8086
rm16,reg_cl 8086
rml16,imm 186
rm32,unity 386
rm32,reg_cl 386
rm32,imm 386
rm64,unity X64
rm64,reg_cl X64
rmé64,imm X64
P6,CYRIX,ND
reg_sreg,mem80 486,CYRIXM
mem80 486,CYRIXM
PENTM

155

156

RSTS
SAHF
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SALC
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB

mem380

rma8,unity
rm8,reg_cl
rm8,imm
rm16,unity
rm16,reg_cl
rml16,imm
rm32,unity
rm32,reg_cl
rm32,imm
rm64,unity
rm6é4,reg_cl
rmé64,imm

rm8,unity
rm8,reg_cl
rm8,imm
rm16,unity
rm16,reg_cl
rml16,imm
rm32,unity
rm32,reg_cl
rm32,imm
rm64,unity
rm6é4,reg_cl
rmé64,imm
mem,reg8
reg8,reg8
mem,regl6
regl6,regl6
mem,reg32
reg32,reg32
mem,reg64
reg64,reg64
reg8,mem
reg8,reg8
reglé,mem
regl6,regl6
reg32,mem
reg32,reg32
reg64,mem
reg64,reg64
rm16,imm8
rm32,imm8
rmé64,imm8
reg_al,imm
reg_ax,sbytel6
reg_ax,imm

486,CYRIXM
8086
8086,ND
8086,ND
186,ND
8086,ND
8086,ND
186,ND
386,ND
386,ND
386,ND
X64,ND
X64,ND
X64,ND
8086,UNDOC
8086
8086
186
8086
8086
186
386
386
386
X64
X64
X64
8086,LOCK
8086
8086,LOCK
8086
386,LOCK
386
X64,LOCK
X64
8086
8086
8086
8086
386
386
X64
X64
8086,LOCK
386,LOCK
X64,LOCK
8086
8086
8086

SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SCASB
SCASD
SCASQ
SCASW
SFENCE
SGDT
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHR
SHR
SHR
SHR
SHR
SHR
SHR

reg_eax,sbyte32 386
reg_eax,imm 386
reg_rax,shyte64 X64
reg_rax,imm X64
rm8,imm 8086,LOCK
rml16,imm 8086,LOCK
rm32,imm 386,LOCK
rmé64,imm X64,LOCK
mem,imm8 8086,LOCK
mem,imm16 8086,LOCK
mem,imm32 386,LOCK
rm8,imm 8086,LOCK,ND,NOLONG
8086
386
X64
8086
X64,AMD
mem 286
rma8,unity 8086
rm8,reg_cl 8086
rm8,imm 186
rmi16,unity 8086
rmi16,reg_cl 8086
rm16,imm 186
rm32,unity 386
rm32,reg_cl 386
rm32,imm 386
rm64,unity X64
rmé64,reg_cl X64
rmé4,imm X64
mem,regl16,imm 3862
regl6,regl6,imm 3862
mem,reg32,imm 3862
reg32,reg32,imm 3862
mem,reg64,imm X642
reg64,reg64,imm X642
mem,regl16,reg_cl 386
regl6,regl6,reg cl 386
mem,reg32,reg_cl 386
reg32,reg32,reg_cl 386
mem,reg64,reg_cl X64
reg64,reg64,reg_cl X64
rm8,unity 8086
rm8,reg_cl 8086
rm8,imm 186
rm16,unity 8086
rm16,reg_cl 8086
rmi16,imm 186
rm32,unity 386

157

158

SHR
SHR
SHR
SHR
SHR
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SIDT
SLDT
SLDT
SLDT
SLDT
SLDT
SLDT
SKINIT
SMI
SMINT

SMINTOLD

SMSW
SMSW
SMSW
SMSW
sTC
STD
STGI
STI
STOSB
STOSD
STOSQ
STOSW
STR
STR
STR
STR
STR
SUB
SUB
SUB
SUB

rm32,reg_cl 386
rm32,imm 386
rm64,unity X64
rm6é4,reg_cl X64
rmé64,imm X64
mem,regl16,imm 3862
regl6,regl6,imm 3862
mem,reg32,imm 3862
reg32,reg32,imm 3862
mem,reg64,imm X642
reg64,reg64,imm X642
mem,reg16,reg_cl 386
regl6,regl6,reg_cl 386
mem,reg32,reg_cl 386
reg32,reg32,reg_cl 386
mem,reg64,reg_cl X64
reg64,reg64,reg_cl X64
mem 286
mem 286
mem16 286
regl6 286
reg32 386
reg64 X64,ND
reg64 X64
X64
386,UNDOC
P6,CYRIX,ND
486,CYRIX,ND
mem 286
mem16 286
reglé 286
reg32 386
8086
8086
X64
8086
8086
386
X64
8086
mem 286,PROT
mem16 286,PROT
reglé 286,PROT
reg32 386,PROT
reg64 X64
mem,reg8 8086,LOCK
reg8,reg8 8086
mem,reg1l6 8086,LOCK
regl6,regl6 8086

SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SvDC
SVLDT
SVTS
SWAPGS
SYSCALL
SYSENTER
SYSEXIT
SYSRET
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST

mem,reg32
reg32,reg32
mem,reg64
reg64,reg64
reg8,mem
reg8,reg8
reglé,mem
regl6,regl6
reg32,mem
reg32,reg32
reg64,mem
reg64,reg64
rml16,imm8
rm32,imm8
rm64,imm8
reg_al,imm
reg_ax,sbytel6
reg_ax,imm
reg_eax,sbyte32
reg_eax,imm
reg_rax,shyte64
reg_rax,imm
rm8,imm
rml16,imm
rm32,imm
rmé64,imm
mem,imm8
mem,imm16
mem,imm32
rm8,imm

mem80,reg_sreg

mema80
mema80

mem,reg8
reg8,reg8
mem,regl16
regl6,regl6
mem,reg32
reg32,reg32
mem,reg64
reg64,reg64
reg8,mem
regl6,mem
reg32,mem

386,LOCK
386
X64,LOCK
X64
8086
8086
8086
8086
386
386
X64
X64
8086,LOCK
386,LOCK
X64,LOCK
8086
8086
8086
386
386
X64
X64
8086,LOCK
8086,LOCK
386,LOCK
X64,LOCK
8086,LOCK
8086,LOCK
386,LOCK
8086,LOCK,ND,NOLONG
486,CYRIXM
486,CYRIXM,ND
486,CYRIXM
X64
P6,AMD
P6
P6,PRIV
P6,PRIV,AMD
8086
8086
8086
8086
386
386
X64
X64
8086
8086
386

159

160

TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
ubO
ubD1
ub2B
ub2
UD2A
umMov
umMov
umMov
umMov
umMov
umMov
umMov
umMov
umMov
umMov
umMov
umMov
VERR
VERR
VERR
VERW
VERW
VERW
FWAIT
WBINVD
WRSHR
WRMSR
XADD
XADD
XADD
XADD
XADD
XADD
XADD
XADD
XBTS
XBTS

reg64,mem X64

reg_al,imm 8086
reg_ax,imm 8086
reg_eax,imm 386
reg_rax,imm X64
rm8,imm 8086
rml16,imm 8086
rm32,imm 386
rmé64,imm X64
mem,imm8 8086
mem,imm16 8086
mem,imm32 386
186,UNDOC
186,UNDOC
186,UNDOC,ND
186
186,ND
mem,reg8 386,UNDOC,ND
reg8,reg8 386,UNDOC,ND
mem,regl6 386,UNDOC,ND
regl6,regl6 386,UNDOC,ND
mem,reg32 386,UNDOC,ND
reg32,reg32 386,UNDOC,ND
reg8,mem 386,UNDOC,ND
reg8,reg8 386,UNDOC,ND
reglé,mem 386,UNDOC,ND
regl6,regl6 386,UNDOC,ND
reg32,mem 386,UNDOC,ND
reg32,reg32 386,UNDOC,ND
mem 286,PROT
mem16 286,PROT
regl6 286,PROT
mem 286,PROT
mem16 286,PROT
regl6 286,PROT
8086
486,PRIV
rm32 P6,CYRIXM
PENT,PRIV
mem,reg8 486,LOCK
reg8,reg8 486
mem,regl6 486,LOCK
regl6,regl6 486
mem,reg32 486,LOCK
reg32,reg32 486
mem,reg64 X64,LOCK
reg64,reg64 X64
reglé,mem 386,SW,UNDOC,ND
regl6,regl6 386,UNDOC,ND

XBTS

XBTS

XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG

XLATB

XLAT
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR

reg32,mem
reg32,reg32

386,SD,UNDOC,ND
386,UNDOC,ND

reg_ax,regl6 8086
reg_eax,reg32na 386
reg_rax,reg64 X64
regl6,reg_ax 8086
reg32na,reg_eax 386
reg64,reg_rax X64
reg_eax,reg_eax 386,NOLONG
reg8,mem 8086,LOCK
reg8,reg8 8086
regl6,mem 8086,LOCK
regl6,regl6 8086
reg32,mem 386,LOCK
reg32,reg32 386
reg64,mem X64,LOCK
reg64,reg64 X64
mem,reg8 8086,LOCK
reg8,reg8 8086
mem,regl1l6 8086,LOCK
regl6,regl6 8086
mem,reg32 386,LOCK
reg32,reg32 386
mem,reg64 X64,LOCK
reg64,reg64 X64
8086
8086
mem,reg8 8086,LOCK
reg8,reg8 8086
mem,regl6 8086,LOCK
regl6,regl6 8086
mem,reg32 386,LOCK
reg32,reg32 386
mem,reg64 X64,LOCK
reg64,reg64 X64
reg8,mem 8086
reg8,reg8 8086
regle,mem 8086
regl6,regl6 8086
reg32,mem 386
reg32,reg32 386
reg64,mem X64
reg64,reg64 X64
rml16,imm8 8086,LOCK
rm32,imm8 386,LOCK
rmé64,imm8 X64,LOCK
reg_al,imm 8086
reg_ax,sbytel6 8086
reg_ax,imm 8086

161

XOR reg_eax,sbyte32 386

XOR reg_eax,imm 386
XOR reg_rax,shyte64 X64
XOR reg_rax,imm X64
XOR rm8,imm 8086,LOCK
XOR rml16,imm 8086,LOCK
XOR rm32,imm 386,LOCK
XOR rmé64,imm X64,LOCK
XOR mem,imm8 8086,LOCK
XOR mem,imm16 8086,LOCK
XOR mem,imm32 386,LOCK
XOR rm8,imm 8086,LOCK,ND,NOLONG
CMOVcc regl6,mem P6
CMOVcc regl6,regl6 P6
CMOVcc reg32,mem P6
CMOVcc reg32,reg32 P6
CMOVcc reg64,mem X64
CMOVcc reg64,reg64 X64
Jcc imm|near 386
Jcc imm16|near 386
Jcc imm32|near 386
Jcc imm|short 8086,ND
Jcc imm 8086,ND
Jcc imm 386,ND
Jcc imm 8086,ND
Jcc imm 8086
SETcc mem 386
SETcc reg8 386

B.1.3 Katmai Streaming SIMD instructions (SSE — a.k.a. KNI, XMM, MMX2)
ADDPS xmmreg,xmmrm128 KATMAI,SSE
ADDSS xmmreg,xmmrm32 KATMAISSE
ANDNPS xmmreg,xmmrm128 KATMAI,SSE
ANDPS xmmreg,xmmrm128 KATMAI,SSE
CMPEQPS xmmreg,xmmrm2128 KATMAI,SSE
CMPEQSS xmmreg,xmmrm32 KATMAISSE
CMPLEPS xmmreg,xmmrm128 KATMAISSE
CMPLESS xmmreg,xmmrm32 KATMAI,SSE
CMPLTPS xmmreg,xmmrm128 KATMAI,SSE
CMPLTSS xmmreg,xmmrm32 KATMAI,SSE
CMPNEQPS Xxmmreg,xmmrm128 KATMAILSSE
CMPNEQSS xmmreg,xmmrm32 KATMAI,SSE
CMPNLEPS xmmreg,xmmrm128 KATMAI,SSE
CMPNLESS xmmreg,xmmrm32 KATMAISSE
CMPNLTPS xmmreg,xmmrm2128 KATMAI,SSE
CMPNLTSS xmmreg,xmmrm32 KATMAIL,SSE
CMPORDPS xmmreg,xmmrm128 KATMAI,SSE
CMPORDSS xmmreg,xmmrm32 KATMAISSE
CMPUNORDPS xmmreg,xmmrm128 KATMAI,SSE

162

CMPUNORDSS

CMPPS
CMPPS
CMPSS
CMPSS
COMISS
CVTPI2ZPS
CVTPS2PI
CVTSI2SS
CVTSI2SS
CVTSI2SS
CVTSS2S|
CVTSS2S|
CVTSS2S|
CVTSS2S|
CVTTPS2PI
CVTTSS2SI
CVTTSS2SI
DIVPS
DIVSS
LDMXCSR
MAXPS
MAXSS
MINPS
MINSS
MOVAPS
MOVAPS
MOVHPS
MOVHPS
MOVLHPS
MOVLPS
MOVLPS
MOVHLPS
MOVMSKPS
MOVMSKPS
MOVNTPS
MOVSS
MOVSS
MOVSS
MOVUPS
MOVUPS
MULPS
MULSS
ORPS
RCPPS
RCPSS
RSQRTPS
RSQRTSS
SHUFPS

Xxmmreg,mem,imm
Xxmmreg,xmmreg,imm
Xxmmreg,mem,imm
Xxmmreg,xmmreg,imm
Xxmmreg,xmmrm32
xmmreg,mmxrme64
mmxreg,xmmrm64
Xxmmreg,mem
xmmreg,rm32
Xxmmreg,rme4
reg32,xmmreg
reg32,mem
reg64,xmmreg
reg64,mem
mmxreg,xmmrm
reg32,xmmrm
reg64,xmmrm
xmmreg,xmmrm2128
xmmreg,xmmrm32
mem32
xmmreg,xmmrm128
xmmreg,xmmrm32
xmmreg,xmmrm128
xmmreg,xmmrm32
Xxmmreg,xmmrm128
Xxmmrm128,xmmreg
xmmreg,mem64
mem64,xmmreg
Xxmmreg,xmmreg
xmmreg,mem64
mem64,xmmreg
Xxmmreg,xmmreg
reg32,xmmreg
regb64,xmmreg
mem128,xmmreg
xmmreg,xmmrm32
mema32,xmmreg
Xxmmreg,xmmreg
xmmreg,xmmrm128
xmmrm128,xmmreg
xmmreg,xmmrm128
xmmreg,xmmrm32
Xxmmreg,xmmrm128
xmmreg,xmmrm128
xmmreg,xmmrm32
xmmreg,xmmrm128
xmmreg,xmmrm32

xmmreg,xmmrm32

KATMAISSE
KATMAI,SSE
KATMAISSE
KATMAI,SSE
KATMAISSE
KATMAI,SSE
KATMAI,SSE,MMX
KATMAI,SSE,MMX
KATMAI,SSE,SD,AR1,ND
KATMAI,SSE,SD,AR1
X64,SSE,AR1
KATMAI,SSE,SD,AR1

KATMAISSE,SD,AR1

X64,SSE,SD,AR1

X64,SSE,SD,AR1

KATMAILSSE,MMX
KATMAISSE,SD,AR1
X64,SSE,SD,AR1

KATMAI,SSE
KATMAI,SSE

KATMAI,SSE

KATMAI,SSE
KATMAI,SSE
KATMAI,SSE

KATMAI,SSE
KATMAI,SSE
KATMAI,SSE

KATMAI,SSE
KATMAI,SSE

KATMAI,SSE
KATMAISSE
KATMAISSE

KATMAI,SSE
KATMAI,SSE
X64,SSE

KATMAI,SSE

KATMAI,SSE

KATMAI,SSE

KATMAI,SSE
KATMAI,SSE
KATMAI,SSE

KATMAI,SSE
KATMAI,SSE
KATMAI,SSE

KATMAI,SSE
KATMAI,SSE

KATMAI,SSE
KATMAI,SSE

xmmreg,xmmrm128,imm8 KATMAI,SSE

163

SQRTPS Xxmmreg,xmmrm128 KATMAISSE

SQRTSS Xxmmreg,xmmrm32 KATMAI,SSE
STMXCSR mema32 KATMAI,SSE
SUBPS xmmreg,xmmrm2128 KATMAI,SSE
SUBSS xmmreg,xmmrm32 KATMAI,SSE
UCOMISS xmmreg,xmmrm32 KATMAISSE
UNPCKHPS xmmreg,xmmrm128 KATMAI,SSE
UNPCKLPS xmmreg,xmmrm128 KATMAISSE
XORPS xmmreg,xmmrm128 KATMAI,SSE
B.1.4 Introduced in Deschutes but necessary for SSE support
FXRSTOR mem P6,SSE,FPU
FXRSTORG64 mem X64,SSE,FPU
FXSAVE mem P6,SSE,FPU
FXSAVE64 mem X64,SSE,FPU
B.1.5 XSAVE group (AVX and extended state)
XGETBV NEHALEM
XSETBV NEHALEM,PRIV
XSAVE mem NEHALEM
XSAVE64 mem LONG,NEHALEM
XSAVEOPT mem FUTURE
XSAVEOPT64 mem LONG,FUTURE
XRSTOR mem NEHALEM
XRSTORG64 mem LONG,NEHALEM
B.1.6 Generic memory operations
PREFETCHNTA mem KATMAI
PREFETCHTO mem KATMAI
PREFETCHT1 mem KATMAI
PREFETCHT2 mem KATMAI
SFENCE KATMAI
B.1.7 New MMX instructions introduced in Katmai
MASKMOVQ mmxreg,mmxreg KATMAIL,MMX
MOVNTQ mem,mmxreg KATMAIL,MMX
PAVGB mmxreg,mmxrm KATMAIL,MMX
PAVGW mmxreg,mmxrm KATMAIL,MMX
PEXTRW reg32,mmxreg,imm KATMAIL,MMX
PINSRW mmxreg,mem,imm KATMAIL,MMX
PINSRW mmxreg,rm16,imm KATMAIL,MMX
PINSRW mmxreg,reg32,imm KATMAIL,MMX
PMAXSW mmxreg,mmxrm KATMAIL,MMX
PMAXUB mmxreg,mmxrm KATMAIL,MMX
PMINSW mmxreg,mmxrm KATMAILLMMX
PMINUB mmxreg,mmxrm KATMAIL,MMX
PMOVMSKB reg32,mmxreg KATMAIL,MMX
PMULHUW mmxreg,mmxrm KATMAIL,MMX

164

PSADBW mmxreg,mmxrm KATMAIL,MMX
PSHUFW mmxreg,mmxrm,imm KATMAIL,MMX2
B.1.8 AMD Enhanced 3DNow! (Athlon) instructions
PF2IW mmxreg,mmxrm PENT,3DNOW
PENACC mmxreg,mmxrm PENT,3DNOW
PFPNACC mmxreg,mmxrm PENT,3DNOW
PI2FW mmxreg,mmxrm PENT,3DNOW
PSWAPD mmxreg,mmxrm PENT,3DNOW
B.1.9 Willamette SSE2 Cacheability Instructions
MASKMOVDQU Xxmmreg,xmmreg WILLAMETTE,SSE2
CLFLUSH mem WILLAMETTE,SSE2
MOVNTDQ mem,xmmreg WILLAMETTE,SSE2,SO
MOVNTI mem,reg32 WILLAMETTE,SD
MOVNTI mem,reg64 X64
MOVNTPD mem,xmmreg WILLAMETTE,SSE2,SO
LFENCE WILLAMETTE,SSE2
MFENCE WILLAMETTE,SSE2

B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions)

MOVD
MOVD
MOVD
MOVD
MOVDQA
MOVDQA
MOVDQA
MOVDQA
MOVDQU
MOVDQU
MOVDQU
MOVDQU
MOVDQ2Q
MOVQ
MOVQ
MOVQ
MOVQ
MOVQ
MOVQ
MOVQ2DQ
PACKSSWB
PACKSSDW
PACKUSWB
PADDB
PADDW
PADDD
PADDQ

mem,xmmreg
Xxmmreg,mem
xmmreg,rm32
rm32,xmmreg
Xxmmreg,xmmreg
mem,xmmreg
Xxmmreg,mem
Xxmmreg,xmmreg
xmmreg,xmmreg
mem,xmmreg
Xxmmreg,mem
xmmreg,xmmreg
mmxreg,xmmreg
xmmreg,xmmreg
xmmreg,xmmreg
mem,xmmreg
Xxmmreg,mem
Xxmmreg,rm64
rmé64,xmmreg
Xxmmreg,mmxreg
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
mmxreg,mmxrm

WILLAMETTE,SSE2,SD
WILLAMETTE,SSE2,SD
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
X64,SSE2
X64,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,MMX

166

PADDQ
PADDSB
PADDSW
PADDUSB
PADDUSW
PAND
PANDN
PAVGB
PAVGW
PCMPEQB
PCMPEQW
PCMPEQD
PCMPGTB
PCMPGTW
PCMPGTD
PEXTRW
PINSRW
PINSRW
PINSRW
PINSRW
PMADDWD
PMAXSW
PMAXUB
PMINSW
PMINUB
PMOVMSKB
PMULHUW
PMULHW
PMULLW
PMULUDQ
PMULUDQ
POR
PSADBW
PSHUFD
PSHUFD
PSHUFHW
PSHUFHW
PSHUFLW
PSHUFLW
PSLLDQ
PSLLW
PSLLW
PSLLD
PSLLD
PSLLQ
PSLLQ
PSRAW
PSRAW
PSRAD

xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
Xxmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
reg32,xmmreg,imm
xmmreg,regl16,imm
Xxmmreg,reg32,imm
Xxmmreg,mem,imm
Xmmreg,mem16,imm
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
reg32,xmmreg
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm
mmxreg,mmxrm
xmmreg,xmmrm
xmmreg,xmmrm
xmmreg,xmmrm

Xxmmreg,xmmreg,imm

Xxmmreg,mem,imm

Xxmmreg,xmmreg,imm

Xxmmreg,mem,imm

Xxmmreg,xmmreg,imm

Xxmmreg,mem,imm

xmmreg,imm
Xxmmreg,xmmrm
Xxmmreg,imm
Xxmmreg,xmmrm
Xxmmreg,imm
Xxmmreg,xmmrm
Xxmmreg,imm

Xxmmreg,xmmrm

xmmreg,imm
Xmmreg,xmmrm

WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,ND
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE22
WILLAMETTE,SSE2
WILLAMETTE,SSE22
WILLAMETTE,SSE2
WILLAMETTE,SSE22
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,S0O

WILLAMETTE,SSE2,AR1

WILLAMETTE,SSE2,S0O

WILLAMETTE,SSE2,AR1

WILLAMETTE,SSE2,S0O

WILLAMETTE,SSE2,AR1

WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,SO

PSRAD Xxmmreg,imm
PSRLDQ xmmreg,imm
PSRLW xmmreg,xmmrm
PSRLW Xxmmreg,imm
PSRLD Xxmmreg,xmmrm
PSRLD xmmreg,imm
PSRLQ xmmreg,xmmrm
PSRLQ Xxmmreg,imm
PSUBB xmmreg,xmmrm
PSUBW xmmreg,xmmrm
PSUBD xmmreg,xmmrm
PSUBQ mmxreg,mmxrm
PSUBQ xmmreg,xmmrm
PSUBSB xmmreg,xmmrm
PSUBSW xmmreg,xmmrm
PSUBUSB xmmreg,xmmrm
PSUBUSW xmmreg,xmmrm
PUNPCKHBW xmmreg,xmmrm
PUNPCKHWD xmmreg,xmmrm
PUNPCKHDQ xmmreg,xmmrm
PUNPCKHQDQ xmmreg,xmmrm
PUNPCKLBW xmmreg,xmmrm
PUNPCKLWD xmmreg,xmmrm
PUNPCKLDQ xmmreg,xmmrm
PUNPCKLQDQ xmmreg,xmmrm
PXOR xmmreg,xmmrm

WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO

B.1.11 Willamette Streaming SIMD instructions (SSE2)

ADDPD xmmreg,xmmrm
ADDSD xmmreg,xmmrm
ANDNPD xmmreg,xmmrm
ANDPD xmmreg,xmmrm
CMPEQPD xmmreg,xmmrm
CMPEQSD xmmreg,xmmrm
CMPLEPD xmmreg,xmmrm
CMPLESD xmmreg,xmmrm
CMPLTPD xmmreg,xmmrm
CMPLTSD xmmreg,xmmrm
CMPNEQPD xmmreg,xmmrm
CMPNEQSD xmmreg,xmmrm
CMPNLEPD xmmreg,xmmrm
CMPNLESD xmmreg,xmmrm
CMPNLTPD xmmreg,xmmrm
CMPNLTSD xmmreg,xmmrm
CMPORDPD xmmreg,xmmrm
CMPORDSD xmmreg,xmmrm
CMPUNORDPD xmmreg,xmmrm
CMPUNORDSD xmmreg,xmmrm
CMPPD xmmreg,xmmrm128,

WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2
imm8 WILLAMETTE,SSE2

167

168

CMPSD
COMISD
CVvTDQ2PD
CVTDQ2PS
CVTPD2DQ
CVTPD2PI
CVTPD2PS
CVTPI2PD
CVTPS2DQ
CVTPS2PD
CVTSD2SI
CVTSD2SI
CVTSD2SI
CVTSD2SI
CVTSD2SS
CVTSI2SD
CVTSI2SD
CVTSI2SD
CVTSS2SD
CVTTPD2PI
CVTTPD2DQ
CVTTPS2DQ
CVTTSD2SI
CVTTSD2SI
CVTTSD2SI
CVTTSD2SI
DIVPD
DIVSD
MAXPD
MAXSD
MINPD
MINSD
MOVAPD
MOVAPD
MOVAPD
MOVAPD
MOVHPD
MOVHPD
MOVLPD
MOVLPD
MOVMSKPD
MOVMSKPD
MOVSD
MOVSD
MOVSD
MOVSD
MOVUPD
MOVUPD
MOVUPD

xmmreg,xmmrm128,imm8 WILLAMETTE,SSE2

Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm

mmxreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,mmxrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
reg32,xmmreg
reg32,mem
reg64,xmmreg
reg64,mem
Xxmmreg,xmmrm
Xxmmreg,mem
xmmreg,rm32
xmmreg,rm64
Xxmmreg,xmmrm
mmxreg,xmmrm

xmmreg,xmmrm
xmmreg,xmmrm

reg32,xmmreg
reg32,mem
reg64,xmmreg
reg64,mem
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmreg
Xxmmreg,xmmreg
mem,xmmreg
Xxmmreg,mem
mem,xmmreg
Xxmmreg,mem
mem,xmmreg
Xxmmreg,mem
reg32,xmmreg
reg64,xmmreg
Xxmmreg,xmmreg
Xxmmreg,xmmreg
mem64,xmmreg
Xxmmreg,memo64
Xxmmreg,xmmreg
Xxmmreg,xmmreg
mem,xmmreg

WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,S0O

WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,AR1
X64,SSE2,AR1
X64,SSE2,AR1
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SD,AR1,ND
WILLAMETTE,SSE2,SD,AR1
X64,SSE2,AR1
WILLAMETTE,SSE2,SD
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,AR1
X64,SSE2,AR1
X64,SSE2,AR1
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0O
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2

WILLAMETTE,SSE2,SO

WILLAMETTE,SSE2,SO

WILLAMETTE,SSE2

WILLAMETTE,SSE2

WILLAMETTE,SSE2

WILLAMETTE,SSE2
WILLAMETTE,SSE2
X64,SSE2

WILLAMETTE,SSE2

WILLAMETTE,SSE2

WILLAMETTE,SSE2

WILLAMETTE,SSE2

WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0O

MOVUPD Xxmmreg,mem
MULPD xmmreg,xmmrm
MULSD xmmreg,xmmrm
ORPD xmmreg,xmmrm
SHUFPD Xxmmreg,xmmreg,imm
SHUFPD Xxmmreg,mem,imm
SQRTPD xmmreg,xmmrm
SQRTSD xmmreg,xmmrm
SUBPD xmmreg,xmmrm
SUBSD xmmreg,xmmrm
UCOMISD xmmreg,xmmrm
UNPCKHPD xmmreg,xmmrm2128
UNPCKLPD xmmreg,xmmrm2128
XORPD xmmreg,xmmrm2128

WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2

B.1.12 Prescott New Instructions (SSE3)

ADDSUBPD xmmreg,xmmrm PRESCOTT,SSE3,S0O

ADDSUBPS xmmreg,xmmrm PRESCOTT,SSE3,S0

HADDPD xmmreg,xmmrm PRESCOTT,SSE3,S0

HADDPS xmmreg,xmmrm PRESCOTT,SSE3,SO

HSUBPD xmmreg,xmmrm PRESCOTT,SSE3,SO

HSUBPS xmmreg,xmmrm PRESCOTT,SSE3,S0O

LDDQU Xxmmreg,mem PRESCOTT,SSE3,S0O

MOVDDUP xmmreg,xmmrm PRESCOTT,SSES3

MOVSHDUP xmmreg,xmmrm PRESCOTT,SSES3

MOVSLDUP xmmreg,xmmrm PRESCOTT,SSES3
B.1.13 VMX Instructions

VMCALL VMX

VMCLEAR mem VMX

VMFUNC VMX

VMLAUNCH VMX

VMLOAD X64,VMX

VMMCALL X64,VMX

VMPTRLD mem VMX

VMPTRST mem VMX

VMREAD rm32,reg32 VMX,NOLONG,SD

VMREAD rmé64,reg64 X64,VMX

VMRESUME VMX

VMRUN X64,VMX

VMSAVE X64,VMX

VMWRITE reg32,rm32 VMX,NOLONG,SD

VMWRITE reg64,rmé4 X64,VMX

VMXOFF VMX

VMXON mem VMX

169

B.1.14 Extended Page Tables VMX instructions

INVEPT
INVEPT
INVVPID
INVVPID

reg32,mem
reg64,mem
reg32,mem
reg64,mem

VMX,SO,NOLONG
VMX,SO,LONG
VMX,SO,NOLONG
VMX,SO,LONG

B.1.15 Tejas New Instructions (SSSE3)

PABSB
PABSB
PABSW
PABSW
PABSD
PABSD
PALIGNR
PALIGNR
PHADDW
PHADDW
PHADDD
PHADDD
PHADDSW
PHADDSW
PHSUBW
PHSUBW
PHSUBD
PHSUBD
PHSUBSW
PHSUBSW

PMADDUBSW
PMADDUBSW
PMULHRSW
PMULHRSW

PSHUFB
PSHUFB
PSIGNB
PSIGNB
PSIGNW
PSIGNW
PSIGND
PSIGND

mmxreg,mmxrm
xmmreg,xmmrm
mmxreg,mmxrm
xmmreg,xmmrm
mmxreg,mmxrm
xmmreg,Xxmmrm

mmxreg,mmxrm,imm
Xxmmreg,xmmrm,imm

mmxreg,mmxrm
xmmreg,xmmrm
mmxreg,mmxrm
xmmreg,xmmrm
mmxreg,mmxrm
xmmreg,xmmrm
mmxreg,mmxrm
xmmreg,Xxmmrm
mmxreg,mmxrm
xmmreg,xmmrm
mmxreg,mmxrm
xmmreg,xmmrm
mmxreg,mmxrm
xmmreg,Xxmmrm
mmxreg,mmxrm
xmmreg,Xxmmrm
mmxreg,mmxrm
xmmreg,xmmrm
mmxreg,mmxrm
xmmreg,xmmrm
mmxreg,mmxrm
xmmreg,xmmrm
mmxreg,mmxrm
xmmreg,Xxmmrm

B.1.16 AMD SSE4A

170

EXTRQ
EXTRQ
INSERTQ
INSERTQ
MOVNTSD
MOVNTSS

xmmreg,imm,imm
Xxmmreg,xmmreg
Xxmmreg,xmmreg,im
Xxmmreg,xmmreg
mem,xmmreg
mem,xmmreg

SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3

SSE4A,AMD
SSE4A,AMD
m,imm SSE4A,AMD
SSE4A,AMD
SSE4A ,AMD
SSE4A,AMD,SD

B.1.17 New instructions in Barcelona

LZCNT
LZCNT
LZCNT

regl6,rmie6 P6,AMD
reg32,rm32 P6,AMD
reg64,rme4 X64,AMD

B.1.18 Penryn New Instructions (SSE4.1)

BLENDPD Xxmmreg,xmmrm,imm SSE41
BLENDPS Xxmmreg,xmmrm,imm SSE41
BLENDVPD xmmreg,xmmrm,xmmO SSE41
BLENDVPS Xxmmreg,xmmrm,xmmO SSE41
DPPD Xxmmreg,xmmrm,imm SSE41
DPPS Xxmmreg,xmmrm,imm SSE41
EXTRACTPS rm32,xmmreg,imm SSE41
EXTRACTPS reg64,xmmreg,imm SSE41,X64
INSERTPS Xxmmreg,xmmrm,imm SSE41,SD
MOVNTDQA Xxmmreg,mem SSE41
MPSADBW Xxmmreg,xmmrm,imm SSE41
PACKUSDW xmmreg,xmmrm SSE41
PBLENDVB Xxmmreg,xmmrm,xmmO SSE41
PBLENDW Xxmmreg,xmmrm,imm SSE41
PCMPEQQ xmmreg,xmmrm SSE41
PEXTRB reg32,xmmreg,imm SSE41
PEXTRB mem8,xmmreg,imm SSE41
PEXTRB reg64,xmmreg,imm SSE41,X64
PEXTRD rm32,xmmreg,imm SSE41
PEXTRQ rm64,xmmreg,imm SSE41,X64
PEXTRW reg32,xmmreg,imm SSE41
PEXTRW mem16,xmmreg,imm SSE41
PEXTRW reg64,xmmreg,imm SSE41,X64
PHMINPOSUW xmmreg,xmmrm SSE41
PINSRB Xxmmreg,mem,imm SSE41
PINSRB Xxmmreg,rm8,imm SSE41
PINSRB xmmreg,reg32,imm SSE41
PINSRD Xxmmreg,mem,imm SSE41
PINSRD xmmreg,rm32,imm SSE41
PINSRQ Xxmmreg,mem,imm SSE41,X64
PINSRQ Xxmmreg,rm64,imm SSE41,X64
PMAXSB xmmreg,xmmrm SSE41
PMAXSD xmmreg,xmmrm SSE41
PMAXUD xmmreg,xmmrm SSE41
PMAXUW xmmreg,xmmrm SSE41
PMINSB xmmreg,xmmrm SSE41
PMINSD xmmreg,xmmrm SSE41
PMINUD xmmreg,xmmrm SSE41
PMINUW xmmreg,xmmrm SSE41
PMOVSXBW xmmreg,xmmrm SSE41
PMOVSXBD xmmreg,xmmrm SSE41,SD
PMOVSXBQ xmmreg,xmmrm SSE41,SW

171

PMOVSXWD
PMOVSXWQ
PMOVSXDQ
PMOVZXBW
PMOVZXBD
PMOVZXBQ
PMOVZXWD
PMOVZXWQ
PMOVZXDQ
PMULDQ
PMULLD
PTEST
ROUNDPD
ROUNDPS
ROUNDSD
ROUNDSS

Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm
Xmmreg,xmmrm
xmmreg,xmmrm
Xmmreg,xmmrm
Xmmreg,xmmrm
Xmmreg,xmmrm
Xxmmreg,xmmrm
Xxmmreg,xmmrm,imm
Xxmmreg,xmmrm,imm
Xxmmreg,xmmrm,imm
Xxmmreg,xmmrm,imm

SSE41
SSE41,SD
SSE41
SSE41
SSE41,SD
SSE41,SW
SSE41
SSE41,SD
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41

B.1.19 Nehalem New Instructions (SSE4.2)

CRC32
CRC32
CRC32
CRC32
CRC32
PCMPESTRI
PCMPESTRM
PCMPISTRI
PCMPISTRM
PCMPGTQ
POPCNT
POPCNT
POPCNT

B.1.20 Intel SMX
GETSEC

reg32,rm8 SSE42
reg32,rml6 SSE42
reg32,rm32 SSE42
reg64,rm8 SSE42,X64
reg64,rme4 SSE42,X64
Xxmmreg,xmmrm,imm SSE42
xmmreg,xmmrm,imm SSE42
Xxmmreg,xmmrm,imm SSE42
Xxmmreg,xmmrm,imm SSE42
xmmreg,xmmrm SSE42
regl6,rm16 NEHALEM,SW
reg32,rm32 NEHALEM,SD
reg64,rmé4 NEHALEM,X64

KATMAI

B.1.21 Geode (Cyrix) 3DNow! additions

PFRCPV
PFRSQRTV

mmxreg,mmxrm
mmxreg,mmxrm

B.1.22 Intel new instructions in ???

MOVBE
MOVBE
MOVBE
MOVBE
MOVBE
MOVBE

172

regl6,mem1l6
reg32,mem32
reg64,memo64
mem16,regl6
mema32,reg32
memo64,reg64

PENT,3DNOW,CYRIX
PENT,3DNOW,CYRIX

NEHALEM
NEHALEM
NEHALEM
NEHALEM
NEHALEM
NEHALEM

AESENC

AESENCLAST

AESDEC

AESDECLAST

AESIMC

AESKEYGENASSIST xmmreg,xmmrm128,imm8
B.1.24 Intel AVX AES instructions

VAESENC

VAESENCLAST

VAESDEC

VAESDECLAST

VAESIMC

VAESKEYGENASSIST xmmreg,xmmrm128,imm8
B.1.25 Intel AVX instructions

B.1.23 Intel AES instructions

Xxmmreg,xmmrm128 SSE,WESTMERE

Xxmmreg,xmmrm128 SSE,WESTMERE
Xxmmreg,xmmrm128 SSE,WESTMERE

Xxmmreg,xmmrm128 SSE,WESTMERE
xmmreg,xmmrm128 SSE,WESTMERE

SSE,WESTMERE

xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
xmmreg,xmmrm128 AVX,SANDYBRIDGE
AVX,SANDYBRIDGE

VADDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VADDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE

VADDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE

VADDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VADDSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE

VADDSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VADDSUBPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VADDSUBPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VADDSUBPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VADDSUBPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VANDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VANDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VANDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE

VANDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VANDNPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VANDNPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VANDNPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VANDNPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VBLENDPD xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VBLENDPD ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VBLENDPS xmmreg,xmmreg*,xmmrm2128,imm8 AVX,SANDYBRIDGE
VBLENDPS ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VBLENDVPD xmmreg,xmmreg*,xmmrm128,xmmreg AVX,SANDYBRIDGE
VBLENDVPD ymmreg,ymmreg*,ymmrm256,ymmreg AVX,SANDYBRIDGE
VBLENDVPS xmmreg,xmmreg*,xmmrm128,xmmreg AVX,SANDYBRIDGE
VBLENDVPS ymmreg,ymmreg*,ymmrm256,ymmreg AVX,SANDYBRIDGE
VBROADCASTSS xmmreg,mem32 AVX,SANDYBRIDGE

VBROADCASTSS ymmreg,mema32
VBROADCASTSD ymmreg,mem64
VBROADCASTF128 ymmreg,mem128
VCMPEQ_OSPD

AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE

xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE

174

VCMPEQ_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLT_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLT_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLTPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLTPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLE_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLE_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORD_QPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORD_QPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLT_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLT_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLTPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLTPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLE_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLE_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORD_QPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORD_QPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGE_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGE_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGT_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGT_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGTPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGTPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSE_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSE_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGE_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGE_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE

VCMPGEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGT_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGT_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGTPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGTPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUE_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUE_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLT_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLT_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLE_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLE_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORD_SPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORD_SPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLT_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLT_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLE_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLE_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORD_SPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORD_SPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGE_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGE_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGT_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGT_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSE_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSE_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGE_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGE_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGT_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGT_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUE_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUE_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPPD xmmreg,xmmreg*,xmmrm2128,imm8 AVX,SANDYBRIDGE
VCMPPD ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VCMPEQ_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLT_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE

175

176

VCMPLT_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLTPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLTPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLE_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLE_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORD_QPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORD_QPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLT_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLT_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLTPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLTPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLE_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLE_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORD_QPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORD_QPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGE_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGE_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGT_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGT_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGTPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGTPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSE_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSE_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGE_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGE_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGT_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGT_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE

VCMPGTPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGTPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUE_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUE_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLT_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLT_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLE_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLE_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORD_SPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORD_SPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLT_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLT_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLE_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLE_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORD_SPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORD_SPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGE_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGE_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGT_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGT_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSE_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSE_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGE_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGE_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGT_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGT_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUE_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUE_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPPS xmmreg,xmmreg*,xmmrm2128,imm8 AVX,SANDYBRIDGE
VCMPPS ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VCMPEQ_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLT_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLE_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORD_QSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORDSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE

177

178

VCMPNEQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLT_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLE_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORD_QSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORDSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGE_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGT_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSE_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGE_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGT_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUE_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLT_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLE_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORD_SSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLT_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLE_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORD_SSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGE_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGT_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSE_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGE_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGT_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUE_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPSD xmmreg,xmmreg*,xmmrm64,imm8 AVX,SANDYBRIDGE
VCMPEQ_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLT_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLTSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLE_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLESS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORD_QSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORDSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLT_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE

VCMPNLTSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLE_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLESS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORD_QSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORDSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGE_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGESS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGT_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGTSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSE_OQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSESS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_OQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGE_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGESS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGT_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGTSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUE_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUESS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLT_OQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLE_OQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORD_SSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLT_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLE_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORD_SSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGE_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGT_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSE_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGE_OQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGT_0OQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUE_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE

VCMPSS xmmreg,xmmreg*,xmmrm64,imm8 AVX,SANDYBRIDGE
VCOMISD Xxmmreg,xmmrm64 AVX,SANDYBRIDGE
VCOMISS xmmreg,xmmrm32 AVX,SANDYBRIDGE
VCVTDQ2PD Xxmmreg,xmmrm64 AVX,SANDYBRIDGE
VCVTDQ2PD ymmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTDQ2PS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTDQ2PS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VCVTPD2DQ xmmreg,xmmreg AVX,SANDYBRIDGE
VCVTPD2DQ Xxmmreg,mem128 AVX,SANDYBRIDGE,SO
VCVTPD2DQ Xxmmreg,ymmreg AVX,SANDYBRIDGE
VCVTPD2DQ Xxmmreg,mem256 AVX,SANDYBRIDGE,SY
VCVTPD2PS xmmreg,xmmreg AVX,SANDYBRIDGE
VCVTPD2PS Xxmmreg,mem128 AVX,SANDYBRIDGE,SO
VCVTPD2PS xmmreg,ymmreg AVX,SANDYBRIDGE

179

180

VCVTPD2PS Xxmmreg,mem256 AVX,SANDYBRIDGE,SY
VCVTPS2DQ xmmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTPS2DQ ymmreg,ymmrm256 AVX,SANDYBRIDGE
VCVTPS2PD Xxmmreg,xmmrm64 AVX,SANDYBRIDGE
VCVTPS2PD ymmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTSD2SI reg32,xmmrm64 AVX,SANDYBRIDGE
VCVTSD2SI reg64,xmmrme64 AVX,SANDYBRIDGE,LONG
VCVTSD2SS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCVTSI2SD xmmreg,xmmreg*,rm32 AVX,SANDYBRIDGE,SD
VCVTSI2SD xmmreg,xmmreg*,mem32 AVX,SANDYBRIDGE,ND,SD
VCVTSI2SD xmmreg,xmmreg*,rm64 AVX,SANDYBRIDGE,LONG
VCVTSI2SS xmmreg,xmmreg*,rm32 AVX,SANDYBRIDGE,SD
VCVTSI2SS xmmreg,xmmreg*,mem32 AVX,SANDYBRIDGE,ND,SD
VCVTSI2SS xmmreg,xmmreg*,rm64 AVX,SANDYBRIDGE,LONG
VCVTSS2SD xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCVTSS2SI reg32,xmmrma32 AVX,SANDYBRIDGE
VCVTSS2SI reg64,xmmrma32 AVX,SANDYBRIDGE,LONG
VCVTTPD2DQ Xxmmreg,xmmreg AVX,SANDYBRIDGE
VCVTTPD2DQ Xxmmreg,mem128 AVX,SANDYBRIDGE,SO
VCVTTPD2DQ Xxmmreg,ymmreg AVX,SANDYBRIDGE
VCVTTPD2DQ xmmreg,mem256 AVX,SANDYBRIDGE,SY
VCVTTPS2DQ Xxmmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTTPS2DQ ymmreg,ymmrm256 AVX,SANDYBRIDGE
VCVTTSD2SI reg32,xmmrm64 AVX,SANDYBRIDGE
VCVTTSD2SI reg64,xmmrme64 AVX,SANDYBRIDGE,LONG
VCVTTSS2SI reg32,xmmrma32 AVX,SANDYBRIDGE
VCVTTSS2SI reg64,xmmrma32 AVX,SANDYBRIDGE,LONG
VDIVPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VDIVPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VDIVPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VDIVPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VDIVSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VDIVSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VDPPD xmmreg,xmmreg*,xmmrm2128,imm8 AVX,SANDYBRIDGE
VDPPS xmmreg,xmmreg*,xmmrm2128,imm8 AVX,SANDYBRIDGE
VDPPS ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VEXTRACTF128 xmmrm128,ymmreg,imm8 AVX,SANDYBRIDGE
VEXTRACTPS rm32,xmmreg,imm8 AVX,SANDYBRIDGE
VHADDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VHADDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VHADDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VHADDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VHSUBPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VHSUBPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VHSUBPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VHSUBPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VINSERTF128 ymmreg,ymmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VINSERTPS xmmreg,xmmreg*,xmmrm32,imm8 AVX,SANDYBRIDGE
VLDDQU Xxmmreg,mem128 AVX,SANDYBRIDGE

VLDQQU ymmreg,mem256 AVX,SANDYBRIDGE
VLDDQU ymmreg,mem256 AVX,SANDYBRIDGE
VLDMXCSR mema32 AVX,SANDYBRIDGE
VMASKMOVDQU xmmreg,xmmreg AVX,SANDYBRIDGE
VMASKMOVPS xmmreg,xmmreg,mem128 AVX,SANDYBRIDGE
VMASKMOVPS ymmreg,ymmreg,mem256 AVX,SANDYBRIDGE
VMASKMOVPS mem128,xmmreg,xmmreg AVX,SANDYBRIDGE,SO
VMASKMOVPS mem256,ymmreg,ymmreg AVX,SANDYBRIDGE,SY
VMASKMOVPD xmmreg,xmmreg,mem128 AVX,SANDYBRIDGE
VMASKMOVPD ymmreg,ymmreg,mem256 AVX,SANDYBRIDGE
VMASKMOVPD mem128,xmmreg,xmmreg AVX,SANDYBRIDGE
VMASKMOVPD mem256,ymmreg,ymmreg AVX,SANDYBRIDGE
VMAXPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMAXPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMAXPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMAXPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMAXSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VMAXSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VMINPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMINPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMINPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMINPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMINSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VMINSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VMOVAPD xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVAPD xmmrm2128,xmmreg AVX,SANDYBRIDGE
VMOVAPD ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVAPD ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVAPS Xxmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVAPS xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVAPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVAPS ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVD xmmreg,rm32 AVX,SANDYBRIDGE

VMOVD rm32,xmmreg AVX,SANDYBRIDGE

VMOVQ xmmreg,xmmrm64 AVX,SANDYBRIDGE
VMOVQ xmmrm64,xmmreg AVX,SANDYBRIDGE
VMOVQ xmmreg,rm64 AVX,SANDYBRIDGE,LONG
VMOVQ rmeé4,xmmreg AVX,SANDYBRIDGE,LONG
VMOVDDUP Xxmmreg,xmmrmo64 AVX,SANDYBRIDGE
VMOVDDUP ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVDQA Xxmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVDQA xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVQQA ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVQQA ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVDQA ymmreg,ymmrm AVX,SANDYBRIDGE
VMOVDQA ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVDQU xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVDQU xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVQQU ymmreg,ymmrm256 AVX,SANDYBRIDGE

181

182

VMOVQQU
VMOVDQU
VMOVDQU
VMOVHLPS
VMOVHPD
VMOVHPD
VMOVHPS
VMOVHPS
VMOVLHPS
VMOVLPD
VMOVLPD
VMOVLPS
VMOVLPS
VMOVMSKPD
VMOVMSKPD
VMOVMSKPD
VMOVMSKPD
VMOVMSKPS
VMOVMSKPS
VMOVMSKPS
VMOVMSKPS
VMOVNTDQ
VMOVNTQQ
VMOVNTDQ
VMOVNTDQA
VMOVNTPD
VMOVNTPD
VMOVNTPS
VMOVNTPS
VMOVSD
VMOVSD
VMOVSD
VMOVSD
VMOVSHDUP
VMOVSHDUP
VMOVSLDUP
VMOVSLDUP
VMOVSS
VMOVSS
VMOVSS
VMOVSS
VMOVUPD
VMOVUPD
VMOVUPD
VMOVUPD
VMOVUPS
VMOVUPS
VMOVUPS
VMOVUPS

ymmrm256,ymmreg
ymmreg,ymmrm256
ymmrm256,ymmreg

AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE

xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
xmmreg,xmmreg*,mem64 AVX,SANDYBRIDGE
mem64,xmmreg AVX,SANDYBRIDGE
xmmreg,xmmreg*,mem64 AVX,SANDYBRIDGE
meme64,xmmreg AVX,SANDYBRIDGE
xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
xmmreg,xmmreg*,mem64 AVX,SANDYBRIDGE
mem64,xmmreg AVX,SANDYBRIDGE
xmmreg,xmmreg*,mem64 AVX,SANDYBRIDGE
mem64,xmmreg AVX,SANDYBRIDGE

reg64,xmmreg
reg32,xmmreg
reg64,ymmreg
reg32,ymmreg
reg64,xmmreg
reg32,xmmreg
reg64,ymmreg
reg32,ymmreg
mem128,xmmreg
memz256,ymmreg
mem256,ymmreg
Xxmmreg,mem128
mem128,xmmreg
memz256,ymmreg
mem128,xmmreg
mem128,ymmreg

AVX,SANDYBRIDGE,LONG
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE,LONG
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE,LONG
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE,LONG
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE

xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
xmmreg,mem64 AVX,SANDYBRIDGE
xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
mem64,xmmreg AVX,SANDYBRIDGE
xmmreg,xmmrm2128 AVX,SANDYBRIDGE
ymmreg,ymmrm256 AVX,SANDYBRIDGE
xmmreg,xmmrm128 AVX,SANDYBRIDGE
ymmreg,ymmrm256 AVX,SANDYBRIDGE
xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
Xxmmreg,mema32 AVX,SANDYBRIDGE
xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
mema32,xmmreg AVX,SANDYBRIDGE

xmmreg,xmmrm128
Xxmmrm128,xmmreg
ymmreg,ymmrm256
ymmrm256,ymmreg
xmmreg,xmmrm2128
xmmrm128,xmmreg
ymmreg,ymmrm256
ymmrm256,ymmreg

AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE

VMPSADBW xmmreg,xmmreg*,xmmrm2128,imm8 AVX,SANDYBRIDGE
VMULPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMULPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMULPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMULPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMULSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VMULSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VORPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VORPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VORPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VORPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VPABSB xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPABSW Xxmmreg,xmmrm128 AVX,SANDYBRIDGE
VPABSD Xxmmreg,xmmrm128 AVX,SANDYBRIDGE
VPACKSSWB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPACKSSDW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPACKUSWB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPACKUSDW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDUSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDUSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPALIGNR xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VPAND xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPANDN xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPAVGB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPAVGW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPBLENDVB xmmreg,xmmreg*,xmmrm128,xmmreg AVX,SANDYBRIDGE
VPBLENDW xmmreg,xmmreg*,xmmrm2128,imm8 AVX,SANDYBRIDGE
VPCMPESTRI xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPCMPESTRM xmmreg,xmmrm2128,imm8 AVX,SANDYBRIDGE
VPCMPISTRI xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPCMPISTRM xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPCMPEQB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPEQW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPEQD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPEQQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPGTB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPGTW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPGTD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPGTQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPERMILPD xmmreg,xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPERMILPD ymmreg,ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPERMILPD xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPERMILPD ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE

183

184

VPERMILPS xmmreg,xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPERMILPS ymmreg,ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPERMILPS xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPERMILPS ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VPERM2F128 ymmreg,ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VPEXTRB reg64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPEXTRB reg32,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRB mem8,xmmreg,imm38 AVX,SANDYBRIDGE
VPEXTRW reg64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPEXTRW reg32,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRW reg64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPEXTRW reg32,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRW mem16,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRD reg64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPEXTRD rm32,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRQ rm64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPHADDW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHADDD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHADDSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHMINPOSUW xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPHSUBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHSUBD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHSUBSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPINSRB xmmreg,xmmreg*,mem38,imm8 AVX,SANDYBRIDGE
VPINSRB xmmreg,xmmreg*,rm8,imm8 AVX,SANDYBRIDGE
VPINSRB xmmreg,xmmreg*,reg32,imm8 AVX,SANDYBRIDGE
VPINSRW xmmreg,xmmreg*,mem16,imm8 AVX,SANDYBRIDGE
VPINSRW xmmreg,xmmreg*,rm16,imm8 AVX,SANDYBRIDGE
VPINSRW xmmreg,xmmreg*,reg32,imm8 AVX,SANDYBRIDGE
VPINSRD xmmreg,xmmreg*,mem32,imm8 AVX,SANDYBRIDGE
VPINSRD xmmreg,xmmreg*,rm32,imm8 AVX,SANDYBRIDGE
VPINSRQ xmmreg,xmmreg*,mem64,imm8 AVX,SANDYBRIDGE,LONG
VPINSRQ xmmreg,xmmreg*,rm64,imm8 AVX,SANDYBRIDGE,LONG
VPMADDWD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMADDUBSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXSD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXUB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXUW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXUD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINSD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINUB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINUW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINUD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMOVMSKB reg64,xmmreg AVX,SANDYBRIDGE,LONG
VPMOVMSKB reg32,xmmreg AVX,SANDYBRIDGE

VPMOVSXBW
VPMOVSXBD
VPMOVSXBQ
VPMOVSXWD
VPMOVSXWQ
VPMOVSXDQ
VPMOVZXBW
VPMOVZXBD
VPMOVZXBQ
VPMOVZXWD
VPMOVZXWQ
VPMOVZXDQ
VPMULHUW
VPMULHRSW
VPMULHW
VPMULLW
VPMULLD

AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
AVX,SANDYBRIDGE
xmmreg,xmmrm32 AVX,SANDYBRIDGE
Xxmmreg,xmmrmo64 AVX,SANDYBRIDGE
xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE

xmmreg,xmmrme64
xmmreg,xmmrm32
Xxmmreg,xmmrm216
xmmreg,xmmrmo64
xmmreg,xmmrm32
xmmreg,xmmrmo64
xmmreg,xmmrmo64
xmmreg,xmmrm32
xmmreg,xmmrm216
Xxmmreg,xmmrme64

xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE

xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE

VPMULUDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMULDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPOR xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSADBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSHUFB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSHUFD xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPSHUFHW xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPSHUFLW xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPSIGNB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSIGNW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSIGND xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSLLDQ xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRLDQ xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSLLW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSLLW xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSLLD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSLLD xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSLLQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSLLQ xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRAW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRAW xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRAD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRAD xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRLW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRLW xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRLD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRLD xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRLQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRLQ xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPTEST Xxmmreg,xmmrm128 AVX,SANDYBRIDGE
VPTEST ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPSUBB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE

185

186

VPSUBW

VPSUBD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBUSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBUSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKHBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKHWD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKHDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKHQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKLBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKLWD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKLDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKLQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPXOR xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VRCPPS Xxmmreg,xmmrm128 AVX,SANDYBRIDGE

VRCPPS ymmreg,ymmrm256 AVX,SANDYBRIDGE

VRCPSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VRSQRTPS Xxmmreg,xmmrm128 AVX,SANDYBRIDGE
VRSQRTPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VRSQRTSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VROUNDPD xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VROUNDPD ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VROUNDPS xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VROUNDPS ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VROUNDSD xmmreg,xmmreg*,xmmrm64,imm8 AVX,SANDYBRIDGE
VROUNDSS xmmreg,xmmreg*,xmmrm32,imm8 AVX,SANDYBRIDGE
VSHUFPD xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VSHUFPD ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VSHUFPS xmmreg,xmmreg*,xmmrm2128,imm8 AVX,SANDYBRIDGE
VSHUFPS ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VSQRTPD xmmreg,xmmrm128 AVX,SANDYBRIDGE
VSQRTPD ymmreg,ymmrm256 AVX,SANDYBRIDGE
VSQRTPS Xxmmreg,xmmrm128 AVX,SANDYBRIDGE
VSQRTPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VSQRTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VSQRTSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VSTMXCSR mema32 AVX,SANDYBRIDGE

VSUBPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VSUBPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VSUBPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VSUBPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VSUBSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VSUBSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VTESTPS Xxmmreg,xmmrm128 AVX,SANDYBRIDGE
VTESTPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VTESTPD xmmreg,xmmrm128 AVX,SANDYBRIDGE
VTESTPD ymmreg,ymmrm256 AVX,SANDYBRIDGE

xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE

VUCOMISD Xxmmreg,xmmrm64 AVX,SANDYBRIDGE

VUCOMISS xmmreg,xmmrma32 AVX,SANDYBRIDGE

VUNPCKHPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VUNPCKHPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VUNPCKHPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VUNPCKHPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VUNPCKLPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VUNPCKLPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VUNPCKLPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VUNPCKLPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE

VXORPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VXORPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VXORPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VXORPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VZEROALL AVX,SANDYBRIDGE
VZEROUPPER AVX,SANDYBRIDGE

B.1.26 Intel Carry—Less Multiplication instructions (CLMUL)

PCLMULLQLQDQ xmmreg,xmmrm128 SSE,WESTMERE
PCLMULHQLQDQ xmmreg,xmmrm128 SSE,WESTMERE
PCLMULLQHQDQ xmmreg,xmmrm128 SSE,WESTMERE
PCLMULHQHQDQ xmmreg,xmmrm128 SSE,WESTMERE

PCLMULQDQ xmmreg,xmmrm128,imm8 SSE,WESTMERE

B.1.27 Intel AVX Carry—Less Multiplication instructions (CLMUL)

VPCLMULLQLQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCLMULHQLQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCLMULLQHQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCLMULHQHQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCLMULQDQ xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE

B.1.28 Intel Fused Multiply—Add instructions (FMA)

VFMADD132PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD132PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFEMADD132PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFEMADD132PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFEMADD312PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD312PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VEMADD312PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VEMADD312PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFEMADD213PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFEMADD213PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VEMADD213PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VEMADD213PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD123PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD123PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VEMADD123PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFEMADD123PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE

187

188

VFMADD231PS
VFMADD231PS
VFMADD231PD
VFMADD231PD
VFMADD321PS
VFMADD321PS
VFMADD321PD
VFMADD321PD

Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256

FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE

VFMADDSUB132PS
VFMADDSUB132PS
VFMADDSUB132PD
VFMADDSUB132PD
VFMADDSUB312PS
VFMADDSUB312PS
VFMADDSUB312PD
VFMADDSUB312PD
VFMADDSUB213PS
VFMADDSUB213PS
VFMADDSUB213PD
VFMADDSUB213PD
VFMADDSUB123PS
VFMADDSUB123PS
VFMADDSUB123PD
VFMADDSUB123PD
VFMADDSUB231PS
VFMADDSUB231PS
VFMADDSUB231PD
VFMADDSUB231PD
VFMADDSUB321PS
VFMADDSUB321PS
VFMADDSUB321PD
VFMADDSUB321PD

Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256

FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE

VFMSUB132PS
VFMSUB132PS
VFMSUB132PD
VFMSUB132PD
VFMSUB312PS
VFMSUB312PS
VFMSUB312PD
VFMSUB312PD
VFMSUB213PS
VFMSUB213PS
VFMSUB213PD
VFMSUB213PD
VFMSUB123PS
VFMSUB123PS
VFMSUB123PD
VFMSUB123PD
VFMSUB231PS

xmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
xmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
xmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
xmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
xmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
xmmreg,xmmreg,xmmrm128

FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE

VFMSUB231PS
VEMSUB231PD
VEMSUB231PD
VFMSUB321PS
VFMSUB321PS
VFMSUB321PD
VFMSUB321PD

ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256

VFMSUBADD132PS
VFMSUBADD132PS
VFMSUBADD132PD
VFMSUBADD132PD
VFMSUBADD312PS
VFMSUBADD312PS
VFMSUBADD312PD
VFMSUBADD312PD
VFMSUBADDZ213PS
VFMSUBADDZ213PS
VFMSUBADD213PD
VFMSUBADD213PD
VFMSUBADD123PS
VFMSUBADD123PS
VFMSUBADD123PD
VFMSUBADD123PD
VFMSUBADD231PS
VFMSUBADD231PS
VFMSUBADD231PD
VFMSUBADD231PD
VFMSUBADD321PS
VFMSUBADD321PS
VFMSUBADD321PD
VFMSUBADD321PD

Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256

FMA,FUTURE

FMA,FUTURE

FMA,FUTURE

FMA,FUTURE

FMA,FUTURE

FMA,FUTURE

FMA,FUTURE

FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE

VFENMADD132PS
VFENMADD132PS
VENMADD132PD
VENMADD132PD
VFENMADD312PS
VFENMADD312PS
VENMADD312PD
VENMADD312PD
VFENMADD213PS
VFENMADD213PS
VENMADD213PD
VENMADD213PD
VFENMADD123PS
VFENMADD123PS
VENMADD123PD
VENMADD123PD
VFENMADD231PS
VFENMADD231PS

Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
xmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
xmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
xmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
xmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256

FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE

189

190

VENMADD231PD
VENMADD231PD
VFENMADD321PS
VFENMADD321PS
VENMADD321PD
VENMADD321PD
VENMSUB132PS
VENMSUB132PS
VENMSUB132PD
VENMSUB132PD
VENMSUB312PS
VENMSUB312PS
VENMSUB312PD
VENMSUB312PD
VENMSUB213PS
VENMSUB213PS
VENMSUB213PD
VENMSUB213PD
VENMSUB123PS
VENMSUB123PS
VENMSUB123PD
VENMSUB123PD
VENMSUB231PS
VENMSUB231PS
VENMSUB231PD
VENMSUB231PD
VENMSUB321PS
VENMSUB321PS
VENMSUB321PD
VENMSUB321PD
VFMADD132SS
VFMADD132SD
VFMADD312SS
VFMADD312SD
VFMADD213SS
VFMADD213SD
VFMADD123SS
VFMADD123SD
VFMADD231SS
VFMADD231SD
VFMADD321SS
VFMADD321SD
VFMSUB132SS
VFMSUB132SD
VFMSUB312SS
VFMSUB312SD
VFMSUB213SS
VFMSUB213SD
VFMSUB123SS

xmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
xmmreg,xmmreg,xmmrm2128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
Xxmmreg,xmmreg,xmmrm128
ymmreg,ymmreg,ymmrm256
xmmreg,xmmreg,xmmrm32
Xxmmreg,xmmreg,xmmrmo64
xmmreg,xmmreg,xmmrm32
Xxmmreg,xmmreg,xmmrmo64
xmmreg,xmmreg,xmmrm32
Xxmmreg,xmmreg,xmmrmo64
xmmreg,xmmreg,xmmrm32
Xxmmreg,xmmreg,xmmrmo64
xmmreg,xmmreg,xmmrm32
Xxmmreg,xmmreg,xmmrmo64
xmmreg,xmmreg,xmmrm32
Xxmmreg,xmmreg,xmmrmo64
xmmreg,xmmreg,xmmrm32
Xxmmreg,xmmreg,xmmrme64
xmmreg,xmmreg,xmmrm32
Xxmmreg,xmmreg,xmmrmo64
xmmreg,xmmreg,xmmrm32
Xxmmreg,xmmreg,xmmrmo64
xmmreg,xmmreg,xmmrm32

FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE
FMA,FUTURE

VEMSUB123SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE

VFEMSUB231SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE

VEMSUB231SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE

VFEMSUB321SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE

VEMSUB321SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE

VENMADD132SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VENMADD132SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VENMADD312SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VENMADD312SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VENMADD213SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VENMADD213SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VENMADD123SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VENMADD123SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VENMADD231SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VENMADD231SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VENMADD321SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VENMADD321SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VENMSUB132SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VENMSUB132SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VENMSUB312SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VENMSUB312SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VENMSUB213SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VENMSUB213SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VENMSUB123SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VENMSUB123SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VENMSUB231SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VENMSUB231SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VENMSUB321SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VENMSUB321SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE

B.1.29 Intel post—-32 nm processor instructions

RDFSBASE reg32 LONG,FUTURE
RDFSBASE reg64 LONG,FUTURE
RDGSBASE reg32 LONG,FUTURE
RDGSBASE reg64 LONG,FUTURE
RDRAND regl6 FUTURE

RDRAND reg32 FUTURE

RDRAND reg64 LONG,FUTURE
WRFSBASE reg32 LONG,FUTURE
WRFSBASE reg64 LONG,FUTURE
WRGSBASE reg32 LONG,FUTURE
WRGSBASE reg64 LONG,FUTURE
VCVTPH2PS ymmreg,xmmrm128 AVX,FUTURE
VCVTPH2PS xmmreg,xmmrmo64 AVX,FUTURE
VCVTPS2PH xmmrm128,ymmreg,imm8 AVX,FUTURE
VCVTPS2PH xmmrm64,xmmreg,imm8 AVX,FUTURE
ADCX reg32,rm32 FUTURE

ADCX reg64,rmé4 LONG,FUTURE

ADOX reg32,rm32 FUTURE

191

ADOX

RDSEED
RDSEED
RDSEED

reg64,rme4 LONG,FUTURE
regl6 FUTURE
reg32 FUTURE
reg64 LONG,FUTURE

B.1.30 VIA (Centaur) security instructions

XSTORE
XCRYPTECB
XCRYPTCBC
XCRYPTCTR
XCRYPTCFB
XCRYPTOFB
MONTMUL
XSHA1
XSHA256

PENT,CYRIX
PENT,CYRIX
PENT,CYRIX
PENT,CYRIX
PENT,CYRIX
PENT,CYRIX

PENT,CYRIX
PENT,CYRIX
PENT,CYRIX

B.1.31 AMD Lightweight Profiling (LWP) instructions

LLWPCB
LLWPCB
SLWPCB
SLWPCB
LWPVAL
LWPVAL
LWPINS

LWPINS

reg32,rm32,imm32
reg64,rm32,imm32

AMD,386
AMD,X64
AMD,386
AMD, X64
AMD,386
AMD, X64
AMD,386
AMD, X64

reg32
reg64
reg32
reg64
reg32,rm32,imm32
reg64,rm32,imm32

B.1.32 AMD XOP and FMA4 instructions (SSE5)

192

VFMADDPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMADDPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSES5
VFMADDPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMADDPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSES5
VFEMADDPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSES5
VFEMADDPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSES5
VFEMADDPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFEMADDPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSES5
VFMADDSD xmmreg,xmmreg*,xmmrm64,xmmreg AMD,SSE5
VFMADDSD xmmreg,xmmreg*, xmmreg,xmmrmé64 AMD,SSE5
VFEMADDSS xmmreg,xmmreg*,xmmrm32,xmmreg AMD,SSE5
VFEMADDSS Xxmmreg,xmmreg*,xmmreg,xmmrm32 AMD,SSE5
VFEMADDSUBPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFEMADDSUBPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFEMADDSUBPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMADDSUBPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VEMADDSUBPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFEMADDSUBPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSES
VFEMADDSUBPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSES5
VFEMADDSUBPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VEMSUBADDPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5

VEMSUBADDPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFEMSUBADDPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFEMSUBADDPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VEMSUBADDPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VEMSUBADDPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSES
VFEMSUBADDPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VEMSUBADDPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMSUBPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSES5
VFMSUBPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSES5
VFMSUBPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSES5
VFMSUBPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSES5
VFEMSUBPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFEMSUBPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSES
VFEMSUBPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFEMSUBPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSES
VFEMSUBSD xmmreg,xmmreg*,xmmrm64,xmmreg AMD,SSE5
VFEMSUBSD Xxmmreg,xmmreg*,xmmreg,xmmrm64 AMD,SSE5
VFEMSUBSS xmmreg,xmmreg*,xmmrm32,xmmreg AMD,SSE5
VFEMSUBSS xmmreg,xmmreg*,xmmreg,xmmrm32 AMD,SSE5
VENMADDPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VENMADDPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VENMADDPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VENMADDPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VENMADDPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VENMADDPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSES
VENMADDPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VENMADDPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSES
VENMADDSD xmmreg,xmmreg*,xmmrm64,xmmreg AMD,SSE5
VENMADDSD xmmreg,xmmreg*,xmmreg,xmmrm6é64 AMD,SSE5
VENMADDSS xmmreg,xmmreg*,xmmrm32,xmmreg AMD,SSE5
VENMADDSS xmmreg,xmmreg*,xmmreg,xmmrm32 AMD,SSE5
VENMSUBPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VENMSUBPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSES
VENMSUBPD xmmreg,xmmreg*, xmmreg,xmmrm128 AMD,SSE5
VENMSUBPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSES
VENMSUBPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VENMSUBPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSES5
VENMSUBPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VENMSUBPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSES5
VENMSUBSD xmmreg,xmmreg*,xmmrmé64,xmmreg AMD,SSE5
VENMSUBSD xmmreg,xmmreg*, xmmreg,xmmrmé64 AMD,SSE5
VENMSUBSS xmmreg,xmmreg*,xmmrm32,xmmreg AMD,SSE5
VENMSUBSS xmmreg,xmmreg*,xmmreg,xmmrm32 AMD,SSE5
VFRCZPD Xxmmreg,xmmrm2128* AMD,SSE5

VFRCZPD ymmreg,ymmrm256* AMD,SSE5

VFRCZPS Xxmmreg,xmmrm2128* AMD,SSE5

VFRCZPS ymmreg,ymmrm256* AMD,SSE5

VFRCZSD xmmreg,xmmrme4* AMD,SSE5

VFRCZSS xmmreg,xmmrma32* AMD,SSE5

193

VPCMOV

xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5

VPCMOV ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSES5
VPCMOV xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VPCMOV ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSES5
VPCOMB Xxmmreg,xmmreg*,xmmrm2128,imm8 AMD,SSE5
VPCOMD Xxmmreg,xmmreg*,xmmrm2128,imm8 AMD,SSE5
VPCOMQ Xxmmreg,xmmreg*,xmmrm2128,imm8 AMD,SSE5
VPCOMUB Xxmmreg,xmmreg*,xmmrm2128,imm8 AMD,SSE5
VPCOMUD xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMUQ Xxmmreg,xmmreg*,xmmrm2128,imm8 AMD,SSE5
VPCOMUW Xxmmreg,xmmreg*,xmmrm2128,imm8 AMD,SSE5
VPCOMW Xxmmreg,xmmreg*,xmmrm2128,imm8 AMD,SSE5
VPHADDBD Xxmmreg,xmmrm2128* AMD,SSE5

VPHADDBQ xmmreg,xmmrm2128* AMD,SSE5

VPHADDBW xmmreg,xmmrm2128* AMD,SSE5

VPHADDDQ xmmreg,xmmrm2128* AMD,SSE5
VPHADDUBD xmmreg,xmmrm2128* AMD,SSE5
VPHADDUBQ Xxmmreg,xmmrm2128* AMD,SSE5
VPHADDUBW xmmreg,xmmrm2128* AMD,SSE5
VPHADDUDQ Xxmmreg,xmmrm2128* AMD,SSE5
VPHADDUWD Xxmmreg,xmmrm2128* AMD,SSE5
VPHADDUWQ Xxmmreg,xmmrm2128* AMD,SSE5
VPHADDWD xmmreg,xmmrm2128* AMD,SSE5
VPHADDWQ Xxmmreg,xmmrm2128* AMD,SSE5
VPHSUBBW Xxmmreg,xmmrm2128* AMD,SSE5

VPHSUBDQ Xxmmreg,xmmrm2128* AMD,SSE5

VPHSUBWD xmmreg,xmmrm2128* AMD,SSE5

VPMACSDD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSDQH xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSDQL xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSDD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSDQH xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSDQL xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSWD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSES5
VPMACSSWW xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSWD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSES5
VPMACSWW xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSES5
VPMADCSSWD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMADCSWD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPPERM xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VPPERM xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPROTB xmmreg,xmmrm2128* xmmreg AMD,SSE5

VPROTB xmmreg,xmmreg*,xmmrm128 AMD,SSE5

VPROTB xmmreg,xmmrm128*,imm8 AMD,SSE5

VPROTD xmmreg,xmmrm128* xmmreg AMD,SSE5

VPROTD xmmreg,xmmreg*,xmmrm128 AMD,SSE5

VPROTD xmmreg,xmmrm128*,imm8 AMD,SSE5

VPROTQ xmmreg,xmmrm128* xmmreg AMD,SSE5

VPROTQ xmmreg,xmmreg*,xmmrm128 AMD,SSE5

194

VPROTQ xmmreg,xmmrm128*,imm8 AMD,SSE5

VPROTW xmmreg,xmmrm128* xmmreg AMD,SSE5
VPROTW xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPROTW xmmreg,xmmrm128*,imm8 AMD,SSE5
VPSHAB xmmreg,xmmrm2128* xmmreg AMD,SSE5
VPSHAB xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHAD xmmreg,xmmrm2128* xmmreg AMD,SSE5
VPSHAD xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHAQ xmmreg,xmmrm128* xmmreg AMD,SSE5
VPSHAQ xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHAW xmmreg,xmmrm128* xmmreg AMD,SSE5
VPSHAW xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHLB xmmreg,xmmrm2128* xmmreg AMD,SSE5
VPSHLB xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHLD xmmreg,xmmrm128* xmmreg AMD,SSE5
VPSHLD xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHLQ xmmreg,xmmrm2128* xmmreg AMD,SSE5
VPSHLQ xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHLW xmmreg,xmmrm2128* xmmreg AMD,SSE5
VPSHLW xmmreg,xmmreg*,xmmrm128 AMD,SSE5

B.1.33 Intel AVX2 instructions
VMPSADBW ymmreg,ymmreg*,ymmrm256,imm8 FUTURE,AVX2

VPABSB ymmreg,ymmrm256 FUTURE,AVX2
VPABSW ymmreg,ymmrm256 FUTURE,AVX2
VPABSD ymmreg,ymmrm256 FUTURE,AVX2

VPACKSSWB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPACKSSDW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPACKUSDW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPACKUSWB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2

VPADDB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDSB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2

VPADDSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDUSB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDUSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPALIGNR ymmreg,ymmreg*,ymmrm256,imm8 FUTURE,AVX2

VPAND ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPANDN ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPAVGB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPAVGW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2

VPBLENDVB ymmreg,ymmreg*,ymmrm256,ymmreg FUTURE,AVX2
VPBLENDW ymmreg,ymmreg*,ymmrm256,imm8 FUTURE,AVX2
VPCMPEQB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPCMPEQW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPCMPEQD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPCMPEQQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2

195

196

VPCMPGTB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPCMPGTW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPCMPGTD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPCMPGTQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPHADDW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPHADDD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPHADDSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPHSUBW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPHSUBD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPHSUBSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMADDUBSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMADDWD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMAXSB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMAXSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMAXSD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMAXUB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMAXUW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMAXUD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMINSB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMINSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMINSD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMINUB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMINUW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMINUD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMOVMSKB reg32,ymmreg FUTURE,AVX2
VPMOVMSKB reg64,ymmreg FUTURE,AVX2
VPMOVSXBW ymmreg,xmmrm128 FUTURE,AVX2
VPMOVSXBD ymmreg,mem64 FUTURE,AVX2
VPMOVSXBD ymmreg,xmmreg FUTURE,AVX2
VPMOVSXBQ ymmreg,mem32 FUTURE,AVX2
VPMOVSXBD ymmreg,xmmreg FUTURE,AVX2
VPMOVSXWD ymmreg,xmmrm128 FUTURE,AVX2
VPMOVSXWQ ymmreg,mem64 FUTURE,AVX2
VPMOVSXWQ ymmreg,xmmreg FUTURE,AVX2
VPMOVSXDQ ymmreg,xmmrm128 FUTURE,AVX2
VPMOVZXBW ymmreg,xmmrm128 FUTURE,AVX2
VPMOVZXBD ymmreg,mem64 FUTURE,AVX2
VPMOVZXBD ymmreg,xmmreg FUTURE,AVX2
VPMOVZXBQ ymmreg,mem32 FUTURE,AVX2
VPMOVZXBQ ymmreg,xmmreg FUTURE,AVX2
VPMOVZXWD ymmreg,xmmrm128 FUTURE,AVX2
VPMOVZXWQ ymmreg,mem64 FUTURE,AVX2
VPMOVZXWQ ymmreg,xmmreg FUTURE,AVX2
VPMOVZXDQ ymmreg,xmmrm128 FUTURE,AVX2
VPMULDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMULHRSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMULHUW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMULHW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMULLW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2

VPMULLD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMULUDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2

VPOR ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSADBW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSHUFB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSHUFD ymmreg,ymmrm256,imm8 FUTURE,AVX2

VPSHUFHW ymmreg,ymmrm256,imm8 FUTURE,AVX2
VPSHUFLW ymmreg,ymmrm256,imm8 FUTURE,AVX2

VPSIGNB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSIGNW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSIGND ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSLLDQ ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSLLW ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSLLW ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSLLD ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSLLD ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSLLQ ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSLLQ ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSRAW ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSRAW ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSRAD ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSRAD ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSRLDQ ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSRLW ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSRLW ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSRLD ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSRLD ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSRLQ ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSRLQ ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSUBB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSUBW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSUBD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSUBQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSUBSB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSUBSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2

VPSUBUSB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2

VPSUBUSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2

VPUNPCKHBW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKHWD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKHDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKHQDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKLBW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKLWD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKLDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKLQDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2

VPXOR ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VMOVNTDQA ymmreg,mem128 FUTURE,AVX2

VBROADCASTSS xmmreg,xmmreg FUTURE,AVX2
VBROADCASTSS ymmreg,xmmreg FUTURE,AVX2

197

VBROADCASTSD ymmreg,xmmreg FUTURE,AVX2
VBROADCASTI128 ymmreg,mem128 FUTURE,AVX2
VPBLENDD xmmreg,xmmreg*,xmmrm128,imm8 FUTURE,AVX2
VPBLENDD ymmreg,ymmreg*,ymmrm256,imm8 FUTURE,AVX2

VPBROADCASTB xmmreg,mem3 FUTURE,AVX2
VPBROADCASTB xmmreg,xmmreg FUTURE,AVX2
VPBROADCASTB ymmreg,mem3 FUTURE,AVX2
VPBROADCASTB ymmreg,xmmreg FUTURE,AVX2
VPBROADCASTW xmmreg,mem16 FUTURE,AVX2
VPBROADCASTW xmmreg,xmmreg FUTURE,AVX2
VPBROADCASTW ymmreg,mem16 FUTURE,AVX2
VPBROADCASTW ymmreg,xmmreg FUTURE,AVX2
VPBROADCASTD xmmreg,mem32 FUTURE,AVX2
VPBROADCASTD xmmreg,xmmreg FUTURE,AVX2
VPBROADCASTD ymmreg,mem32 FUTURE,AVX2
VPBROADCASTD ymmreg,xmmreg FUTURE,AVX2
VPBROADCASTQ xmmreg,mem64 FUTURE,AVX2
VPBROADCASTQ xmmreg,xmmreg FUTURE,AVX2
VPBROADCASTQ ymmreg,mem64 FUTURE,AVX2
VPBROADCASTQ ymmreg,xmmreg FUTURE,AVX2
VPERMD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPERMPD ymmreg,ymmrm256,imm8 FUTURE,AVX2
VPERMPS ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPERMQ ymmreg,ymmrm256,imm8 FUTURE,AVX2

VPERM2|128 ymmreg,ymmreg,ymmrm256,imm8 FUTURE,AVX2
VEXTRACTI128 xmmrm128,ymmreg,imm8 FUTURE,AVX2
VINSERTI128 ymmreg,ymmreg*,xmmrm128,imm8 FUTURE,AVX2
VPMASKMOVD xmmreg,xmmreg*,mem128 FUTURE,AVX2
VPMASKMOVD ymmreg,ymmreg*,mem256 FUTURE,AVX2
VPMASKMOVQ xmmreg,xmmreg*,mem128 FUTURE,AVX2
VPMASKMOVQ ymmreg,ymmreg*,mem256 FUTURE,AVX2
VPMASKMOVD mem128,xmmreg*,xmmreg FUTURE,AVX2
VPMASKMOVD mem256,ymmreg*,ymmreg FUTURE,AVX2
VPMASKMOVQ mem128 xmmreg*,xmmreg FUTURE,AVX2
VPMASKMOVQ mem256,ymmreg*,ymmreg FUTURE,AVX2

VPSLLVD xmmreg,xmmreg*,xmmrm128 FUTURE,AVX2
VPSLLVQ xmmreg,xmmreg*,xmmrm128 FUTURE,AVX2
VPSLLVD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSLLVQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSRAVD xmmreg,xmmreg*,xmmrm128 FUTURE,AVX2
VPSRAVD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSRLVD xmmreg,xmmreg*,xmmrm128 FUTURE,AVX2
VPSRLVQ xmmreg,xmmreg*,xmmrm128 FUTURE,AVX2
VPSRLVD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSRLVQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2

VGATHERDPD xmmreg,mem64,xmmreg FUTURE,AVX2
VGATHERQPD Xxmmreg,mem64,xmmreg FUTURE,AVX2
VGATHERDPD ymmreg,mem64,ymmreg FUTURE,AVX2
VGATHERQPD ymmreg,mem64,ymmreg FUTURE,AVX2

198

VGATHERDPS Xxmmreg,mema32,xmmreg FUTURE,AVX2
VGATHERQPS Xxmmreg,mema32,xmmreg FUTURE,AVX2
VGATHERDPS ymmreg,mem32,ymmreg FUTURE,AVX2
VGATHERQPS Xxmmreg,mema32,xmmreg FUTURE,AVX2
VPGATHERDD xmmreg,mema32,xmmreg FUTURE,AVX2
VPGATHERQD Xxmmreg,mema32,xmmreg FUTURE,AVX2
VPGATHERDD ymmreg,mema32,ymmreg FUTURE,AVX2
VPGATHERQD Xxmmreg,mema32,xmmreg FUTURE,AVX2
VPGATHERDQ Xxmmreg,mem64,xmmreg FUTURE,AVX2
VPGATHERQQ xmmreg,mem64,xmmreg FUTURE,AVX2
VPGATHERDQ ymmreg,mem64,ymmreg FUTURE,AVX2
VPGATHERQQ ymmreg,mem64,ymmreg FUTURE,AVX2

B.1.34 Transactional Synchronization Extensions (TSX)

XABORT imm FUTURE,RTM
XABORT imm8 FUTURE,RTM
XBEGIN imm FUTURE,RTM
XBEGIN imm|near FUTURE,RTM
XBEGIN imm16 FUTURE,RTM
XBEGIN imm16|near FUTURE,RTM
XBEGIN imm32 FUTURE,RTM
XBEGIN imm32|near FUTURE,RTM
XEND FUTURE,RTM
XTEST FUTURE,HLE,RTM

B.1.35 Intel BMI1 and BMI2 instructions

TZCNT regl6,rm16 FUTURE,BMI1

TZCNT reg32,rm32 FUTURE,BMI1

TZCNT reg64,rmé4 LONG,FUTURE,BMI1
ANDN reg32,reg32,rm32 FUTURE,BMI1
ANDN reg64,reg64,rm64 LONG,FUTURE,BMI1
BEXTR reg32,rm32,reg32 FUTURE,BMI1
BEXTR reg64,rm6é4,reg64 LONG,FUTURE,BMI1
BLSI reg32,rm32 FUTURE,BMI1

BLSI reg64,rmé4 LONG,FUTURE,BMI1
BLSMSK reg32,rm32 FUTURE,BMI1
BLSMSK reg64,rmé4 LONG,FUTURE,BMI1
BLSR reg32,rm32 FUTURE,BMI1

BLSR reg64,rmé4 LONG,FUTURE,BMI1
BZHI reg32,rm32,reg32 FUTURE,BMI2

BZHI reg64,rm64,reg64 LONG,FUTURE,BMI2
MULX reg32,reg32,rm32 FUTURE,BMI2
MULX reg64,reg64,rm64 LONG,FUTURE,BMI2
PDEP reg32,reg32,rm32 FUTURE,BMI2

PDEP reg64,reg64,rm64 LONG,FUTURE,BMI2
PEXT reg32,reg32,rm32 FUTURE,BMI2

PEXT reg64,reg64,rm64 LONG,FUTURE,BMI2
RORX reg32,rm32,imm8 FUTURE,BMI2

199

RORX
SARX
SARX
SHLX

SHLX

SHRX
SHRX

reg64,rmé4,imm8
reg32,rm32,reg32
reg64,rme4,reg64
reg32,rm32,reg32
reg64,rmé4,reg64
reg32,rm32,reg32
reg64,rmé4,reg64

LONG,FUTURE,BMI2
FUTURE,BMI2
LONG,FUTURE,BMI2
FUTURE,BMI2
LONG,FUTURE,BMI2
FUTURE,BMI2
LONG,FUTURE,BMI2

B.1.36 Systematic nhames for the hinting nop instructions

200

HINT_NOPO
HINT_NOPO
HINT_NOPO
HINT_NOP1
HINT_NOP1
HINT_NOP1
HINT_NOP2
HINT_NOP2
HINT_NOP2
HINT_NOPS3
HINT_NOPS3
HINT_NOPS3
HINT_NOPA4
HINT_NOPA4
HINT_NOPA4
HINT_NOPS
HINT_NOPS
HINT_NOPS
HINT_NOPG6
HINT_NOPG6
HINT_NOPG6
HINT_NOP7
HINT_NOP7
HINT_NOP7
HINT_NOPS8
HINT_NOPS8
HINT_NOPS8
HINT_NOP9
HINT_NOP9
HINT_NOP9
HINT_NOP10
HINT_NOP10
HINT_NOP10
HINT_NOP11
HINT_NOP11
HINT_NOP11
HINT_NOP12
HINT_NOP12
HINT_NOP12
HINT_NOP13

rml6
rm32
rmé4
rml6
rm32
rmé4
rml6
rm32
rmé4
rml6
rm32
rmé4
rml6
rm32
rmé4
rml6
rm32
rmé4
rml6
rm32
rmé4
rml6
rm32
rmé4
rml6
rm32
rmé4
rml6
rm32
rmé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé

P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC

HINT_NOP13
HINT_NOP13
HINT_NOP14
HINT_NOP14
HINT_NOP14
HINT_NOP15
HINT_NOP15
HINT_NOP15
HINT_NOP16
HINT_NOP16
HINT_NOP16
HINT_NOP17
HINT_NOP17
HINT_NOP17
HINT_NOP18
HINT_NOP18
HINT_NOP18
HINT_NOP19
HINT_NOP19
HINT_NOP19
HINT_NOP20
HINT_NOP20
HINT_NOP20
HINT_NOP21
HINT_NOP21
HINT_NOP21
HINT_NOP22
HINT_NOP22
HINT_NOP22
HINT_NOP23
HINT_NOP23
HINT_NOP23
HINT_NOP24
HINT_NOP24
HINT_NOP24
HINT_NOP25
HINT_NOP25
HINT_NOP25
HINT_NOP26
HINT_NOP26
HINT_NOP26
HINT_NOP27
HINT_NOP27
HINT_NOP27
HINT_NOP28
HINT_NOP28
HINT_NOP28
HINT_NOP29
HINT_NOP29

rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32

P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC

201

202

HINT_NOP29
HINT_NOP30
HINT_NOP30
HINT_NOP30
HINT_NOP31
HINT_NOP31
HINT_NOP31
HINT_NOP32
HINT_NOP32
HINT_NOP32
HINT_NOP33
HINT_NOP33
HINT_NOP33
HINT_NOP34
HINT_NOP34
HINT_NOP34
HINT_NOP35
HINT_NOP35
HINT_NOP35
HINT_NOP36
HINT_NOP36
HINT_NOP36
HINT_NOP37
HINT_NOP37
HINT_NOP37
HINT_NOP38
HINT_NOP38
HINT_NOP38
HINT_NOP39
HINT_NOP39
HINT_NOP39
HINT_NOP40
HINT_NOP40
HINT_NOP40
HINT_NOPA41
HINT_NOPA41
HINT_NOPA41
HINT_NOPA42
HINT_NOPA42
HINT_NOPA42
HINT_NOPA43
HINT_NOPA43
HINT_NOPA43
HINT_NOP44
HINT_NOP44
HINT_NOP44
HINT_NOP45
HINT_NOP45
HINT_NOP45

rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4

X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC

HINT_NOP46
HINT_NOP46
HINT_NOP46
HINT_NOPA47
HINT_NOPA47
HINT_NOPA47
HINT_NOP48
HINT_NOP48
HINT_NOP48
HINT_NOP49
HINT_NOP49
HINT_NOP49
HINT_NOP50
HINT_NOP50
HINT_NOP50
HINT_NOP51
HINT_NOP51
HINT_NOP51
HINT_NOP52
HINT_NOP52
HINT_NOP52
HINT_NOPS53
HINT_NOPS53
HINT_NOPS53
HINT_NOP54
HINT_NOP54
HINT_NOP54
HINT_NOP55
HINT_NOP55
HINT_NOP55
HINT_NOP56
HINT_NOP56
HINT_NOP56
HINT_NOPS57
HINT_NOPS57
HINT_NOPS57
HINT_NOP58
HINT_NOP58
HINT_NOP58
HINT_NOP59
HINT_NOP59
HINT_NOP59
HINT_NOPG60
HINT_NOPG60
HINT_NOPG60
HINT_NOP61
HINT_NOP61
HINT_NOP61
HINT_NOP62

rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé
rm32
rmeé4
rmlé

P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC
P6,UNDOC

203

204

HINT_NOP62
HINT_NOP62
HINT_NOP63
HINT_NOPG63
HINT_NOPG63

rm32
rmeé4
rmlé
rm32
rmeé4

P6,UNDOC
X64,UNDOC
P6,UNDOC
P6,UNDOC
X64,UNDOC

Appendix C: NASM Version History

C.1 NASM 2 Series
The NASM 2 series support x86—64, and is the production version of NASM since 2007.

C.1.1 Version 2.10.04
« Add back the inadvertently deleted 256-bit version oM&&PDnstruction.
e Correct disassembly of instructions starting with [82ehex.
« Fix corner cases in token pasting, for example:

%define N 1e%++%+ 5
dd N, 1e+5

C.1.2 Version 2.10.03
e Correct the assembly of the instruction:
XRELEASE MOV [absolute],AL

Previous versions would incorrectly genea®A2 for this instruction and issue a warning; correct behavior
is to emitF3 88 05

C.1.3 Version 2.10.02
e Add theifunc macro package with integer functions, currently only integer logarithms. See section 5.4.
¢ Add theRDSEEDADCXandADOXinstructions.

C.1.4 Version 2.10.01
¢ Add missing VPMOVMSKB instruction with reg32, ymmreg operands.

C.1.5 Version 2.10

« When optimization is enablethov r64,imm now optimizes to the shortest form possible between:

mov r32,imm32 ; 5 bytes
mov r64,imm32 ; 7 bytes
mov r64,imm64 ; 10 bytes

To force a specific form, use B RICT keyword, see section 3.7.

e Add support for the Intel AVX2 instruction set.

e Add support for Bit Manipulation Instructions 1 and 2.

« Add support for Intel Transactional Synchronization Extensions (TSX).

« Add support for x32 ELF (32-bit ELF with the CPU in 64-bit mode.) See section 7.9.
e Add support for bigendian UTF-16 and UTF-32. See section 3.4.5.

205

C.1.6 Version 2.09.10

Fix up NSIS script to protect uninstaller against registry keys absence or corruption. It brings in a few
additional questions to a user during deinstallation procedure but still it is better than unpredictable file
removal.

C.1.7 Version 2.09.09

Fix initialization of section attributes din output format.

Fix mach64 output format bug that crashes NASM due to NULL symbols.

C.1.8 Version 2.09.08

Fix __ OUTPUT_FORMAT_assignment when output driver alias is used. For example whelh is

used_ OUTPUT_FORMAT_must be set telf , if —f elf32 is used OUTPUT_FORMAT_must
be assigned accordingly, i.e.a@lf32 . The rule applies to all output driver aliases. See section 4.12.6.

C.1.9 Version 2.09.07

Fix attempts to close same file several times wtgewption is used.
Fixes for VEXTRACTF128, VMASKMOVPS encoding.

C.1.10 Version 2.09.06

Fix missed section attribute initializationim output target.

C.1.11 Version 2.09.05

Fix arguments encoding for VPEXTRW instruction.

Remove invalid form of VPEXTRW instruction.

« Add VLDDQUis alias foVLDQQUo match specification.
C.1.12 Version 2.09.04

Fix incorrect labels offset for VEX intructions.
Eliminate bogus warning on implicit operand size override.
%if term could not handle 64 bit numbers.

The COFF backend was limiting relocations number to 16 bits even if in real there were a way more
relocations.

C.1.13 Version 2.09.03

206

Print%macro name insidéorep blocks on error.

Fix preprocessor expansion behaviour. It happened sometime too early and sometime simply wrong. Move
behaviour back to the origins (down to NASM 2.05.01).

Fix unitialized data dereference on OMF output format.
Issue warning on unterminat@ef construct.

Fix for documentation typo.

C.1.14 Version 2.09.02

Fix reversed tokens whéndeftok produces more than one output token.
Fix segmentation fault on disassembling some VEX instructions.
Missing%endif did not always cause error.

Fix typo in documentation.

Compound context local preprocessor single line macro identifiers were not expanded early enough and as

result lead to unresolved symbols.

C.1.15 Version 2.09.01

Fix NULL dereference on missed %deftok second parameter.

Fix NULL dereference on invalid %substr parameters.

C.1.16 Version 2.09

Fixed assignment the magnitude?6fep counter. It is limited to 62 bits now.

Fixed NULL dereference if argument &f6strlen resolves to whitespace. For example if nonexistent

macro parameter is used.

%ifenv , %elifenv |, %ifnenv , and%elifnenv directives introduced. See section 4.4.9.
Fixed NULL dereference if environment variable is missed.

Updates of new AVX v7 Intel instructions.

PUSH imm32 is now officially documented.

Fix for encoding the LFS, LGS and LSS in 64-bit mode.

Fixes for compatibility with OpenWatcom compiler and DOS 8.3 file format limitation.
Macros parameters range expansion introduced. See section 4.3.4.

Backward compatibility on expanging of local sigle macros restored.

8 hit relocations foelf andbin output formats are introduced.

Short intersegment jumps are permitted now.

An alignment more than 64 bytes are alloweddm32 , win64 output formats.
SECTALIGN(directive introduced. See section 4.12.13.

nojmp option introduced ismartalign package. See section 5.2.

Short aliasewvin , elf andmacho for output formats are introduced. Each standsvfoB2 , elf32
macho32 accordingly.

Faster handling of missing directives implemented.
Various small improvements in documentation.
No hang anymore if unable to open malloc.log file.

The environments without vsnprintf function are able to build nasm again.

and

207

AMD LWP instructions updated.
Tighten EA checks. We warn a user if there overflow in EA addressing.

Make —Ox the default optimization level. For the legacy behavior, sped®® explicitly. See section
2.1.22.

Environment variables read wifh! or tested witioifenv can now contain non-identifier characters if
surrounded by quotes. See section 4.10.2.

Add a new standard macro pack&gese fp for floating—point convenience macros. See section 5.3.

C.1.17 Version 2.08.02

Fix crash under certain circumstances when usingeth@perator.

C.1.18 Version 2.08.01

Fix the%use statement, which was broken in 2.08.

C.1.19 Version 2.08

208

A number of enhancements/fixes in macros area.

Support for converting strings to tokens. See section 4.1.9.

Fuzzy operand size logic introduced.

Fix COFF stack overrun on too long export identifiers.

Fix Macho—-0 alignment bug.

Fix crashes with —fwin32 on file with many exports.

Fix stack overrun for too long [DEBUG id].

Fix incorrect sbyte usage in IMUL (hit only if optimization flag passed).
Append ending token fostabs records in the ELF output format.

New NSIS script which uses ModernUI and MultiUser approach.

Visual Studio 2008 NASM integration (rules file).

Warn a user if a constant is too long (and as result will be stripped).

The obsoleted pre-XOP AMD SSES5 instruction set which was never actualized was removed.
Fix stack overrun on too long error file name passed from the command line.

Bind symbols to the .text section by default (ie in case if SECTION directive was omitted) in the ELF
output format.

Fix sync points array index wrapping.

A few fixes for FMA4 and XOP instruction templates.
Add AMD Lightweight Profiling (LWP) instructions.
Fix the offset foRbarg in 64-hit mode.

An undefined local macr@49 no longer matches a global macro with the same name.

* Fix NULL dereference on too long local labels.

C.1.20 Version 2.07
* NASM is now under the 2—-clause BSD license. See section 1.1.2.
« Fix the section type for thetrtab section in thelf64 output format.
« Fix the handling o€COMMO@rectives in thebj output format.

« Newith andsrec output formats; these are variants of e output format which output Intel hex
and Motorola S-records, respectively. See section 7.2 and section 7.3.

e rdf2ihx replaced with an enhancedf2bin , which can output binary, COM, Intel hex or Motorola
S-records.

« The Windows installer now puts the NASM directory first in BeTHof the "NASM Shell".

« Revert the early expansion behaviofefto pre—2.06 behaviofbs+is only expanded late.

* Yet another Mach-0O alignment fix.

« Don't delete the list file on errors. Also, include error and warning information in the list file.
« Support for 64-bit Mach—O output, see section 7.8.

« Fix assert failure on certain operations that involve strings with high—bit bytes.

C.1.21 Version 2.06

e This release is dedicated to the memory of Charles A. Crayne, long time NASM developer as well as
moderator oEomp.lang.asm.x86 and author of the bodkerious AssemblewWe miss you, Chuck.

« Support for indirect macro expansié®[(..]). See section 4.1.3.

* %popcan now take an argument, see section 4.7.1.

« The argument tébuse is no longer macro—expanded. Usg..] if macro expansion is desired.
« Support for thread—local storage in ELF32 and ELF64. See section 7.9.4.

» Fix crash or®sifmacro without an argument.

e Correct the arguments to tROPCNTinstruction.

« Fix section alignment in the Mach-0O format.

« Update AVX support to version 5 of the Intel specification.

« Fix the handling of accesses to context—local macros from higher levels in the context stack.

« TreatWAIT as a prefix rather than as an instruction, thereby allowing construc@1&é&SAVE to work
correctly.

« Support for structures with a non-zero base offset. See section 4.12.10.

« Correctly handle preprocessor token concatenation (see section 4.3.9) involving floating—point numbers.
* ThePINSR series of instructions have been corrected and rationalized.

* Removed AMD SSEDS5, replaced with the new XOP/FMA4/CVT16 (rev 3.03) spec.

« The ELF backends no longer automatically generaterament section.

209

* Add additional "well-known" ELF sections with default attributes. See section 7.9.2.

C.1.22 Version 2.05.01
» Fix the—-w/-Woption parsing, which was broken in NASM 2.05.

C.1.23 Version 2.05
e Fix redundant REX.W prefix odMP reg64 .
« Make the behaviour 6fO0 match NASM 0.98 legacy behavior. See section 2.1.22.
e —w-user can be used to suppress the outpdbwfarning directives. See section 2.1.24.
* Fix bug whereALIGN would issue a full alignment datum instead of zero bytes.
» Fix offsets in list files.
e Fix %include inside multi-line macros or loops.
« Fix error where NASM would generate a spurious warning on valid optimizations of immediate values.
« Fix arguments to a number of t8& T SSE instructions.
» Fix RIP-relative offsets when the instruction carries an immediate.
« Massive overhaul of the ELF64 backend for spec compliance.
¢ Fix the Geodd®’FRCPVandPFRSQRT\hstruction.
» Fix the SSE 4. ZRC32instruction.

C.1.24 Version 2.04
e Sanitize macro handing in tBéerror directive.
* New%warning directive to issue user—controlled warnings.
* %error directives are now deferred to the final assembly phase.
* New%fatal directive to immediately terminate assembly.
* New%strcat directive to join quoted strings together.
* New%use macro directive to support standard macro directives. See section 4.6.4.
« Excess default parameters¥anacro now issues a warning by default. See section 4.3.
* Fix %ifn and%elifn
* Fix nestedselse clauses.
e Correct the handling of nestétreps.
* New%unmacro directive to undeclare a multi-line macro. See section 4.3.12.
e Builtin macro__ PASS__ which expands to the current assembly pass. See section 4.12.9.
e _Uutflé_ and_ utf32__ operators to generate UTF-16 and UTF-32 strings. See section 3.4.5.

¢ Fix bug in case-insensitive matching when compiled on platforms that don't usentigure script.
Of the official release binaries, that only affected the OS/2 binary.

« Support for x87 packed BCD constants. See section 3.4.7.

210

Correct theL TR andSLDT instructions in 64—hit mode.

Fix unnecessary REX.W prefix on indirect jumps in 64-bit mode.
Add AVX versions of the AES instruction¥AES..).

Fix the 256-bit FMA instructions.

Add 256-bit AVX stores per the latest AVX spec.

VIA XCRYPT instructions can now be written either with or with®EP, apparently different versions of

the VIA spec wrote them differently.

Add missing 64-biMOVNTIinstruction.

Fix the operand size ¥MREARNAVMWRITE

Numerous bug fixes, especially to the AES, AVX and VTX instructions.

The optimizer now always runs until it converges. It also runs even when disabled, but doesn’t optimize.

This allows most forward references to be resolved properly.

%push no longer needs a context identifier; omitting the context identifier results in an anonymous context.

C.1.25 Version 2.03.01

Fix buffer overflow in the listing module.
Fix the handling of hexadecimal escape codes in ‘...* strings.
The Postscript/PDF documentation has been reformatted.

The—F option now implies-g.

C.1.26 Version 2.03

Add support for Intel AVX, CLMUL and FMA instructions, including YMM registers.
dy, resy andyword for 32-byte operands.

Fix some SSES5 instructions.

Intel INVEPT, INVVPID andMOVBEHnstructions.

Fix checking for critical expressions when the optimizer is enabled.

Support the DWARF debugging format for ELF targets.

Fix optimizations of signed bytes.

Fix operation on bigendian machines.

Fix buffer overflow in the preprocessor.

SAFESEHsupport for Win32|MAGERELfor Win64 (SEH).

%?and%??to refer to the name of a macro itself. In particlléaidefine keyword $%?
to make a keyword "disappear".

New options for dependency generatieMD -MF, -MP, -MT, -MQ

can be used

New preprocessor directivéspathsearch and%depend; INCBIN reimplemented as a macro.

211

¢ %include now resolves macros in a sane manner.
* %substr can now be used to get other than one—-character substrings.

* New type of character/string constants, using backqudtes (), which support C-style escape
sequences.

* Y%defstr and%idefstr to stringize macro definitions before creation.

» Fix forward references used HQUstatements.

C.1.27 Version 2.02

« Additional fixes for MMX operands with explicijword , as well as (hopefully) SSE operands with
oword .

« Fix handling of truncated strings wibQ

» Fix segfaults due to memory overwrites when floating—point constants were used.
» Fix segfaults due to missing include files.

* Fix OpenWatcom Makefiles for DOS and OS/2.

« Add autogenerated instruction list back into the documentation.

« ELF: Fix segfault when generating stabs, and no symbols have been defined.
« ELF: Experimental support for DWARF debugging information.

* New compile date and time standard macros.

¢ %ifnum now returns true for negative numbers.

« New%iftoken test for a single token.

* New%ifempty test for empty expansion.

e Add support for th&XSAVEinstruction group.

« Makefile for Netware/gcc.

« Fix issue with some warnings getting emitted way too many times.

« Autogenerated instruction list added to the documentation.

C.1.28 Version 2.01

* Fix the handling of MMX registers with explicijword tags on memory (broken in 2.00 due to 64-bit
changes.)

» Fix the PREFETCH instructions.

» Fix the documentation.

« Fix debugging info when usingf elf (backwards compatibility alias feif elf32).
« Man pages for rdoff tools (from the Debian project.)

« ELF: handle large numbers of sections.

« Fix corrupt output when the optimizer runs out of passes.

212

C.1.29 Version 2.00
« Added c99 data—type compliance.
« Added general x86—-64 support.
¢ Added win64 (x86-64 COFF) output format.
e Added BITS _ standard macro.
* Renamed thelf output format telf32 for clarity.
¢ Addedelfé4 andmacho (MacOS X) output formats.
« Added Numeric constants @y directive.
« Addedoword , do andreso pseudo operands.
* Allow underscores in numbers.
e Added 8-, 16— and 128-bit floating—point formats.
* Added binary, octal and hexadecimal floating—point.
« Correct the generation of floating—point constants.
« Added floating—point option control.
« Added Infinity and NaN floating point support.
e Added ELF Symbol Visibility support.
* Added setting OSABI value in ELF header directive.
« Added Generate Makefile Dependencies option.
¢ Added Unlimited Optimization Passes option.
e Added%IFN and%ELIFN support.
« Added Logical Negation Operator.
« Enhanced Stack Relative Preprocessor Directives.
e Enhanced ELF Debug Formats.
« Enhanced Send Errors to a File option.
* Added SSSE3, SSE4.1, SSE4.2, SSE5 support.
* Added a large number of additional instructions.
« Significant performance improvements.

e —w+warning and-w-warning can now be written as —Wwarning and —Wno-warning, respectively.
See section 2.1.24.

e Add-w+error to treat warnings as errors. See section 2.1.24.

e Add-w+all and-w-all to enable or disable all suppressible warnings. See section 2.1.24.

C.2 NASM 0.98 Series
The 0.98 series was the production versions of NASM from 1999 to 2007.

213

C.2.1 Version 0.98.39
« fix buffer overflow
« fix outas86’s.bss handling
* "make spotless" no longer deletes config.h.in.
* %(el)if(n)idn insensitivity to string quotes difference (#809300).
e (nasm.c) OUTPUT_FORMAT changed to string value instead of symbol.

C.2.2 Version 0.98.38

« Add Makefile for 16—bit DOS binaries under OpenWatcom, and madkgep.pl to be able to generate
completely pathless dependencies, as required by OpenWatcom wmake (it supports path searches, but not
explicit paths.)

* Fix theSTRinstruction.

e Fix the ELF output format, which was broken under certain circumstances due to the addition of stabs
support.

* Quick-fix Borland format debug-info fotf obj

» Fix for %rep with no arguments (#560568)

« Fix concatenation of preprocessor function call (#794686)

» Fix long label causes coredump (#677841)

« Use autoheader as well as autoconf to keep configure from generating ridiculously long command lines.

« Make sure that all of the formats which support debugging output actually will suppress debugging output
when-g not specified.

C.2.3 Version 0.98.37

« Paths given ir-l switch searched fancbin —ed as well a%include —ed files.

« Added stabs debugging for the ELF output format, patch from Martin Wawro.

» Fix output/outbin.c to allow origin > 80000000h.

* Make-U switch work.

« Fix the use of relative offsets with explicit prefixes, @8R loop foo

* Removebackslash()

* Fix theSMSVWANdSLDT instructions.

« —02and-03are no longer aliases fe©010 and-015. If you mean the latter, please say so! :)
C.2.4 Version 0.98.36

» Update rdoff — librarian/archiver — common rec — docs!

» Fix signed/unsigned problems.

* Fix JMP FAR label andCALL FAR label

¢ Add new multisection support — map files — fix align bug

214

Fix sysexit, movhps/movlps reg,reg bugs in insns.dat
Qor Osuffixes indicate octal

Support Prescott new instructions (PNI).

Cyrix XSTORHERstruction.

C.2.5 Version 0.98.35

Fix build failure on 16-bit DOS (Makefile.bc3 workaround for compiler bug.)

Fix dependencies and compiler warnings.

Add "const" in a number of places.

Add —X option to specify error reporting format (use —Xvc to integrate with Microsoft Visual Studio.)
Minor changes for code legibility.

Drop use of tmpnam() in rdoff (security fix.)

C.2.6 Version 0.98.34

Correct additional address—size vs. operand-size confusions.
Generate dependencies for all Makefiles automatically.

Add support for unimplemented (but theoretically available) registers such as trO and cr5. Segment
registers 6 and 7 are called segr6 and segr7 for the operations which they can be represented.

Correct some disassembler bugs related to redundant address—size prefixes. Some work still remains in this
area.

Correctly generate an error for things like "SEG eax".
Add the JMPE instruction, enabled by "CPU 1A64".
Correct compilation on newer gcc/glibc platforms.

Issue an error on things like "jmp far eax".

C.2.7 Version 0.98.33

New _ NASM PATCHLEVEL__ and _ NASM_VERSION ID__ standard macros to round out the
version—query macros. version.pl now understands X.YYpIWW or X.YY.ZZpIWW as a version number,
equivalent to X.YY.ZZ.WW (or X.YY.0.WW, as appropriate).

New keyword "strict" to disable the optimization of specific operands.

Fix the handing of size overrides with JMP instructions (instructions such as "jmp dword foo".)
Fix the handling of "ABSOLUTE label", where "label" points into a relocatable segment.

Fix OBJ output format with lots of externs.

More documentation updates.

Add —Ov option to get verbose information about optimizations.

Undo a braindead change which brékelif directives.

Makefile updates.

215

C.2.8 Version 0.98.32
« Fix NASM crashing whefrfomacro directives were left unterminated.
« Lots of documentation updates.
« Complete rewrite of the PostScript/PDF documentation generator.
« The MS Visual C++ Makefile was updated and corrected.
* Recognize .rodata as a standard section name in ELF.
« Fix some obsolete Perl4—-isms in Perl scripts.
« Fix configure.in to work with autoconf 2.5x.
« Fix a couple of "make cleaner" misses.

« Make the normal "./configure && make" work with Cygwin.

C.2.9 Version 0.98.31
« Correctly build in a separate object directory again.
» Derive all references to the version number from the version file.
* New standard macros _ NASM_SUBMINOR__and _ NASM_VER__ macros.
« Lots of Makefile updates and bug fixes.
* New%ifmacro directive to test for multiline macros.
« Documentation updates.
« Fixes for 16—bit OBJ format output.
« Changed the NASM environment variable to NASMENV.

C.2.10 Version 0.98.30

« Changed doc files a lot: completely removed old READMExx and Wishlist files, incorporating all
information in CHANGES and TODO.

« | waited a long time to rename zoutieee.c to (original) outieee.c

« moved all output modules to output/ subdirectory.

« Added 'make strip’ target to strip debug info from nasm & ndisasm.
» Added INSTALL file with installation instructions.

* Added —v option description to nasm man.

« Added dist makefile target to produce source distributions.

e 16-hit support for ELF output format (GNU extension, but useful.)

C.2.11 Version 0.98.28

« Fastcooked this for Debian’s Woody release: Frank applied the INCBIN bug patch to 0.98.25alt and called
it 0.98.28 to not confuse poor little apt—get.

216

C.2.12 Version 0.98.26

* Reorganised files even better from 0.98.25alt

C.2.13 Version 0.98.25alt

« Prettified the source tree. Moved files to more reasonable places.

« Added findleak.pl script to misc/ directory.

« Attempted to fix doc.
C.2.14 Version 0.98.25

 Line continuation charactér.

« Docs inadvertantly reverted — "dos packaging".
C.2.15 Version 0.98.24p1

¢ FIXME: Someone, document this please.
C.2.16 Version 0.98.24

» Documentation — Ndisasm doc added to Nasm.doc.
C.2.17 Version 0.98.23

« Attempted to remove rdoff versionl

« Lino Mastrodomenico’s patches to preproc.c (%$$ bug?).
C.2.18 Version 0.98.22

« Update rdoff2 — attempt to remove v1.
C.2.19 Version 0.98.21

e Optimization fixes.
C.2.20 Version 0.98.20

e Optimization fixes.
C.2.21 Version 0.98.19

e H. J. Lu’'s patch back out.
C.2.22 Version 0.98.18

* Added ".rdata" to "-f win32".
C.2.23 Version 0.98.17

e H. J. Lu's "bogus elf" patch. (Red Hat problem?)
C.2.24 Version 0.98.16

« Fix whitespace before "[section ..." bug.

217

C.2.25 Version 0.98.15

« Rdoff changes (?).

« Fix fixes to memory leaks.
C.2.26 Version 0.98.14

e Fix memory leaks.

C.2.27 Version 0.98.13
* There was no 0.98.13

C.2.28 Version 0.98.12
« Update optimization (new function of "-01")

« Changes to test/bintest.asm (?).

C.2.29 Version 0.98.11
« Optimization changes.

* Ndisasm fixed.

C.2.30 Version 0.98.10
* There was no 0.98.10

C.2.31 Version 0.98.09
¢ Add multiple sections support to "—f bin".
« Changed GLOBAL_TEMP_BASE in outelf.c from 6 to 15.
* Add "-v" as an alias to the "-r" switch.
* Remove "#ifdef" from Tasm compatibility options.
* Remove redundant size—overrides on "mov ds, ex", etc.
« Fixes to SSE2, other insns.dat (?).
« Enable uppercase "I" and "P" switches.
« Case insinsitive "seg" and "wrt".
« Update install.sh (?).
» Allocate tokens in blocks.
« Improve "invalid effective address" messages.
C.2.32 Version 0.98.08
* Add "%strlen " and '%substr " macro operators
» Fixed broken c16.mac.
« Unterminated string error reported.

« Fixed bugs as per 0.98bf

218

C.2.33 Version 0.98.09b with John Coffman patches released 28-0Oct-2001
Changes from 0.98.07 release to 98.09b as of 28—-Oct-2001

More closely compatible with 0.98 when —0Q0 is implied or specified. Not strictly identical, since backward
branches in range of short offsets are recognized, and signed byte values with no explicit size specification
will be assembled as a single byte.

More forgiving with the PUSH instruction. 0.98 requires a size to be specified always. 0.98.09b will imply
the size from the current BITS setting (16 or 32).

Changed definition of the optimization flag:

—0O0 strict two—pass assembly, JMP and Jcc are handled more like 0.98, except that back— ward JMPs are
short, if possible.

—O1 strict two—pass assembly, but forward branches are assembled with code guaranteed to reach; may
produce larger code than —O0, but will produce successful assembly more often if branch offset sizes are not
specified.

—02 multi-pass optimization, minimize branch offsets; also will minimize signed immed- iate bytes,
overriding size specification.

—03 like —02, but more passes taken, if needed

C.2.34 Version 0.98.07 released 01/28/01

Added Stepane Denis’ SSE2 instructions to a *working* version of the code — some earlier versions were
based on broken code — sorry ’bout that. version "0.98.07"

01/28/01

Cosmetic modifications to nasm.c, nasm.h, AUTHORS, MODIFIED

C.2.35 Version 0.98.06f released 01/18/01

— Add "metalbrain"s jecxz bug fix in insns.dat — alter nasmdoc.src to match — version "0.98.06f"

C.2.36 Version 0.98.06e released 01/09/01

Removed the "outforms.h" file — it appears to be someone’s old backup of "outform.h". version "0.98.06e"

01/09/01

fbk — finally added the fix for the "multiple %includes bug", known since 7/27/99 — reported originally (?)
and sent to us by Austin Lunnen — he reports that John Fine had a fix within the day. Here it is...

Nelson Rush resigns from the group. Big thanks to Nelson for his leadership and enthusiasm in getting
these changes incorporated into Nasm!

fbk — [list +], [list -] directives — ineptly implemented, should be re—written or removed, perhaps.

Brian Raiter / fbk — "elfso bug" fix — applied to aoutb format as well — testing might be desirable...

08/07/00

James Seter — —postfix, —prefix command line switches.

Yuri Zaporogets — rdoff utility changes.

219

C.2.37 Version 0.98p1

GAS-like palign (Panos Minos)
FIXME: Someone, fill this in with details

C.2.38 Version 0.98bf (bug—fixed)

Fixed — elf and aoutb bug — shared libraries — multiple "%include" bug in "—f obj" — jcxz, jecxz bug —
unrecognized option bug in ndisasm

C.2.39 Version 0.98.03 with John Coffman’s changes released 27-Jul-2000

Added signed byte optimizations for the 0x81/0x83 class of instructions: ADC, ADD, AND, CMP, OR,
SBB, SUB, XOR: when used as 'ADD reg16,imm’ or '"ADD reg32,imm.” Also optimization of signed byte
form of 'PUSH imm’ and 'IMUL reg,imm’/'IMUL reg,reg,imm.’ No size specification is needed.

Added multi-pass JMP and Jcc offset optimization. Offsets on forward references will preferentially use
the short form, without the need to code a specific size (short or near) for the branch. Added instructions
for "Jecc label’ to use the form 'Jnotcc $+3/JMP label’, in cases where a short offset is out of bounds. If
compiling for a 386 or higher CPU, then the 386 form of Jcc will be used instead.

This feature is controlled by a new command-line switch: "O", (upper case letter O). "-O0" reverts the
assembler to no extra optimization passes, "-O1" allows up to 5 extra passes, and "-02"(default), allows up
to 10 extra optimization passes.

Added a new directive: 'cpu XXX’, where XXX is any of: 8086, 186, 286, 386, 486, 586, pentium, 686,
PPro, P2, P3 or Katmai. All are case insensitive. All instructions will be selected only if they apply to the
selected cpu or lower. Corrected a couple of bugs in cpu—dependence in 'insns.dat’.

Added to 'standard.mac’, the "usel6" and "use32" forms of the "bits 16/32" directive. This is nothing new,
just conforms to a lot of other assemblers. (minor)

Changed label allocation from 320/32 (10000 labels @ 200K+) to 32/37 (1000 labels); makes running
under DOS much easier. Since additional label space is allocated dynamically, this should have no effect
on large programs with lots of labels. The 37 is a prime, believed to be better for hashing. (minor)

C.2.40 Version 0.98.03

"Integrated patchfile 0.98-0.98.01. | call this version 0.98.03 for historical reasons: 0.98.02 was trashed."
—John Coffman <johninsd@san.rr.com>, 27-Jul-2000

220

Kendall Bennett's SciTech MGL changes
Note that you must define "TASM_COMPAT" at compile-time to get the Tasm Ideal Mode compatibility.

All changes can be compiled in and out using the TASM_COMPAT macros, and when compiled without
TASM_COMPAT defined we get the exact same binary as the unmodified 0.98 sources.

standard.mac, macros.c: Added macros to ignore TASM directives before first include
nasm.h: Added extern declaration for tasm_compatible_mode

nasm.c: Added global variable tasm_compatible_mode

Added command line switch for TASM compatible mode (-t)

Changed version command line to reflect when compiled with TASM additions

Added response file processing to allow all arguments on a single line (response file is @resp rather than
—@resp for NASM format).

labels.c: Changes islocal() macro to support TASM style @ @local labels.
Added islocalchar() macro to support TASM style @ @local labels.

parser.c: Added support for TASM style memory references (ie: mov [DWORD eax],10 rather than the
NASM style mov DWORD [eax],10).

preproc.c: Added new directivesarg, %local , %stacksize to directives table
Added support for TASM style directives without a leading % symbol.
Integrated a block of changes from Andrew Zabolotny <bit@eltech.ru>:

A new keyword%xdefine and its case-insensitive counterp#ixdefine . They work almost the
same way a$odefine and%idefine but expand the definition immediately, not on the invocation.
Something like a cross betweénadefine and %assign . The "x" suffix stands for "eXpand", so
"xdefine" can be deciphered as "expand—and-define". Thus you can do things like this:

%assign ofs 0

%macro arg 1
%xdefine %1 dword [esp+ofs]
%assign ofs ofs+4
%endmacro

Changed the place where the expansion of %$name macros are expanded. Now they are converted into
..@ctxnum.name form when detokenizing, so there are no quirks as before when using %$name arguments
to macros, in macros etc. For example:

%macro abc 1
%define %1 hello
%endm

abc %$here
%$here

Now last line will be expanded into "hello" as expected. This also allows for lots of goodies, a good example
are extended "proc" macros included in this archive.

Added a check for "cstk" in smacro_defined() before calling get_ctx() — this allows for things like:

%ifdef %$abce
%endif

to work without warnings even in no context.

Added a check for "cstk" in %if*ctx and %elif*ctx directives — this allows to ¥séctx without
excessive warnings. If there is no active contiifctx goes through "false" branch.

Removed "user error: " prefix withloerror directive: it just clobbers the output and has absolutely no
functionality. Besides, this allows to write macros that does not differ from built—in functions in any way.

Added expansion of string that is output%error directive. Now you can do things like:

221

%define hello(x) Hello, x!
%define %$name andy
%error "hello(%$name)"
Same happened withinclude directive.

« Now all directives that expect an identifier will try to expand and concatenate everything without
whitespaces in between before usage. For example, with "unfixed" nasm the commands

%define %$abc hello
%define _ %%$abc goodbye
_ %%abc

would produce "incorrect" output: last line will expand to
hello goodbyehello

Not quite what you expected, eh? :-) The answer is that preprocessor tréagefiree construct as if it
would be

%define __ %%$abc goodbye
(note the white space between ___and %%$abc). After my "fix" it will "correctly" expand into
goodbye

as expected. Note that | use quotes around words "correct”, "incorrect" etc because this is rather a feature not
a bug; however current behaviour is more logical (and allows more advanced macro usage :-).

Same change was applied fbpush,%macro,%imacro ,%define ,%idefine ,%xdefine ,%ixdefine
%assign ,%iassign ,%undef

* A new directive [WARNING {+|-}warning-id] have been added. It works only if the assembly phase is
enabled (i.e. it doesn’t work with nasm —e).

« A new warning type: macro-selfref. By default this warning is disabled; when enabled NASM warns when
a macro self-references itself; for example the following source:

[WARNING macro-selfref]

%macro push 1-*
%rep %0
push %1
%rotate 1
%endrep
%endmacro

push eax,ebx,ecx

will produce a warning, but if we remove the first line we won't see it anymore (which is The Right Thing To
Do {tm} IMHO since C preprocessor eats such constructs without warnings at all).

« Added a "error" routine to preprocessor which always will set ERR_PASSL1 bit in severity_code. This
removes annoying repeated errors on first and second passes from preprocessor.

« Added the %+ operator in single—line macros for concatenating two identifiers. Usage example:

222

%define _myfunc _otherfunc
%define cextern(x) _ %+ x
cextern (myfunc)

After first expansion, third line will become " _myfunc". After this expansion is performed again so it
becomes " _otherunc".

« Now if preprocessor is in a non—emitting state, no warning or error will be emitted. Example:

%if 1
mov eax,ebx

%else
put anything you want between these two brackets,
even macro—parameter references %1 or local
labels %$zz or macro—local labels %%zz - no
warning will be emitted.

%endif

« Context-local variables on expansion as a last resort are looked up in outer contexts. For example, the
following piece:

%push outer
%define %$a [esp]

%push inner
%%a
%pop

%pop

will expand correctly the fourth line to [esp]; if we’ll define another %$a inside the "inner" context, it will
take precedence over outer definition. However, this modification has been applied only to expand_smacro
and not to smacro_define: as a consequence expansion looks in outer conteéifddiut won't look in

outer contexts.

This behaviour is needed because we don't want nested contexts to act on already defined local macros.
Example:

%define %$argl [esp+4]
test eax,eax
if nz

mov eax,%$argl
endif

In this example the "if" mmacro enters into the "if* context, so %%$argl is not valid anymore inside "if". Of
course it could be worked around by using explicitely %$$argl but this is ugly IMHO.

« Fixed memory leak ifbundef . The origline wasn’t freed before exiting on success.

» Fixed trap in preprocessor when line expanded to empty set of tokens. This happens, for example, in the
following case:

#define SOMETHING
SOMETHING

223

C.2.41 Version 0.98
All changes since NASM 0.98p3 have been produced by H. Peter Anvin <hpa@zytor.com>.

The documentation comment delimiter is
Allow EQU definitions to refer to external labels; reported by Pedro Gimeno.
Re-enable support for RDOFF v1; reported by Pedro Gimeno.

Updated License file per OK from Simon and Julian.

C.2.42 Version 0.98p9

Update documentation (although the instruction set reference will have to wait; | don’t want to hold up the
0.98 release for it.)

Verified that the NASM implementation of the PEXTRW and PMOVMSKB instructions is correct. The
encoding differs from what the Intel manuals document, but the Pentium Il behaviour matches NASM, not
the Intel manuals.

Fix handling of implicit sizes in PSHUFW and PINSRW, reported by Stefan Hoffmeister.

Resurrect the —s option, which was removed when changing the diagnostic output to stdout.

C.2.43 Version 0.98p8

Fix for "DB" when NASM is running on a bigendian machine.
Invoke insns.pl once for each output script, making Makefile.in legal for "make —j".
Improve the Unix configure—based makefiles to make package creation easier.

Included an RPM .spec file for building RPM (RedHat Package Manager) packages on Linux or Unix
systems.

Fix Makefile dependency problems.
Change src/rdsrc.pl to include sectioning information in info output; required for install-info to work.

Updated the RDOFF distribution to version 2 from Jules; minor massaging to make it compile in my
environment.

Split doc files that can be built by anyone with a Perl interpreter off into a separate archive.

"Dress rehearsal" release!

C.2.44 Version 0.98p7

224

Fixed opcodes with a third byte-sized immediate argument to not complain if given "byte" on the
immediate.

Allow %undef to remove single—line macros with arguments. This matches the behaviour of #undef in the
C preprocessor.

Allow —d, —u, —i and —p to be specified as -D, -U, —I and —P for compatibility with most C compilers and
preprocessors. This allows Makefile options to be shared between cc and nasm, for example.

Minor cleanups.

Went through the list of Katmai instructions and hopefully fixed the (rather few) mistakes in it.

(Hopefully) fixed a number of disassembler bugs related to ambiguous instructions (disambiguated by —p)
and SSE instructions with REP.

Fix for bug reported by Mark Junger: "call dword 0x12345678" should work and may add an OSP
(affected CALL, JMP, Jcc).

Fix for environments when "stderr" isn’'t a compile—time constant.

C.2.45 Version 0.98p6

Took officially over coordination of the 0.98 release; so drop the p3.x notation. Skipped p4 and p5 to avoid
confusion with John Fine’s J4 and J5 releases.

Update the documentation; however, it still doesn’t include documentation for the various new
instructions. | somehow wonder if it makes sense to have an instruction set reference in the assembler
manual when Intel et al have PDF versions of their manuals online.

Recognize "idt" or "centaur" for the —p option to ndisasm.

Changed error messages back to stderr where they belong, but add an —E option to redirect them elsewhere
(the DOS shell cannot redirect stderr.)

—M option to generate Makefile dependencies (based on code from Alex Verstak.)
%undef preprocessor directive, and —u option, that undefines a single-line macro.
0S/2 Makefile (Mkfiles/Makefile.os2) for Borland under OS/2; from Chuck Crayne.
Various minor bugfixes (reported by): — Dangl#tgin preproc.c (Martin Junker)

THERE ARE KNOWN BUGS IN SSE AND THE OTHER KATMAI INSTRUCTIONS. | am on a trip
and didn’t bring the Katmai instruction reference, so | can’t work on them right now.

Updated the License file per agreement with Simon and Jules to include a GPL distribution clause.

C.2.46 Version 0.98p3.7

(Hopefully) fixed the canned Makefiles to include the outrdf2 and zoutieee modules.

Renamed changes.asm to changed.asm.

C.2.47 Version 0.98p3.6

Fixed a bunch of instructions that were added in 0.98p3.5 which had memory operands, and the
address—size prefix was missing from the instruction pattern.

C.2.48 Version 0.98p3.5

Merged in changes from John S. Fine’s 0.98-J5 release. John’s based 0.98-J5 on my 0.98p3.3 release; this
merges the changes.

Expanded the instructions flag field to a long so we can fit more flags; mark SSE (KNI) and AMD or
Katmai—specific instructions as such.

Fix the "PRIV" flag on a bunch of instructions, and create new "PROT" flag for protected—mode-only
instructions (orthogonal to if the instruction is privileged!) and new "SMM" flag for SMM-only
instructions.

Added AMD-only SYSCALL and SYSRET instructions.

225

« Make SSE actually work, and add new Katmai MMX instructions.

« Added a —p (preferred vendor) option to ndisasm so that it can distinguish e.g. Cyrix opcodes also used in
SSE. For example:

ndisasm —p cyrix aliased.bin
00000000 670F514310 paddsiw mmO,[ebx+0x10]
00000005 670F514320 paddsiw mmO,[ebx+0x20]
ndisasm —p intel aliased.bin
00000000 670F514310 sgrtps xmmO,[ebx+0x10]
00000005 670F514320 sgrtps xmmO,[ebx+0x20]

e Added a bunch of Cyrix—specific instructions.

C.2.49 Version 0.98p3.4

« Made at least an attempt to modify all the additional Makefiles (in the Mkfiles directory). | can't test it, but
this was the best | could do.

* DOS DJGPP+"Opus Make" Makefile from John S. Fine.

¢ changes.asm changes from John S. Fine.

C.2.50 Version 0.98p3.3
e Patch from Conan Brink to allow nesting%fep directives.

« If we're going to allow INTO1 as an alias for INT1/ICEBP (one of Jules 0.98p3 changes), then we should
allow INTO3 as an alias for INT3 as well.

« Updated changes.asm to include the latest changes.

e Tried to clean up the <CR>s that had snuck in from a DOS/Windows environment into my Unix
environment, and try to make sure than DOS/Windows users get them back.

« We would silently generate broken tools if insns.dat wasn’t sorted properly. Change insns.pl so that the
order doesn’t matter.

e Fix bug in insns.pl (introduced by me) which would cause conditional instructions to have an extra "cc" in
disassembly, e.g. "jnz" disassembled as "jccnz".

C.2.51 Version 0.98p3.2
« Merged in John S. Fine’s changes from his 0.98-J4 prerelease; see http://www.csoft.net/cz/johnfine/

e Changed previous "spotless" Makefile target (appropriate for distribution) to "distclean”, and added
"cleaner" target which is same as "clean" except deletes files generated by Perl scripts; "spotless"” is union.

+ Removed BASIC programs from distribution. Get a Perl interpreter instead (see below.)
e Calling this "pre-release 3.2" rather than "p3—hpa2" because of John’s contributions.

« Actually link in the IEEE output format (zoutieee.c); fix a bunch of compiler warnings in that file. Note |
don’t know what IEEE output is supposed to look like, so these changes were made "blind".

C.2.52 Version 0.98p3-hpa

* Merged nasm098p3.zip with nasm-0.97.tar.gz to create a fully buildable version for Unix systems
(Makefile.in updates, etc.)

226

Changed insns.pl to create the instruction tables in nasm.h and names.c, so that a new instruction can be
added by adding it *only* to insns.dat.

Added the following new instructions: SYSENTER, SYSEXIT, FXSAVE, FXRSTOR, UD1, UD2 (the
latter two are two opcodes that Intel guarantee will never be used; one of them is documented as UD2 in
Intel documentation, the other one just as "Undefined Opcode" — calling it UD1 seemed to make sense.)

MAX_SYMBOL was defined to be 9, but LOADALL286 and LOADALL386 are 10 characters long. Now
MAX_SYMBOL is derived from insns.dat.

A note on the BASIC programs included: forget them. insns.bas is already out of date. Get yourself a Perl
interpreter for your platform of choice at http://www.cpan.org/ports/index.html.

C.2.53 Version 0.98 pre-release 3

added response file support, improved command line handling, new layout help screen

fixed limit checking bug, 'OUT byte nn, reg’ bug, and a couple of rdoff related bugs, updated Wishlist;
0.98 Prerelease 3.

C.2.54 Version 0.98 pre-release 2

fixed bug in outcoff.c to do with truncating section names longer than 8 characters, referencing beyond end
of string; 0.98 pre-release 2

C.2.55 Version 0.98 pre-release 1

Fixed a bug whereby STRUC didn’t work at all in RDF.
Fixed a problem with group specification in PUBDEFs in OBJ.
Improved ease of adding new output formats. Contribution due to Fox Cutter.

Fixed a bug in relocations in the ‘bin’ format: was showing up when a relocatable reference crossed an
8192-hyte boundary in any output section.

Fixed a bug in local labels: local-label lookups were inconsistent between passes one and two if an EQU
occurred between the definition of a global label and the subsequent use of a local label local to that global.

Fixed a seg—fault in the preprocessor (again) which happened when you use a blank line as the first line of
a multi-line macro definition and then defined a label on the same line as a call to that macro.

Fixed a stale-pointer bug in the handling of the NASM environment variable. Thanks to Thomas
McWilliams.

ELF had a hard limit on the number of sections which caused segfaults when transgressed. Fixed.
Added ability for ndisasm to read from stdin by using ‘-’ as the filename.
ndisasm wasn't outputting the TO keyword. Fixed.

Fixed error cascade on bogus expressiohiin — an error in evaluation was causing the edtiie to be
discarded, thus creating trouble later whentiedse or %endif was encountered.

Forward reference tracking was instruction—granular not operand- granular, which was causing
286-specific code to be generated needlessly on code of the form ‘shr word [forwardref],1’. Thanks to Jim
Hague for sending a patch.

227

http://www.cpan.org/ports/index.html

228

All messages now appear on stdout, as sending them to stderr serves no useful purpose other than to make
redirection difficult.

Fixed the problem with EQUSs pointing to an external symbol — this now generates an error message.
Allowed multiple size prefixes to an operand, of which only the first is taken into account.

Incorporated John Fine’s changes, including fixes of a large number of preprocessor bugs, some small
problems in OBJ, and a reworking of label handling to define labels before their line is assembled, rather
than after.

Reformatted a lot of the source code to be more readable. Included 'coding.txt’ as a guideline for how to
format code for contributors.

Stopped neste¥breps causing a panic — they now cause a slightly more friendly error message instead.
Fixed floating point constant problems (patch by Pedro Gimeno)

Fixed the return value of insn_size() not being checked for —1, indicating an error.

Incorporated 3Dnow! instructions.

Fixed the 'mov eax, eax + ebx’ bug.

Fixed the GLOBAL EQU bug in ELF. Released developers release 3.

Incorporated John Fine’'s command line parsing changes

Incorporated David Lindauer's OMF debug support

Made changes for LCC 4.0 support NASM_CDecl__, removed register size specification warning
when sizes agree).

C.3 NASM 0.9 Series

Revisions before 0.98.

C.3.1 Version 0.97 released December 1997

This was entirely a bug—fix release to 0.96, which seems to have got cursed. Silly me.

Fixed stupid mistake in OBJ which caused ‘MOV EAX,<constant>' to fail. Caused by an error in the
‘MOV EAX,<segment>' support.

ndisasm hung at EOF when compiled with Icc on Linux because Icc on Linux somehow breaks feof().
ndisasm now does not rely on feof().

A heading in the documentation was missing due to a markup error in the indexing. Fixed.

Fixed failure to update all pointers on realloc() within extended— operand code in parser.c. Was causing
wrong behaviour and seg faults on lines such as ‘dd 0.0,0.0,0.0,0.0,...]

Fixed a subtle preprocessor bug whereby invoking one multi-line macro on the first line of the expansion
of another, when the second had been invoked with a label defined before it, didn’t expand the inner macro.

Added internal.doc back in to the distribution archives — it was missing in 0.96 *blush*
Fixed bug causing 0.96 to be unable to assemble its own test files, specifically objtest.asm. *blush again*

Fixed seg—faults and bogus error messages caused by misméatehimg@nd%endrep within multi-line
macro definitions.

« Fixed a problem with buffer overrun in OBJ, which was causing corruption at ends of long PUBDEF
records.

e Separated DOS archives into main—program and documentation to reduce download size.

C.3.2 Version 0.96 released November 1997

« Fixed a bug whereby, if ‘nasm sourcefile’ would cause a filename collision warning and put output into
‘nasm.out’, then ‘nasm sourcefile —o outputfile’ still gave the warning even though the ‘-0’ was honoured.
Fixed name pollution under Digital UNIX: one of its header files defined R_SP, which broke the enum in
nasm.h.

e Fixed minor instruction table problems: FUCOM and FUCOMP didn't have two-operand forms;
NDISASM didn’t recognise the longer register forms of PUSH and POP (eg FF F3 for PUSH BX); TEST
mem,imm32 was flagged as undocumented; the 32-bit forms of CMOV had 16-bit operand size prefixes;
‘AAD imm’ and ‘AAM imm’ are no longer flagged as undocumented because the Intel Architecture
reference documents them.

« Fixed a problem with the local-label mechanism, whereby strange types of symbol (EQUs, auto—defined
OBJ segment base symbols) interfered with the ‘previous global label’ value and screwed up local labels.

« Fixed a bug whereby the stub preprocessor didn't communicate with the listing file generator, so that the
—a and — options in conjunction would produce a useless listing file.

* Merged ‘0s2’ object file format back into ‘obj’, after discovering that ‘obj’ _also_ shouldn’t have a link
pass separator in a module containing a non-trivial MODEND. Flat segments are now declared using the
FLAT attribute. ‘0s2’ is no longer a valid object format name: use ‘obj'.

« Removed the fixed-size temporary storage in the evaluator. Very very long expressions (like ‘mov
ax,1+1+1+1+...’ for two hundred 1s or so) should now no longer crash NASM.

« Fixed a bug involving segfaults on disassembly of MMX instructions, by changing the meaning of one of
the operand-type flags in nasm.h. This may cause other apparently unrelated MMX problems; it needs to
be tested thoroughly.

« Fixed some buffer overrun problems with large OBJ output files. Thanks to DJ Delorie for the bug report
and fix.

« Made preprocess—only mode actually listen to%ime markers as it prints them, so that it can report
errors more sanely.

« Re-designed the evaluator to keep more sensible track of expressions involving forward references: can
now cope with previously—nightmare situations such as:

mov ax,foo | bar
fooequ 1
bar equ 2

* Added the ALIGN and ALIGNB standard macros.
e Added PIC support in ELF: use of WRT to obtain the four extra relocation types needed.

« Added the ability for output file formats to define their own extensions to the GLOBAL, COMMON and
EXTERN directives.

« Implemented common-variable alignment, and global-symbol type and size declarations, in ELF.

229

230

Implemented NEAR and FAR keywords for common variables, plus far-common element size
specification, in OBJ.

Added a feature whereby EXTERNs and COMMONSs in OBJ can be given a default WRT specification
(either a segment or a group).

Transformed the Unix NASM archive into an auto—configuring package.

Added a sanity—check for people applying SEG to things which are already segment bases: this previously
went unnoticed by the SEG processing and caused OBJ-driver panics later.

Added the ability, in OBJ format, to deal with ‘MOV EAX,<segment>’' type references: OBJ doesn’t
directly support dword-size segment base fixups, but as long as the low two bytes of the constant term are
zero, a word-size fixup can be generated instead and it will work.

Added the ability to specify sections’ alignment requirements in Win32 object files and pure binary files.

Added preprocess—time expression evaluation%ihesign (and%iassign) directive and the bafaif
(and%elif) conditional. Added relational operators to the evaluator, for use ofgifinconstructs: the
standard relationals = < > <= >= <> (and C-like synonyms == and !=) plus low—precedence logical
operators &&, ™ and ||.

Added a preprocessor repeat constrisaep / %exitrep / %endrep .
Addedthe FILE__and _ LINE__ standard macros.
Added a sanity check for number constants being greater than OXFFFFFFFF. The warning can be disabled.

Added the %0 token whereby a variadic multi-line macro can tell how many parameters it's been given in
a specific invocation.

Added%rotate , allowing multi-line macro parameters to be cycled.

Added the *' option for the maximum parameter count on multi-line macros, allowing them to take
arbitrarily many parameters.

Added the ability for the user—level forms of EXTERN, GLOBAL and COMMON to take more than one
argument.

Added the IMPORT and EXPORT directives in OBJ format, to deal with Windows DLLs.

Added some more preproces86if constructsifidn / %ifidni (exact textual identity), an%bifid
[%ifnum / %ifstr (token type testing).

Added the ability to distinguish SHL AX,1 (the 8086 version) from SHL AXBYTE 1 (the
286—and-upwards version whose constant happens to be 1).

Added NetBSD/FreeBSD/OpenBSD’s variant of a.out format, complete with PIC shared library features.

Changed NASM'’s idiosyncratic handling of FCLEX, FDISI, FENI, FINIT, FSAVE, FSTCW, FSTENV,

and FSTSW to bring it into line with the otherwise accepted standard. The previous behaviour, though it
was a deliberate feature, was a deliberate feature based on a misunderstanding. Apologies for the
inconvenience.

Improved the flexibility of ABSOLUTE: you can now give it an expression rather than being restricted to a
constant, and it can take relocatable arguments as well.

Added the ability for a variable to be declared as EXTERN multiple times, and the subsequent definitions
are just ignored.

We now allow instruction prefixes (CS, DS, LOCK, REPZ etc) to be alone on a line (without a following
instruction).

Improved sanity checks on whether the arguments to EXTERN, GLOBAL and COMMON are valid
identifiers.

Added misc/exebin.mac to allow direct generation of .EXE files by hacking up an EXE header using DB
and DW; also added test/binexe.asm to demonstrate the use of this. Thanks to Yann Guidon for
contributing the EXE header code.

ndisasm forgot to check whether the input file had been successfully opened. Now it does. Doh!
Added the Cyrix extensions to the MMX instruction set.

Added a hinting mechanism to allow [EAX+EBX] and [EBX+EAX] to be assembled differently. This is
important since [ESI+EBP] and [EBP+ESI] have different default base segment registers.

Added support for the PharLap OMF extension for 4096-byte segment alignment.

C.3.3 Version 0.95 released July 1997

Fixed yet another ELF bug. This one manifested if the user relied on the default segment, and attempted to
define global symbols without first explicitly declaring the target segment.

Added makefiles (for NASM and the RDF tools) to build Win32 console apps under Symantec C++.
Donated by Mark Junker.

Added ‘macros.bas’ and ‘insns.bas’, QBasic versions of the Perl scripts that convert ‘standard.mac’ to
‘macros.c’ and convert ‘insns.dat’ to ‘insnsa.c’ and ‘insnsd.c’. Also thanks to Mark Junker.

Changed the diassembled forms of the conditional instructions so that JB is now emitted as JC, and other
similar changes. Suggested list by Ulrich Doewich.

Added ‘@’ to the list of valid characters to begin an identifier with.

Documentary changes, notably the addition of the ‘Common Problems’ section in nasm.doc.

Fixed a bug relating to 32-hit PC-relative fixups in OBJ.

Fixed a bug in perm_copy() in labels.c which was causing exceptions in cleanup_labels() on some systems.

Positivity sanity check in TIMES argument changed from a warning to an error following a further
complaint.

Changed the acceptable limits on byte and word operands to allow things like ‘~10111001b’ to work.

Fixed a major problem in the preprocessor which caused seg-faults if macro definitions contained blank
lines or comment-only lines.

Fixed inadequate error checking on the commas separating the arguments to ‘db’, ‘dw’ etc.
Fixed a crippling bug in the handling of macros with operand counts defined with a ‘+’ modifier.

Fixed a bug whereby object file formats which stored the input file name in the output file (such as OBJ
and COFF) weren't doing so correctly when the output file name was specified on the command line.

Removed [INC] and [INCLUDE] support for good, since they were obsolete anyway.

Fixed a bug in OBJ which caused all fixups to be output in 16-bit (old—format) FIXUPP records, rather
than putting the 32-bit ones in FIXUPP32 (new—format) records.

231

232

Added, tentatively, OS/2 object file support (as a minor variant on OBJ).
Updates to Fox Cutter's Borland C makefile, Makefile.bc2.
Removed a spurious second fclose() on the output file.

Added the ‘=s’ command line option to redirect all messages which would go to stderr (errors, help text) to
stdout instead.

Added the ‘~w’ command line option to selectively suppress some classes of assembly warning messages.
Added the ‘—p’ pre-include and ‘~d’ pre-define command-line options.
Added an include file search path: the ‘=i’ command line option.

Fixed a silly little preprocessor bug whereby starting a line with a ‘%! environment-variable reference
caused an ‘unknown directive’ error.

Added the long—awaited listing file support: the ‘~I' command line option.

Fixed a problem with OBJ format whereby, in the absence of any explicit segment definition, non-global
symbols declared in the implicit default segment generated spurious EXTDEF records in the output.

Added the NASM environment variable.

From this version forward, Win32 console—-mode binaries will be included in the DOS distribution in
addition to the 16-hit binaries. Added Makefile.vc for this purpose.

Added ‘return 0O;’ to test/objlink.c to prevent compiler warnings.
Added the _ NASM_MAJOR___and _ NASM_MINOR___ standard defines.

Added an alternative memory-reference syntax in which prefixing an operand with ‘&’ is equivalent to
enclosing it in square brackets, at the request of Fox Cutter.

Errors in pass two now cause the program to return a non-zero error code, which they didn’t before.

Fixed the single-line macro cycle detection, which didn’'t work at all on macros with no parameters
(caused an infinite loop). Also changed the behaviour of single-line macro cycle detection to work like
cpp, so that macros like ‘extrn’ as given in the documentation can be implemented.

Fixed the implementation of WRT, which was too restrictive in that you couldn’t do ‘mov ax,[di+abc wrt
dgroup]’ because (di+abc) wasn't a relocatable reference.

C.3.4 Version 0.94 released April 1997

Major item: added the macro processor.

Added undocumented instructions SMI, IBTS, XBTS and LOADALL286. Also reorganised CMPXCHG
instruction into early—486 and Pentium forms. Thanks to Thobias Jones for the information.

Fixed two more stupid bugs in ELF, which were causing ‘Id’ to continue to seg—fault in a lot of non-trivial
cases.

Fixed a seg—fault in the label manager.

Stopped FBLD and FBSTP from _requiring_ the TWORD keyword, which is the only option for BCD
loads/stores in any case.

Ensured FLDCW, FSTCW and FSTSW can cope with the WORD keyword, if anyone bothers to provide
it. Previously they complained unless no keyword at all was present.

Some forms of FDIV/FDIVR and FSUB/FSUBR were still inverted: a vestige of a bug that | thought had
been fixed in 0.92. This was fixed, hopefully for good this time...

Another minor phase error (insofar as a phase error can _ever_ be minor) fixed, this one occurring in code
of the form

rol ax,forward_reference
forward_reference equ 1

The number supplied to TIMES is now sanity—checked for positivity, and also may be greater than 64K
(which previously didn’t work on 16-bit systems).

Added Watcom C makefiles, and misc/pmw.bat, donated by Dominik Behr.
Added the INCBIN pseudo-opcode.

Due to the advent of the preprocessor, the [INCLUDE] and [INC] directives have become obsolete. They
are still supported in this version, with a warning, but won't be in the next.

Fixed a bug in OBJ format, which caused incorrect object records to be output when absolute labels were
made global.

Updates to RDOFF subdirectory, and changes to outrdf.c.

C.3.5 Version 0.93 released January 1997

This release went out in a great hurry after semi—crippling bugs were found in 0.92.

Reallydid fix the stack overflows this time. *blush*

Had problems with EA instruction sizes changing between passes, when an offset contained a forward
reference and so 4 bytes were allocated for the offset in pass one; by pass two the symbol had been defined
and happened to be a small absolute value, so only 1 byte got allocated, causing instruction size mismatch
between passes and hence incorrect address calculations. Fixed.

Stupid bug in the revised ELF section generation fixed (associated string—table section for .symtab was
hard—coded as 7, even when this didn't fit with the real section table). Was causing ‘Id’ to seg—fault under
Linux.

Included a new Borland C makefile, Makefile.bc2, donated by Fox Cutter <Imb@comtch.iea.com>.

C.3.6 Version 0.92 released January 1997

The FDIVP/FDIVRP and FSUBP/FSUBRP pairs had been inverted: this was fixed. This also affected the
LCC driver.

Fixed a bug regarding 32-bit effective addresses of the[fuimar_register+ESP]

Documentary changes, notably documentation of the fact that Borland Win32 compilers use ‘obj’ rather
than ‘win32’ object format.

Fixed the COMENT record in OBJ files, which was formatted incorrectly.
Fixed a bug causing segfaults in large RDF files.

OBJ format now strips initial periods from segment and group definitions, in order to avoid complications
with the local label syntax.

Fixed a bug in disassembling far calls and jumps in NDISASM.

233

« Added support for user—defined sections in COFF and ELF files.

« Compiled the DOS binaries with a sensible amount of stack, to prevent stack overflows on any arithmetic
expression containing parentheses.

« Fixed a bug in handling of files that do not terminate in a newline.

C.3.7 Version 0.91 released November 1996
« Loads of bug fixes.
e Support for RDF added.
« Support for DBG debugging format added.
« Support for 32-bit extensions to Microsoft OBJ format added.
* Revised for Borland C: some variable names changed, makefile added.
» LCC support revised to actually work.
* JMP/CALL NEAR/FAR notation added.
e ‘al6’, ‘'0l6’, ‘a32’ and ‘032’ prefixes added.
« Range checking on short jumps implemented.
* MMX instruction support added.
« Negative floating point constant support added.
* Memory handling improved to bypass 64K barrier under DOS.
» $ prefix to force treatment of reserved words as identifiers added.
« Default-size mechanism for object formats added.
« Compile-time configurability added.
e #,@~ and c{?} are now valid characters in labels.
« —e and-k options in NDISASM added.

C.3.8 Version 0.90 released October 1996

First release version. First support for object file output. Other changes from previous version (0.3x) too
numerous to document.

234

Index

I operator, unary

1= operator

$$ token

$
Here token
prefix

%operator

%!

%$and%$$prefixes

%%operator

%+

%?

%?7?

%[

& operator

&& operator

* operator

+ modifier

+ operator
binary
unary

— operator
binary
unary

..@ symbol prefix

/ operator

/I operator

< operator

<< operator

<= operator

<> operator

= operator

== operator

> operator

>= operator

>> operator

? MASM syntax

A operator

A operator

| operator

|| operator

~ operator

%0parameter count

37
55
36, 96

36
29, 33, 99
37
67
60, 61
37, 48
43
44
44
43
37
55
37
49

37
37

37
37
40, 48
37
37
55
37
55
55
55
55
55
55
37
30
37
55
37
55
37
50, 51

%00
%-+1and%-1syntax

16-bit mode, versus 32-bit mode

64-hit displacement
64-bit immediate
—a option
Al16
al6
A32
a32
A64
ab4
a86
ABS
ABSOLUTE
addition
addressing, mixed-size
address-size prefixes
algebra
ALIGN
smart
ALIGNB
alignment
in bin sections
inelf sections
in obj sections
in win32 sections
of elf common variables
ALIGNMODE
__ALIGNMODE___
ALINK
alink.sourceforge.net
all
alloc
alternate register names
alt.lang.asm
altreg
ambiguity
a.out
BSD version
Linux version
aout
aoutb

51

53

76

126
125
24,132

29
123
29
123
29
123

16, 26, 27

33
78, 85
37

122
29

32

72,74, 83, 85

74

72

83
96
85
89
98

74
75
102
102
25
95

16
74
27

74

98

98

98
98, 117

235

236

%arg
arg
as86
assembler directives
assembly-time options
%assign
ASSUME
AT
Autoconf
autoexec.bat
auto—sync
-b
bin
multisection
binary
binary files
bit shift
BITS
__BITS__
bitwise AND
bitwise OR
bitwise XOR
block IFs
boot loader
boot sector
Borland
Pascal
Win32 compilers
braces
after%sign
around macro parameters
BSD
.bss
bugs
bugtracker
BYTE
C calling convention
C symbol names
cl6.mac
c32.mac
CALL FAR
case sensitivity
changing sections
character constant
character strings
circular references
CLASS
%clear
coff

64
110, 117
16, 99
76
23
44
27
71
18
17
132
131
20, 82
83
33
31
37
76, 82
68
37
37
37
62
82
128

111
84

52
47
117
96, 98, 99
129
129
128
107, 114
105
110, 113
117
38

26,41, 42, 44, 47, 56, 86

77
30, 34
33
41
85
67
95

colon 29
.COM 82, 104
comma 50
command-line 19, 82
commas in macro parameters 49
%comment 67
.comment 96
COMMON 80, 85
elf extensions to 98
obj extensions to 88
Common Object File Format 95
common variables 80
alignment inelf 98
element size 88
comp.lang.asm.x86 16, 17
comp.os.msdos.programmer 105
concatenating macro parameters 52
concatenating strings 45
condition codes as macro parameters 53
conditional assembly 54
conditional jumps 128
conditional-return macro 53
configure 18
constants 33
context fall-through lookup 61
context stack 60, 62
context-local labels 60
context-local single-line macros 61
counting macro parameters 51
CPU 80
CPUID 34
creating contexts 60
critical expression 30, 38, 45, 78
-D option 23
—d option 23
daily development snapshots 17
.data 96, 98, 99
_DATA 107
data 97,100
data structure 109, 116
__ DATE__ 69
__DATE_NUM__ 69
DB 30, 34, 35
dbg 100
DD 30, 34, 35
debug information 21
debug information format 21
decimal 33
declaring structures 70

DEFAULT

default

default macro parameters

default name

default-WRTmechanism

%define

defining sections

%defstr

%deftok

%depend

design goals

DevPac

disabling listing expansion

division

DJGPP

djlink

DLL symbols
exporting
importing

DO

DOS

DOS archive

DOS source archive

DQ

.drectve

DT

DUP

DW

DWORD

DY

-E option

—e option

effective addresses

element size, in common variables

ELF
shared libraries
16-bit code and

elf, debug formats and

elf32

elf64

elfx32

%elif

%elifctx

%elifdef

%elifempty

%elifenv

%elifid

%elifidn

%elifidni

77
97
50
82
88
23,41
77
45
45
59
26
31,39
53
37
95, 114
102

87

86

30, 34, 35
17,22

17
30, 34, 35
89
30, 34, 35
28,31
30, 34, 35
30
30, 34
23
23, 133
29, 32
88
95
96
98
98
95
95
95
54, 55, 56
55
54
57
57
57
56
56

%elifmacro
%elifn
%elifnctx
%elifndef
%elifnempty
%elifnenv
%elifnid
%elifnidn
%elifnidni
%elifnmacro
%elifnnum
%elifnstr
%elifntoken
%elifnum
%elifstr
%eliftoken
%else
endproc
%endrep
ENDSTRUC
environment
EQU
%error
error
error messages
error reporting format
escape sequences
EVEN
exact matches
.EXE
EXE2BIN
EXE_begin
exebin.mac
exec
Executable and Linkable Format
EXE_end
EXE_stack
%exitrep
EXPORT
export
exporting symbols
expressions
extension
EXTERN
obj extensions to
rdf extensions to
extracting substrings
—F option
—f option

55
54, 56
55
54
57
57
57
56
56
55
57
57
57
57
57
57
54
110, 117
58
70,78
26
30, 31
65
25
22
21
33
72
53
84, 102
105
103
103
96
95
103
103
58
87
100
79
23, 36
19, 82
79
87
100
46
21
20, 82

237

238

far call
far common variables
far pointer
FARCODE
%fatal
__FILE__
FLAT
flat memory model
flat—form binary
FLOAT
__FLOAT__
_ floatl28h_
__ float128l
__floatle
__float32___
__float64
__float8
__float80e___
__float80m___
__FLOAT_DAZ_ _
float—-denorm
floating—point
constants
packed BCD constants
floating—point
float—overflow
__FLOAT_ROUND__
float—-toolong
float—underflow
follows=
format—specific directives
fp
frame pointer
FreeBSD
FreeLink
ftp.simtel.net
function
functions
C calling convention

Pascal calling convention

—g option
gas
gcc
GLOBAL
aoutb extensions to
elf extensions to
rdf extensions to
global offset table
_GLOBAL_OFFSET_TABLE_

27
88
38
110, 113
65
68
85
114
82
81
81
35
35
35
35
35
35
35
35
81
25

35,81
36
27, 30, 35
25
81
25
25
83
76
75
107, 111, 114
98, 117
102
102
97, 100

107, 114
111
21
16
16
79
97
97
100
117
96

gnu—elf-extensions
..got
GOTrelocations
GOT

..gotoff
GOTOFFelocations
..gotpc
GOTPGelocations
..gottpoff
graphics
greedy macro parameters
GROUP
groups

-h
hexadecimal
hidden

hle

hybrid syntaxes
-l option

-i option
%iassign
%idefine
%idefstr
%ideftok

IEND

%if

%ifctx

%ifdef
%ifempty
%ifenv

%ifid

%ifidn

%ifidni
%ifmacro

%ifn

%ifnctx
%ifndef
%ifnempty
%ifnenv

%ifnid

%ifnidn
%ifnidni
%ifnmacro
%ifnnum
%ifnstr
%ifntoken
%ifnum

%ifstr

%iftoken

25
96
119

96, 117
96
119
96
118
97
31

48

86
38
131

33
97
25

27
22

22,132
44
41
45
45
71

54, 55
55, 62
54
57
57
56
56
56
55
54, 56
55
54
57
57
57
56
56
55
57
57
57
56
56
57

ifunc

ilog2()

ilog2c()

ilog2e()

ilog2f()

ilog2w()

%imacro

IMPORT

import library
importing symbols
INCBIN

%include

include search path
including other files
inefficient code
infinite loop
__Infinity

infinity

informational section
INSTALL

installing

instances of structures
instruction list
integer functions
integer logarithms
intel hex

Intel number formats
internal

ISTRUC

iterating over macro parameters
ith

%ixdefine

Jcc NEAR

JMP DWORD
jumps, mixed-size
-k

-l option

label preceeding macro
label prefix

last

.Ibss

1d86

.Idata

LIBRARY

license

%line

__LINE__

linker, free

75
75
75
75
75
75
46
86
86
79
30, 31, 34
22, 23,59
22
59
128
37
36
36
89
18
17
71
134
37,75
75
84
36
97
71
51
84
42
128
122
122
133
20
51
40
50
96
99
96
99
16
66
68
102

Linux

a.out

as86

ELF
listing file
little—endian
%local
local labels
lock
logical AND
logical negation
logical OR
logical XOR
JIrodata
—Moption
Mach, object file format
Mach-O
macho
macho32
macho64
MacOS X
%macro
macro indirection
macro library
macro parameters range
macro processor
macro—defaults
macro—local labels
macro—params
macros
macro-selfref
make
makefile dependencies
makefiles
man pages
map files
MASM
MASM
—MDoption
memory models
memory operand
memory references
—MFoption
—MGoption
Microsoft OMF
minifloat
Minix
misc subdirectory

mixed-language program

98
99
95
20
34
65
39
25
55
37
55
55
96
20
95
95
95
95
95
95
46
43
22
49
41
25
48
25
31
25
18
20
17,18
18
83
16
26,31, 84
21
27, 106
30
26, 32
20
20
84
36
99

103, 110, 117

105

239

240

mixed-size addressing
mixed-size instruction
MMX registers

ModR/M byte

MODULE

modulo operators
motorola s—records
—-MPoption

—MQoption

MS-DOS

MS-DOS device drivers
—MToption

multi-line macros
multipass optimization
multiple section names
multiplication

multipush macro
multisection

__NaN__

NaN

NASM version

nasm version history
nasm version id

nasm version string
nasm.1
__NASMDEFSEG
nasm-devel

NASMENV

nasm.exe

nasm —hf
__NASM_MAJOR__
__NASM_MINOR__
nasm.out
___NASM_PATCHLEVEL__
__NASM_SNAPSHOT__
__NASM_SUBMINOR__
__NASM_VER__
__NASM_VERSION_ID___
nasm-XXX-dos.zip
nasm-XXX.tar.gz
nasm-XXX-win32.zip
nasm-XXX.zip

ndisasm

ndisasm.1

ndisasm.exe

near call

near common variables
NetBSD

new releases

122
122

99
37
84

21
21
82
105
21
25,46
24
82
37
51
83
36
36
67
205
68
68

18

84

17

26

17

20

67

67

20

67

67

67

68

68

17

18

17

17

131

18

17

27

88
98, 117
17

noalloc

nobits

noexec

.nolist

‘nowait’

nowrite

number—overflow

numeric constants

—Ooption

-0 option

016

016

032

032

064

.OBJ

obj

object

octal

OF_DBG

OF_DEFAULT

OFFSET

OMF

omitted parameters

one’s complement

OpenBSD

operands

operand-size prefixes

operating system
writing

operators

ORG

orphan-labels

0Ss/2

osabi

other preprocessor directives

out of range, jumps

output file format

output formats

__ OUTPUT_FORMAT__

overlapping segments

OVERLAY

overloading
multi-line macros
single-line macros

-P option

—p option

paradox

PASCAL

95
83, 96
96
53
28
96
25
30, 33
24
19,131
29
124
29
124
29
102
84
97, 100
33
100
20
27
84
50
37
98, 117
29
29
82
122
37
82, 104, 105, 128
25,29
84, 85
95
66
128
20
82
69
38
85

47
42
23
23,59
39
113

Pascal calling convention
__PASS__

passes, assembly
PATH

%pathsearch

period

Perl

perverse

PharLap

PIC

.plt

PLT relocations

plt relocations

%pop
position—-independent code
——postfix

precedence
pre—defining macros
preferred

——prefix

pre-including files
preprocess—only mode
preprocessor
preprocessor expressions
preprocessor loops
preprocessor variables
primitive directives
PRIVATE

proc

procedure linkage table
processor mode
progbits

program entry point
program origin
protected
pseudo-instructions
PUBLIC

pure binary

%push

__ONaN__

quick start

QWORD

-r

rdf

rdoff subdirectory
redirecting errors

REL

relational operators
release candidates

111
70

17
22,59
39
18
22
85
96, 98, 117
96
97, 119, 120
120
60
96, 98, 117
26
37
23, 42
37
26
23
23
23,24, 31,37, 41
23
58
44
76
85
100, 110, 117
97, 119, 120
76
83, 96
87, 102
82
97
30
79, 85
82
60
36
26
30
131
99
18, 99
22
33, 77
55
17

Relocatable Dynamic Object File Format

relocations, PIC-specific
removing contexts
renaming contexts

Y%orep

repeating

%repl

reporting bugs

RESB

RESD

RESO

RESQ

REST

RESW

RESY

.rodata

%rotate

rotating macro parameters
—s option

searching for include files

_ SECT__

SECTALIGN
SECTION

elf extensions to

win32 extensions to
section alignment

in bin

in elf

in obj

in win32
section, bin extensions to
SEG
SEGMENT

elf extensions to
segment address
segment alignment

in bin

in obj

segment names, Borland Pascal

segment override
segments

groups of
separator character
shared libraries
shared library
shift command
SIB byte
signed division
signed modulo

99
96
60
62
31, 58
31, 58
62
129
28, 30
30
30
30
30
30
30
96
51
51
22,132
59
77,78
73
77
95
89

83
96
85
89

83
37,84
77

85
37

83
85
113
27,29
37
86
26
98, 117
97
51

37
37

241

single-line macros 41 TBYTE 28

size, of symbols 97 .tdata 96
smartalign 74 test subdirectory 102
__SNaN__ 36 testing
shapshots, daily development 17 arbitrary numeric expressions 55
Solaris x86 95 context stack 55
—-soname 121 exact text identity 56
sound 31 multi-line macro existence 55
source code 17 single-line macro existence 54
source-listing file 20 token types 56
square brackets 26,32 .text 96, 98, 99
srec 84 _TEXT 107
STACK 85 thread local storage 97
stack relative preprocessor directives 64 _TIME__ 69
%stacksize 64 __TIME_NUM___ 69
standard macro packages 74 TIMES 30, 31, 39, 128, 129
standard macros 67 TLINK 105
standardized section names 77,89, 95, 98, 99tls 96, 97
..Start 87,102 .tlsie 97
start= 83 trailing colon 29
stderr 22 TWORD 28, 30
stdout 22 type, of symbols 97
%strcat 45 -U option 23
STRICT 38 —u option 23,131
string constant 30 unary operators 37
string constants 34 %undef 23, 44
string length 46 undefining macros 23
string manipulation in macros 45 underscore, in C symbols 105
strings 33 Unicode 34, 35
%strlen 46 uninitialized 30
STRUC 70, 78,109, 116 uninitialized storage 28
stub preprocessor 24 Unix 18
%substr 46 SCO 95
subtraction 37 source archive 18
suppressible warning 24 System V 95
suppressing preprocessing 24 UnixWare 95
switching between sections 77 %unmacro 53
..sym 96 unrolled loops 31
symbol sizes, specifying 97 unsigned division 37
symbol types, specifying 97 unsigned modulo 37
symbols UPPERCASE 26, 86
exporting from DLLs 87 %use 60, 74
importing from DLLs 86 __USE * 69
synchronisation 132 USE16 77,85
.SYS 82, 105 USE32 77,85
-t 24 user 25
TASM 16, 24 user—defined errors 65
tasm 26, 84 user-level assembler directives 67
thss 96 user-level directives 76

242

__UTC_DATE__
__UTC_DATE_NUM__
__UTC_TIME__
__UTC_TIME_NUM__
UTF-16

UTF-32

UTF-8

_utfie

__utflébe
__utfiéle_

utf32

__utf32be_
__utf32le_

-V option

VAL

valid characters

variable types

version

version number of NASM
vfollows=

Visual C++

vstart=

-Woption

—-w option

%warning

warnings

[warning *warning—name]
[warning +warning—name]
[warning —warning—name]
website

win64

Win64

Windows

Windows 95

Windows NT

write

writing operating systems
WRT

WRT ..got

WRT ..gotoff

WRT ..gotpc

WRT ..plt

WRT ..sym

WWW page
www.cpan.org
www.delorie.com
Www.pcorner.com

—X option

x2ftp.oulu.fi

69
69
69
69
35
35
34
35
35
35
35
35
35
25
102
29
27
25
67
83
88
83
24
24
65
24
25
25
25
17
91, 125
84, 88, 114
102

96
122
37, 84, 96, 97, 99
119
119
118
120
120

18
102
102

21
102

x32

%xdefine
-y option
—Z option

95
42
25
22

243

	Title
	Contents
	Introduction
	What Is NASM?
	Why Yet Another Assembler?
	License Conditions

	Contact Information
	Installation
	Installing NASM under MS-DOS or Windows
	Installing NASM under Unix

	Running NASM
	NASM Command-Line Syntax
	The -o Option: Specifying the Output File Name
	The -f Option: Specifying the Output File Format
	The -l Option: Generating a Listing File
	The -M Option: Generate Makefile Dependencies
	The -MG Option: Generate Makefile Dependencies
	The -MF Option: Set Makefile Dependency File
	The -MD Option: Assemble and Generate Dependencies
	The -MT Option: Dependency Target Name
	The -MQ Option: Dependency Target Name (Quoted)
	The -MP Option: Emit phony targets
	The -F Option: Selecting a Debug Information Format
	The -g Option: Enabling Debug Information.
	The -X Option: Selecting an Error Reporting Format
	The -Z Option: Send Errors to a File
	The -s Option: Send Errors to stdout
	The -i Option: Include File Search Directories
	The -p Option: Pre-Include a File
	The -d Option: Pre-Define a Macro
	The -u Option: Undefine a Macro
	The -E Option: Preprocess Only
	The -a Option: Don't Preprocess At All
	The -O Option: Specifying Multipass Optimization
	The -t Option: Enable TASM Compatibility Mode
	The -w and -W Options: Enable or Disable Assembly Warnings
	The -v Option: Display Version Info
	The -y Option: Display Available Debug Info Formats
	The --prefix and --postfix Options.
	The NASMENV Environment Variable

	Quick Start for MASM Users
	NASM Is Case-Sensitive
	NASM Requires Square Brackets For Memory References
	NASM Doesn't Store Variable Types
	NASM Doesn't ASSUME
	NASM Doesn't Support Memory Models
	Floating-Point Differences
	Other Differences

	The NASM Language
	Layout of a NASM Source Line
	Pseudo-Instructions
	DB and Friends: Declaring Initialized Data
	RESB and Friends: Declaring Uninitialized Data
	INCBIN: Including External Binary Files
	EQU: Defining Constants
	TIMES: Repeating Instructions or Data

	Effective Addresses
	Constants
	Numeric Constants
	Character Strings
	Character Constants
	String Constants
	Unicode Strings
	Floating-Point Constants
	Packed BCD Constants

	Expressions
	|: Bitwise OR Operator
	^: Bitwise XOR Operator
	&: Bitwise AND Operator
	<< and >>: Bit Shift Operators
	+ and -: Addition and Subtraction Operators
	*, /, //, % and %%: Multiplication and Division
	Unary Operators

	SEG and WRT
	STRICT: Inhibiting Optimization
	Critical Expressions
	Local Labels

	The NASM Preprocessor
	Single-Line Macros
	The Normal Way: %define
	Resolving %define: %xdefine
	Macro Indirection: %[...]
	Concatenating Single Line Macro Tokens: %+
	The Macro Name Itself: %? and %??
	Undefining Single-Line Macros: %undef
	Preprocessor Variables: %assign
	Defining Strings: %defstr
	Defining Tokens: %deftok

	String Manipulation in Macros
	Concatenating Strings: %strcat
	String Length: %strlen
	Extracting Substrings: %substr

	Multi-Line Macros: %macro
	Overloading Multi-Line Macros
	Macro-Local Labels
	Greedy Macro Parameters
	Macro Parameters Range
	Default Macro Parameters
	%0: Macro Parameter Counter
	%00: Label Preceeding Macro
	%rotate: Rotating Macro Parameters
	Concatenating Macro Parameters
	Condition Codes as Macro Parameters
	Disabling Listing Expansion
	Undefining Multi-Line Macros: %unmacro

	Conditional Assembly
	%ifdef: Testing Single-Line Macro Existence
	%ifmacro: Testing Multi-Line Macro Existence
	%ifctx: Testing the Context Stack
	%if: Testing Arbitrary Numeric Expressions
	%ifidn and %ifidni: Testing Exact Text Identity
	%ifid, %ifnum, %ifstr: Testing Token Types
	%iftoken: Test for a Single Token
	%ifempty: Test for Empty Expansion
	%ifenv: Test If Environment Variable Exists

	Preprocessor Loops: %rep
	Source Files and Dependencies
	%include: Including Other Files
	%pathsearch: Search the Include Path
	%depend: Add Dependent Files
	%use: Include Standard Macro Package

	The Context Stack
	%push and %pop: Creating and Removing Contexts
	Context-Local Labels
	Context-Local Single-Line Macros
	Context Fall-Through Lookup
	%repl: Renaming a Context
	Example Use of the Context Stack: Block IFs

	Stack Relative Preprocessor Directives
	%arg Directive
	%stacksize Directive
	%local Directive

	Reporting User-Defined Errors: %error, %warning, %fatal
	Other Preprocessor Directives
	%line Directive
	%!<env>: Read an environment variable.

	Comment Blocks: %comment
	Standard Macros
	NASM Version Macros
	__NASM_VERSION_ID__: NASM Version ID
	__NASM_VER__: NASM Version string
	__FILE__ and __LINE__: File Name and Line Number
	__BITS__: Current BITS Mode
	__OUTPUT_FORMAT__: Current Output Format
	Assembly Date and Time Macros
	__USE_package__: Package Include Test
	__PASS__: Assembly Pass
	STRUC and ENDSTRUC: Declaring Structure Data Types
	ISTRUC, AT and IEND: Declaring Instances of Structures
	ALIGN and ALIGNB: Data Alignment
	SECTALIGN: Section Alignment

	Standard Macro Packages
	altreg: Alternate Register Names
	smartalign: Smart ALIGN Macro
	fp: Floating-point macros
	ifunc: Integer functions
	Integer logarithms

	Assembler Directives
	BITS: Specifying Target Processor Mode
	USE16 & USE32: Aliases for BITS

	DEFAULT: Change the assembler defaults
	SECTION or SEGMENT: Changing and Defining Sections
	The __SECT__ Macro

	ABSOLUTE: Defining Absolute Labels
	EXTERN: Importing Symbols from Other Modules
	GLOBAL: Exporting Symbols to Other Modules
	COMMON: Defining Common Data Areas
	CPU: Defining CPU Dependencies
	FLOAT: Handling of floating-point constants

	Output Formats
	bin: Flat-Form Binary Output
	ORG: Binary File Program Origin
	bin Extensions to the SECTION Directive
	Multisection Support for the bin Format
	Map Files

	ith: Intel Hex Output
	srec: Motorola S-Records Output
	obj: Microsoft OMF Object Files
	obj Extensions to the SEGMENT Directive
	GROUP: Defining Groups of Segments
	UPPERCASE: Disabling Case Sensitivity in Output
	IMPORT: Importing DLL Symbols
	EXPORT: Exporting DLL Symbols
	..start: Defining the Program Entry Point
	obj Extensions to the EXTERN Directive
	obj Extensions to the COMMON Directive

	win32: Microsoft Win32 Object Files
	win32 Extensions to the SECTION Directive
	win32: Safe Structured Exception Handling

	win64: Microsoft Win64 Object Files
	win64: Writing Position-Independent Code
	win64: Structured Exception Handling

	coff: Common Object File Format
	macho32 and macho64: Mach Object File Format
	elf32, elf64, elfx32: Executable and Linkable Format Object Files
	ELF specific directive osabi
	elf Extensions to the SECTION Directive
	Position-Independent Code: elf Special Symbols and WRT
	Thread Local Storage: elf Special Symbols and WRT
	elf Extensions to the GLOBAL Directive
	elf Extensions to the COMMON Directive
	16-bit code and ELF
	Debug formats and ELF

	aout: Linux a.out Object Files
	aoutb: NetBSD/FreeBSD/OpenBSD a.out Object Files
	as86: Minix/Linux as86 Object Files
	rdf: Relocatable Dynamic Object File Format
	Requiring a Library: The LIBRARY Directive
	Specifying a Module Name: The MODULE Directive
	rdf Extensions to the GLOBAL Directive
	rdf Extensions to the EXTERN Directive

	dbg: Debugging Format

	Writing 16-bit Code (DOS, Windows 3/3.1)
	Producing .EXE Files
	Using the obj Format To Generate .EXE Files
	Using the bin Format To Generate .EXE Files

	Producing .COM Files
	Using the bin Format To Generate .COM Files
	Using the obj Format To Generate .COM Files

	Producing .SYS Files
	Interfacing to 16-bit C Programs
	External Symbol Names
	Memory Models
	Function Definitions and Function Calls
	Accessing Data Items
	c16.mac: Helper Macros for the 16-bit C Interface

	Interfacing to Borland Pascal Programs
	The Pascal Calling Convention
	Borland Pascal Segment Name Restrictions
	Using c16.mac With Pascal Programs

	Writing 32-bit Code (Unix, Win32, DJGPP)
	Interfacing to 32-bit C Programs
	External Symbol Names
	Function Definitions and Function Calls
	Accessing Data Items
	c32.mac: Helper Macros for the 32-bit C Interface

	Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries
	Obtaining the Address of the GOT
	Finding Your Local Data Items
	Finding External and Common Data Items
	Exporting Symbols to the Library User
	Calling Procedures Outside the Library
	Generating the Library File

	Mixing 16 and 32 Bit Code
	Mixed-Size Jumps
	Addressing Between Different-Size Segments
	Other Mixed-Size Instructions

	Writing 64-bit Code (Unix, Win64)
	Register Names in 64-bit Mode
	Immediates and Displacements in 64-bit Mode
	Interfacing to 64-bit C Programs (Unix)
	Interfacing to 64-bit C Programs (Win64)

	Troubleshooting
	Common Problems
	NASM Generates Inefficient Code
	My Jumps are Out of Range
	ORG Doesn't Work
	TIMES Doesn't Work

	Bugs

	Ndisasm
	Introduction
	Getting Started: Installation
	Running NDISASM
	COM Files: Specifying an Origin
	Code Following Data: Synchronisation
	Mixed Code and Data: Automatic (Intelligent) Synchronisation
	Other Options

	Bugs and Improvements

	Instruction List
	Introduction
	Special instructions...
	Conventional instructions
	Katmai Streaming SIMD instructions (SSE ŒŒ a.k.a. KNI, XMM, MMX2)
	Introduced in Deschutes but necessary for SSE support
	XSAVE group (AVX and extended state)
	Generic memory operations
	New MMX instructions introduced in Katmai
	AMD Enhanced 3DNow! (Athlon) instructions
	Willamette SSE2 Cacheability Instructions
	Willamette MMX instructions (SSE2 SIMD Integer Instructions)
	Willamette Streaming SIMD instructions (SSE2)
	Prescott New Instructions (SSE3)
	VMX Instructions
	Extended Page Tables VMX instructions
	Tejas New Instructions (SSSE3)
	AMD SSE4A
	New instructions in Barcelona
	Penryn New Instructions (SSE4.1)
	Nehalem New Instructions (SSE4.2)
	Intel SMX
	Geode (Cyrix) 3DNow! additions
	Intel new instructions in ???
	Intel AES instructions
	Intel AVX AES instructions
	Intel AVX instructions
	Intel Carry-Less Multiplication instructions (CLMUL)
	Intel AVX Carry-Less Multiplication instructions (CLMUL)
	Intel Fused Multiply-Add instructions (FMA)
	Intel post-32 nm processor instructions
	VIA (Centaur) security instructions
	AMD Lightweight Profiling (LWP) instructions
	AMD XOP and FMA4 instructions (SSE5)
	Intel AVX2 instructions
	Transactional Synchronization Extensions (TSX)
	Intel BMI1 and BMI2 instructions
	Systematic names for the hinting nop instructions

	NASM Version History
	NASM 2 Series
	Version 2.10.04
	Version 2.10.03
	Version 2.10.02
	Version 2.10.01
	Version 2.10
	Version 2.09.10
	Version 2.09.09
	Version 2.09.08
	Version 2.09.07
	Version 2.09.06
	Version 2.09.05
	Version 2.09.04
	Version 2.09.03
	Version 2.09.02
	Version 2.09.01
	Version 2.09
	Version 2.08.02
	Version 2.08.01
	Version 2.08
	Version 2.07
	Version 2.06
	Version 2.05.01
	Version 2.05
	Version 2.04
	Version 2.03.01
	Version 2.03
	Version 2.02
	Version 2.01
	Version 2.00

	NASM 0.98 Series
	Version 0.98.39
	Version 0.98.38
	Version 0.98.37
	Version 0.98.36
	Version 0.98.35
	Version 0.98.34
	Version 0.98.33
	Version 0.98.32
	Version 0.98.31
	Version 0.98.30
	Version 0.98.28
	Version 0.98.26
	Version 0.98.25alt
	Version 0.98.25
	Version 0.98.24p1
	Version 0.98.24
	Version 0.98.23
	Version 0.98.22
	Version 0.98.21
	Version 0.98.20
	Version 0.98.19
	Version 0.98.18
	Version 0.98.17
	Version 0.98.16
	Version 0.98.15
	Version 0.98.14
	Version 0.98.13
	Version 0.98.12
	Version 0.98.11
	Version 0.98.10
	Version 0.98.09
	Version 0.98.08
	Version 0.98.09b with John Coffman patches released 28-Oct-2001
	Version 0.98.07 released 01/28/01
	Version 0.98.06f released 01/18/01
	Version 0.98.06e released 01/09/01
	Version 0.98p1
	Version 0.98bf (bug-fixed)
	Version 0.98.03 with John Coffman's changes released 27-Jul-2000
	Version 0.98.03
	Version 0.98
	Version 0.98p9
	Version 0.98p8
	Version 0.98p7
	Version 0.98p6
	Version 0.98p3.7
	Version 0.98p3.6
	Version 0.98p3.5
	Version 0.98p3.4
	Version 0.98p3.3
	Version 0.98p3.2
	Version 0.98p3-hpa
	Version 0.98 pre-release 3
	Version 0.98 pre-release 2
	Version 0.98 pre-release 1

	NASM 0.9 Series
	Version 0.97 released December 1997
	Version 0.96 released November 1997
	Version 0.95 released July 1997
	Version 0.94 released April 1997
	Version 0.93 released January 1997
	Version 0.92 released January 1997
	Version 0.91 released November 1996
	Version 0.90 released October 1996

	Index

