
NASM — The Netwide Assembler
version 2.10.04

© 1996−2012 The NASM Development Team — All Rights Reserved

This document is redistributable under the license given in the file "LICENSE" distributed in the NASM
archive.

Contents

Chapter 1: Introduction .16

1.1 What Is NASM? .16

1.1.1 Why Yet Another Assembler?. .16

1.1.2 License Conditions .16

1.2 Contact Information .17

1.3 Installation. .17

1.3.1 Installing NASM under MS−DOS or Windows .17

1.3.2 Installing NASM under Unix .18

Chapter 2: Running NASM .19

2.1 NASM Command−Line Syntax .19

2.1.1 The −o Option: Specifying the Output File Name .19

2.1.2 The −f Option: Specifying the Output File Format .20

2.1.3 The −l Option: Generating a Listing File .20

2.1.4 The −M Option: Generate Makefile Dependencies .20

2.1.5 The −MG Option: Generate Makefile Dependencies .20

2.1.6 The −MF Option: Set Makefile Dependency File .20

2.1.7 The −MD Option: Assemble and Generate Dependencies. .21

2.1.8 The −MT Option: Dependency Target Name. .21

2.1.9 The −MQ Option: Dependency Target Name (Quoted) .21

2.1.10 The −MP Option: Emit phony targets. .21

2.1.11 The −F Option: Selecting a Debug Information Format .21

2.1.12 The −g Option: Enabling Debug Information. .21

2.1.13 The −X Option: Selecting an Error Reporting Format. .21

2.1.14 The −Z Option: Send Errors to a File. .22

2.1.15 The −s Option: Send Errors to stdout .22

2.1.16 The −i Option: Include File Search Directories .22

2.1.17 The −p Option: Pre−Include a File. .23

2.1.18 The −d Option: Pre−Define a Macro .23

2.1.19 The −u Option: Undefine a Macro .23

3

2.1.20 The −E Option: Preprocess Only. .23

2.1.21 The −a Option: Don’t Preprocess At All .24

2.1.22 The −O Option: Specifying Multipass Optimization .24

2.1.23 The −t Option: Enable TASM Compatibility Mode .24

2.1.24 The −w and −W Options: Enable or Disable Assembly Warnings24

2.1.25 The −v Option: Display Version Info .25

2.1.26 The −y Option: Display Available Debug Info Formats .25

2.1.27 The −−prefix and −−postfix Options. .26

2.1.28 The NASMENV Environment Variable .26

2.2 Quick Start for MASM Users .26

2.2.1 NASM Is Case−Sensitive .26

2.2.2 NASM Requires Square Brackets For Memory References26

2.2.3 NASM Doesn’t Store Variable Types .27

2.2.4 NASM Doesn’t ASSUME. .27

2.2.5 NASM Doesn’t Support Memory Models .27

2.2.6 Floating−Point Differences .27

2.2.7 Other Differences .28

Chapter 3: The NASM Language .29

3.1 Layout of a NASM Source Line .29

3.2 Pseudo−Instructions .30

3.2.1 DB and Friends: Declaring Initialized Data .30

3.2.2 RESB and Friends: Declaring Uninitialized Data .30

3.2.3 INCBIN : Including External Binary Files .31

3.2.4 EQU: Defining Constants .31

3.2.5 TIMES: Repeating Instructions or Data .31

3.3 Effective Addresses .32

3.4 Constants .33

3.4.1 Numeric Constants .33

3.4.2 Character Strings .33

3.4.3 Character Constants. .34

3.4.4 String Constants .34

3.4.5 Unicode Strings. .35

3.4.6 Floating−Point Constants .35

4

3.4.7 Packed BCD Constants .36

3.5 Expressions .36

3.5.1 | : Bitwise OR Operator .37

3.5.2 ̂ : Bitwise XOR Operator .37

3.5.3 &: Bitwise AND Operator .37

3.5.4 << and >>: Bit Shift Operators .37

3.5.5 + and −: Addition and Subtraction Operators .37

3.5.6 * , / , // , % and %%: Multiplication and Division. .37

3.5.7 Unary Operators .37

3.6 SEG and WRT. .37

3.7 STRICT: Inhibiting Optimization .38

3.8 Critical Expressions .38

3.9 Local Labels. .39

Chapter 4: The NASM Preprocessor .41

4.1 Single−Line Macros .41

4.1.1 The Normal Way: %define .41

4.1.2 Resolving %define : %xdefine .42

4.1.3 Macro Indirection: %[...] .43

4.1.4 Concatenating Single Line Macro Tokens: %+. .43

4.1.5 The Macro Name Itself: %? and %?? .44

4.1.6 Undefining Single−Line Macros: %undef .44

4.1.7 Preprocessor Variables: %assign .44

4.1.8 Defining Strings: %defstr .45

4.1.9 Defining Tokens: %deftok .45

4.2 String Manipulation in Macros .45

4.2.1 Concatenating Strings: %strcat .45

4.2.2 String Length: %strlen .46

4.2.3 Extracting Substrings: %substr .46

4.3 Multi−Line Macros: %macro .46

4.3.1 Overloading Multi−Line Macros .47

4.3.2 Macro−Local Labels .48

4.3.3 Greedy Macro Parameters. .48

4.3.4 Macro Parameters Range .49

5

4.3.5 Default Macro Parameters .50

4.3.6 %0: Macro Parameter Counter. .51

4.3.7 %00: Label Preceeding Macro .51

4.3.8 %rotate : Rotating Macro Parameters .51

4.3.9 Concatenating Macro Parameters .52

4.3.10 Condition Codes as Macro Parameters .53

4.3.11 Disabling Listing Expansion .53

4.3.12 Undefining Multi−Line Macros: %unmacro. .53

4.4 Conditional Assembly .54

4.4.1 %ifdef : Testing Single−Line Macro Existence. .54

4.4.2 %ifmacro : Testing Multi−Line Macro Existence .55

4.4.3 %ifctx : Testing the Context Stack. .55

4.4.4 %if : Testing Arbitrary Numeric Expressions .55

4.4.5 %ifidn and %ifidni : Testing Exact Text Identity .56

4.4.6 %ifid , %ifnum , %ifstr : Testing Token Types .56

4.4.7 %iftoken : Test for a Single Token .57

4.4.8 %ifempty : Test for Empty Expansion .57

4.4.9 %ifenv : Test If Environment Variable Exists .57

4.5 Preprocessor Loops: %rep .58

4.6 Source Files and Dependencies .58

4.6.1 %include : Including Other Files .59

4.6.2 %pathsearch : Search the Include Path .59

4.6.3 %depend: Add Dependent Files .59

4.6.4 %use: Include Standard Macro Package .60

4.7 The Context Stack .60

4.7.1 %push and %pop: Creating and Removing Contexts .60

4.7.2 Context−Local Labels. .60

4.7.3 Context−Local Single−Line Macros. .61

4.7.4 Context Fall−Through Lookup .61

4.7.5 %repl : Renaming a Context .62

4.7.6 Example Use of the Context Stack: Block IFs .62

4.8 Stack Relative Preprocessor Directives .64

4.8.1 %arg Directive .64

6

4.8.2 %stacksize Directive .64

4.8.3 %local Directive .65

4.9 Reporting User−Defined Errors: %error , %warning , %fatal65

4.10 Other Preprocessor Directives .66

4.10.1 %line Directive .66

4.10.2 %!<env> : Read an environment variable. .67

4.11 Comment Blocks: %comment .67

4.12 Standard Macros .67

4.12.1 NASM Version Macros .67

4.12.2 __NASM_VERSION_ID__: NASM Version ID. .68

4.12.3 __NASM_VER__: NASM Version string .68

4.12.4 __FILE__ and __LINE__ : File Name and Line Number.68

4.12.5 __BITS__ : Current BITS Mode .68

4.12.6 __OUTPUT_FORMAT__: Current Output Format .69

4.12.7 Assembly Date and Time Macros .69

4.12.8 __USE_package__ : Package Include Test. .69

4.12.9 __PASS__: Assembly Pass .70

4.12.10 STRUC and ENDSTRUC: Declaring Structure Data Types70

4.12.11 ISTRUC, AT and IEND: Declaring Instances of Structures71

4.12.12 ALIGN and ALIGNB: Data Alignment .72

4.12.13 SECTALIGN: Section Alignment. .73

Chapter 5: Standard Macro Packages .74

5.1 altreg : Alternate Register Names .74

5.2 smartalign : Smart ALIGN Macro .74

5.3 fp : Floating−point macros. .75

5.4 ifunc : Integer functions .75

5.4.1 Integer logarithms .75

Chapter 6: Assembler Directives .76

6.1 BITS : Specifying Target Processor Mode .76

6.1.1 USE16 & USE32: Aliases for BITS .77

6.2 DEFAULT: Change the assembler defaults .77

6.3 SECTION or SEGMENT: Changing and Defining Sections .77

6.3.1 The __SECT__ Macro .77

7

6.4 ABSOLUTE: Defining Absolute Labels. .78

6.5 EXTERN: Importing Symbols from Other Modules .79

6.6 GLOBAL: Exporting Symbols to Other Modules .79

6.7 COMMON: Defining Common Data Areas .80

6.8 CPU: Defining CPU Dependencies .80

6.9 FLOAT: Handling of floating−point constants .81

Chapter 7: Output Formats .82

7.1 bin : Flat−Form Binary Output .82

7.1.1 ORG: Binary File Program Origin .82

7.1.2 bin Extensions to the SECTION Directive .83

7.1.3 Multisection Support for the bin Format .83

7.1.4 Map Files .83

7.2 ith : Intel Hex Output .84

7.3 srec : Motorola S−Records Output .84

7.4 obj : Microsoft OMF Object Files .84

7.4.1 obj Extensions to the SEGMENT Directive .85

7.4.2 GROUP: Defining Groups of Segments .86

7.4.3 UPPERCASE: Disabling Case Sensitivity in Output .86

7.4.4 IMPORT: Importing DLL Symbols .86

7.4.5 EXPORT: Exporting DLL Symbols .87

7.4.6 ..start : Defining the Program Entry Point .87

7.4.7 obj Extensions to the EXTERN Directive .87

7.4.8 obj Extensions to the COMMON Directive .88

7.5 win32 : Microsoft Win32 Object Files .88

7.5.1 win32 Extensions to the SECTION Directive .89

7.5.2 win32 : Safe Structured Exception Handling .89

7.6 win64 : Microsoft Win64 Object Files .91

7.6.1 win64 : Writing Position−Independent Code .91

7.6.2 win64 : Structured Exception Handling .92

7.7 coff : Common Object File Format .95

7.8 macho32 and macho64 : Mach Object File Format .95

7.9 elf32 , elf64 , elfx32 : Executable and Linkable Format Object Files95

7.9.1 ELF specific directive osabi .95

8

7.9.2 elf Extensions to the SECTION Directive .95

7.9.3 Position−Independent Code: elf Special Symbols and WRT96

7.9.4 Thread Local Storage: elf Special Symbols and WRT. .97

7.9.5 elf Extensions to the GLOBAL Directive .97

7.9.6 elf Extensions to the COMMON Directive .98

7.9.7 16−bit code and ELF .98

7.9.8 Debug formats and ELF .98

7.10 aout : Linux a.out Object Files .98

7.11 aoutb : NetBSD/FreeBSD/OpenBSD a.out Object Files .98

7.12 as86 : Minix/Linux as86 Object Files .99

7.13 rdf : Relocatable Dynamic Object File Format .99

7.13.1 Requiring a Library: The LIBRARY Directive .99

7.13.2 Specifying a Module Name: The MODULE Directive .99

7.13.3 rdf Extensions to the GLOBAL Directive . 100

7.13.4 rdf Extensions to the EXTERN Directive . 100

7.14 dbg : Debugging Format . 100

Chapter 8: Writing 16−bit Code (DOS, Windows 3/3.1). 102

8.1 Producing .EXE Files . 102

8.1.1 Using the obj Format To Generate .EXE Files . 102

8.1.2 Using the bin Format To Generate .EXE Files . 103

8.2 Producing .COM Files . 104

8.2.1 Using the bin Format To Generate .COM Files . 104

8.2.2 Using the obj Format To Generate .COM Files . 105

8.3 Producing .SYS Files . 105

8.4 Interfacing to 16−bit C Programs. 105

8.4.1 External Symbol Names . 105

8.4.2 Memory Models . 106

8.4.3 Function Definitions and Function Calls. 107

8.4.4 Accessing Data Items . 109

8.4.5 c16.mac : Helper Macros for the 16−bit C Interface . 110

8.5 Interfacing to Borland Pascal Programs . 111

8.5.1 The Pascal Calling Convention . 111

8.5.2 Borland Pascal Segment Name Restrictions . 113

9

8.5.3 Using c16.mac With Pascal Programs . 113

Chapter 9: Writing 32−bit Code (Unix, Win32, DJGPP). 114

9.1 Interfacing to 32−bit C Programs. 114

9.1.1 External Symbol Names . 114

9.1.2 Function Definitions and Function Calls. 114

9.1.3 Accessing Data Items . 116

9.1.4 c32.mac : Helper Macros for the 32−bit C Interface . 117

9.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries. 117

9.2.1 Obtaining the Address of the GOT . 118

9.2.2 Finding Your Local Data Items . 119

9.2.3 Finding External and Common Data Items . 119

9.2.4 Exporting Symbols to the Library User . 119

9.2.5 Calling Procedures Outside the Library . 120

9.2.6 Generating the Library File . 120

Chapter 10: Mixing 16 and 32 Bit Code. 122

10.1 Mixed−Size Jumps . 122

10.2 Addressing Between Different−Size Segments . 122

10.3 Other Mixed−Size Instructions . 123

Chapter 11: Writing 64−bit Code (Unix, Win64) . 125

11.1 Register Names in 64−bit Mode . 125

11.2 Immediates and Displacements in 64−bit Mode . 125

11.3 Interfacing to 64−bit C Programs (Unix) . 126

11.4 Interfacing to 64−bit C Programs (Win64) . 127

Chapter 12: Troubleshooting . 128

12.1 Common Problems . 128

12.1.1 NASM Generates Inefficient Code . 128

12.1.2 My Jumps are Out of Range . 128

12.1.3 ORG Doesn’t Work . 128

12.1.4 TIMES Doesn’t Work . 129

12.2 Bugs . 129

Appendix A: Ndisasm . 131

A.1 Introduction . 131

A.2 Getting Started: Installation . 131

10

A.3 Running NDISASM. 131

A.3.1 COM Files: Specifying an Origin . 131

A.3.2 Code Following Data: Synchronisation . 132

A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation 132

A.3.4 Other Options . 133

A.4 Bugs and Improvements. 133

Appendix B: Instruction List . 134

B.1 Introduction . 134

B.1.1 Special instructions... 134

B.1.2 Conventional instructions. 134

B.1.3 Katmai Streaming SIMD instructions (SSE –– a.k.a. KNI, XMM, MMX2) 162

B.1.4 Introduced in Deschutes but necessary for SSE support . 164

B.1.5 XSAVE group (AVX and extended state) . 164

B.1.6 Generic memory operations. 164

B.1.7 New MMX instructions introduced in Katmai. 164

B.1.8 AMD Enhanced 3DNow! (Athlon) instructions . 165

B.1.9 Willamette SSE2 Cacheability Instructions . 165

B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions) 165

B.1.11 Willamette Streaming SIMD instructions (SSE2) . 167

B.1.12 Prescott New Instructions (SSE3) . 169

B.1.13 VMX Instructions . 169

B.1.14 Extended Page Tables VMX instructions . 170

B.1.15 Tejas New Instructions (SSSE3) . 170

B.1.16 AMD SSE4A . 170

B.1.17 New instructions in Barcelona . 171

B.1.18 Penryn New Instructions (SSE4.1). 171

B.1.19 Nehalem New Instructions (SSE4.2). 172

B.1.20 Intel SMX. 172

B.1.21 Geode (Cyrix) 3DNow! additions . 172

B.1.22 Intel new instructions in ??? . 172

B.1.23 Intel AES instructions . 173

B.1.24 Intel AVX AES instructions . 173

B.1.25 Intel AVX instructions . 173

11

B.1.26 Intel Carry−Less Multiplication instructions (CLMUL) 187

B.1.27 Intel AVX Carry−Less Multiplication instructions (CLMUL) 187

B.1.28 Intel Fused Multiply−Add instructions (FMA) . 187

B.1.29 Intel post−32 nm processor instructions . 191

B.1.30 VIA (Centaur) security instructions . 192

B.1.31 AMD Lightweight Profiling (LWP) instructions . 192

B.1.32 AMD XOP and FMA4 instructions (SSE5) . 192

B.1.33 Intel AVX2 instructions . 195

B.1.34 Transactional Synchronization Extensions (TSX) . 199

B.1.35 Intel BMI1 and BMI2 instructions . 199

B.1.36 Systematic names for the hinting nop instructions . 200

Appendix C: NASM Version History . 205

C.1 NASM 2 Series . 205

C.1.1 Version 2.10.04 . 205

C.1.2 Version 2.10.03 . 205

C.1.3 Version 2.10.02 . 205

C.1.4 Version 2.10.01 . 205

C.1.5 Version 2.10 . 205

C.1.6 Version 2.09.10 . 206

C.1.7 Version 2.09.09 . 206

C.1.8 Version 2.09.08 . 206

C.1.9 Version 2.09.07 . 206

C.1.10 Version 2.09.06 . 206

C.1.11 Version 2.09.05 . 206

C.1.12 Version 2.09.04 . 206

C.1.13 Version 2.09.03 . 206

C.1.14 Version 2.09.02 . 207

C.1.15 Version 2.09.01 . 207

C.1.16 Version 2.09 . 207

C.1.17 Version 2.08.02 . 208

C.1.18 Version 2.08.01 . 208

C.1.19 Version 2.08 . 208

C.1.20 Version 2.07 . 209

12

C.1.21 Version 2.06 . 209

C.1.22 Version 2.05.01 . 210

C.1.23 Version 2.05 . 210

C.1.24 Version 2.04 . 210

C.1.25 Version 2.03.01 . 211

C.1.26 Version 2.03 . 211

C.1.27 Version 2.02 . 212

C.1.28 Version 2.01 . 212

C.1.29 Version 2.00 . 213

C.2 NASM 0.98 Series . 213

C.2.1 Version 0.98.39 . 214

C.2.2 Version 0.98.38 . 214

C.2.3 Version 0.98.37 . 214

C.2.4 Version 0.98.36 . 214

C.2.5 Version 0.98.35 . 215

C.2.6 Version 0.98.34 . 215

C.2.7 Version 0.98.33 . 215

C.2.8 Version 0.98.32 . 216

C.2.9 Version 0.98.31 . 216

C.2.10 Version 0.98.30 . 216

C.2.11 Version 0.98.28 . 216

C.2.12 Version 0.98.26 . 217

C.2.13 Version 0.98.25alt. 217

C.2.14 Version 0.98.25 . 217

C.2.15 Version 0.98.24p1. 217

C.2.16 Version 0.98.24 . 217

C.2.17 Version 0.98.23 . 217

C.2.18 Version 0.98.22 . 217

C.2.19 Version 0.98.21 . 217

C.2.20 Version 0.98.20 . 217

C.2.21 Version 0.98.19 . 217

C.2.22 Version 0.98.18 . 217

C.2.23 Version 0.98.17 . 217

13

C.2.24 Version 0.98.16 . 217

C.2.25 Version 0.98.15 . 218

C.2.26 Version 0.98.14 . 218

C.2.27 Version 0.98.13 . 218

C.2.28 Version 0.98.12 . 218

C.2.29 Version 0.98.11 . 218

C.2.30 Version 0.98.10 . 218

C.2.31 Version 0.98.09 . 218

C.2.32 Version 0.98.08 . 218

C.2.33 Version 0.98.09b with John Coffman patches released 28−Oct−2001 219

C.2.34 Version 0.98.07 released 01/28/01 . 219

C.2.35 Version 0.98.06f released 01/18/01 . 219

C.2.36 Version 0.98.06e released 01/09/01 . 219

C.2.37 Version 0.98p1 . 220

C.2.38 Version 0.98bf (bug−fixed) . 220

C.2.39 Version 0.98.03 with John Coffman’s changes released 27−Jul−2000 220

C.2.40 Version 0.98.03 . 220

C.2.41 Version 0.98 . 224

C.2.42 Version 0.98p9 . 224

C.2.43 Version 0.98p8 . 224

C.2.44 Version 0.98p7 . 224

C.2.45 Version 0.98p6 . 225

C.2.46 Version 0.98p3.7 . 225

C.2.47 Version 0.98p3.6 . 225

C.2.48 Version 0.98p3.5 . 225

C.2.49 Version 0.98p3.4 . 226

C.2.50 Version 0.98p3.3 . 226

C.2.51 Version 0.98p3.2 . 226

C.2.52 Version 0.98p3−hpa. 226

C.2.53 Version 0.98 pre−release 3 . 227

C.2.54 Version 0.98 pre−release 2 . 227

C.2.55 Version 0.98 pre−release 1 . 227

C.3 NASM 0.9 Series . 228

14

C.3.1 Version 0.97 released December 1997 . 228

C.3.2 Version 0.96 released November 1997 . 229

C.3.3 Version 0.95 released July 1997 . 231

C.3.4 Version 0.94 released April 1997 . 232

C.3.5 Version 0.93 released January 1997. 233

C.3.6 Version 0.92 released January 1997. 233

C.3.7 Version 0.91 released November 1996 . 234

C.3.8 Version 0.90 released October 1996 . 234

15

Chapter 1: Introduction

1.1 What Is NASM?
The Netwide Assembler, NASM, is an 80x86 and x86−64 assembler designed for portability and modularity.
It supports a range of object file formats, including Linux and *BSD a.out , ELF, COFF, Mach−O,
Microsoft 16−bit OBJ, Win32 and Win64 . It will also output plain binary files. Its syntax is designed to be
simple and easy to understand, similar to Intel’s but less complex. It supports all currently known x86
architectural extensions, and has strong support for macros.

1.1.1 Why Yet Another Assembler?

The Netwide Assembler grew out of an idea on comp.lang.asm.x86 (or possibly alt.lang.asm – I
forget which), which was essentially that there didn’t seem to be a good free x86−series assembler around,
and that maybe someone ought to write one.

• a86 is good, but not free, and in particular you don’t get any 32−bit capability until you pay. It’s DOS
only, too.

• gas is free, and ports over to DOS and Unix, but it’s not very good, since it’s designed to be a back end to
gcc , which always feeds it correct code. So its error checking is minimal. Also, its syntax is horrible, from
the point of view of anyone trying to actually write anything in it. Plus you can’t write 16−bit code in it
(properly.)

• as86 is specific to Minix and Linux, and (my version at least) doesn’t seem to have much (or any)
documentation.

• MASM isn’t very good, and it’s (was) expensive, and it runs only under DOS.

• TASM is better, but still strives for MASM compatibility, which means millions of directives and tons of
red tape. And its syntax is essentially MASM’s, with the contradictions and quirks that entails (although it
sorts out some of those by means of Ideal mode.) It’s expensive too. And it’s DOS−only.

So here, for your coding pleasure, is NASM. At present it’s still in prototype stage – we don’t promise that it
can outperform any of these assemblers. But please, please send us bug reports, fixes, helpful information,
and anything else you can get your hands on (and thanks to the many people who’ve done this already! You
all know who you are), and we’ll improve it out of all recognition. Again.

1.1.2 License Conditions

Please see the file LICENSE, supplied as part of any NASM distribution archive, for the license conditions
under which you may use NASM. NASM is now under the so−called 2−clause BSD license, also known as
the simplified BSD license.

Copyright 1996−2011 the NASM Authors – All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

16

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1.2 Contact Information
The current version of NASM (since about 0.98.08) is maintained by a team of developers, accessible through
the nasm−devel mailing list (see below for the link). If you want to report a bug, please read section 12.2
first.

NASM has a website at http://www.nasm.us/ . If it’s not there, google for us!

New releases, release candidates, and daily development snapshots of NASM are available from the official
web site.

Announcements are posted to comp.lang.asm.x86 , and to the web site
http://www.freshmeat.net/ .

If you want information about the current development status, please subscribe to the nasm−devel email
list; see link from the website.

1.3 Installation

1.3.1 Installing NASM under MS−DOS or Windows

Once you’ve obtained the appropriate archive for NASM, nasm−XXX−dos.zip or
nasm−XXX−win32.zip (where XXX denotes the version number of NASM contained in the archive),
unpack it into its own directory (for example c:\nasm).

The archive will contain a set of executable files: the NASM executable file nasm.exe , the NDISASM
executable file ndisasm.exe , and possibly additional utilities to handle the RDOFF file format.

The only file NASM needs to run is its own executable, so copy nasm.exe to a directory on your PATH, or
alternatively edit autoexec.bat to add the nasm directory to your PATH (to do that under Windows XP,
go to Start > Control Panel > System > Advanced > Environment Variables; these instructions may work
under other versions of Windows as well.)

That’s it – NASM is installed. You don’t need the nasm directory to be present to run NASM (unless you’ve
added it to your PATH), so you can delete it if you need to save space; however, you may want to keep the
documentation or test programs.

If you’ve downloaded the DOS source archive, nasm−XXX.zip , the nasm directory will also contain the
full NASM source code, and a selection of Makefiles you can (hopefully) use to rebuild your copy of NASM
from scratch. See the file INSTALL in the source archive.

17

http://www.nasm.us/
news:comp.lang.asm.x86
http://www.freshmeat.net/

Note that a number of files are generated from other files by Perl scripts. Although the NASM source
distribution includes these generated files, you will need to rebuild them (and hence, will need a Perl
interpreter) if you change insns.dat, standard.mac or the documentation. It is possible future source
distributions may not include these files at all. Ports of Perl for a variety of platforms, including DOS and
Windows, are available from www.cpan.org.

1.3.2 Installing NASM under Unix

Once you’ve obtained the Unix source archive for NASM, nasm−XXX.tar.gz (where XXX denotes the
version number of NASM contained in the archive), unpack it into a directory such as /usr/local/src .
The archive, when unpacked, will create its own subdirectory nasm−XXX.

NASM is an auto−configuring package: once you’ve unpacked it, cd to the directory it’s been unpacked into
and type ./configure . This shell script will find the best C compiler to use for building NASM and set up
Makefiles accordingly.

Once NASM has auto−configured, you can type make to build the nasm and ndisasm binaries, and then
make install to install them in /usr/local/bin and install the man pages nasm.1 and
ndisasm.1 in /usr/local/man/man1 . Alternatively, you can give options such as −−prefix to the
configure script (see the file INSTALL for more details), or install the programs yourself.

NASM also comes with a set of utilities for handling the RDOFF custom object−file format, which are in the
rdoff subdirectory of the NASM archive. You can build these with make rdf and install them with
make rdf_install , if you want them.

18

http://www.cpan.org/ports/

Chapter 2: Running NASM

2.1 NASM Command−Line Syntax
To assemble a file, you issue a command of the form

nasm −f <format> <filename> [−o <output>]

For example,

nasm −f elf myfile.asm

will assemble myfile.asm into an ELF object file myfile.o . And

nasm −f bin myfile.asm −o myfile.com

will assemble myfile.asm into a raw binary file myfile.com .

To produce a listing file, with the hex codes output from NASM displayed on the left of the original sources,
use the −l option to give a listing file name, for example:

nasm −f coff myfile.asm −l myfile.lst

To get further usage instructions from NASM, try typing

nasm −h

As −hf , this will also list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your system is a.out or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like

nasm: ELF 32−bit LSB executable i386 (386 and up) Version 1

then your system is ELF, and you should use the option −f elf when you want NASM to produce Linux
object files. If it says

nasm: Linux/i386 demand−paged executable (QMAGIC)

or something similar, your system is a.out , and you should use −f aout instead (Linux a.out systems
have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won’t see any output at all,
unless it gives error messages.

2.1.1 The −o Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is dependent on
the object file format. For Microsoft object file formats (obj , win32 and win64), it will remove the .asm
extension (or whatever extension you like to use – NASM doesn’t care) from your source file name and
substitute .obj . For Unix object file formats (aout , as86 , coff , elf32 , elf64 , elfx32 , ieee ,
macho32 and macho64) it will substitute .o . For dbg , rdf , ith and srec , it will use .dbg , .rdf ,

19

.ith and .srec , respectively, and for the bin format it will simply remove the extension, so that
myfile.asm produces the output file myfile .

If the output file already exists, NASM will overwrite it, unless it has the same name as the input file, in
which case it will give a warning and use nasm.out as the output file name instead.

For situations in which this behaviour is unacceptable, NASM provides the −o command−line option, which
allows you to specify your desired output file name. You invoke −o by following it with the name you wish
for the output file, either with or without an intervening space. For example:

nasm −f bin program.asm −o program.com
nasm −f bin driver.asm −odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimisation passes required. See section 2.1.22.

2.1.2 The −f Option: Specifying the Output File Format

If you do not supply the −f option to NASM, it will choose an output file format for you itself. In the
distribution versions of NASM, the default is always bin ; if you’ve compiled your own copy of NASM, you
can redefine OF_DEFAULT at compile time and choose what you want the default to be.

Like −o, the intervening space between −f and the output file format is optional; so −f elf and −felf are
both valid.

A complete list of the available output file formats can be given by issuing the command nasm −hf .

2.1.3 The −l Option: Generating a Listing File

If you supply the −l option to NASM, followed (with the usual optional space) by a file name, NASM will
generate a source−listing file for you, in which addresses and generated code are listed on the left, and the
actual source code, with expansions of multi−line macros (except those which specifically request no
expansion in source listings: see section 4.3.11) on the right. For example:

nasm −f elf myfile.asm −l myfile.lst

If a list file is selected, you may turn off listing for a section of your source with [list −] , and turn it back
on with [list +] , (the default, obviously). There is no "user form" (without the brackets). This can be used
to list only sections of interest, avoiding excessively long listings.

2.1.4 The −M Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file for
further processing. For example:

nasm −M myfile.asm > myfile.dep

2.1.5 The −MG Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This differs from the −M option in that if
a nonexisting file is encountered, it is assumed to be a generated file and is added to the dependency list
without a prefix.

2.1.6 The −MF Option: Set Makefile Dependency File

This option can be used with the −M or −MG options to send the output to a file, rather than to stdout. For
example:

20

nasm −M −MF myfile.dep myfile.asm

2.1.7 The −MD Option: Assemble and Generate Dependencies

The −MD option acts as the combination of the −M and −MF options (i.e. a filename has to be specified.)
However, unlike the −M or −MG options, −MD does not inhibit the normal operation of the assembler. Use this
to automatically generate updated dependencies with every assembly session. For example:

nasm −f elf −o myfile.o −MD myfile.dep myfile.asm

2.1.8 The −MT Option: Dependency Target Name

The −MT option can be used to override the default name of the dependency target. This is normally the same
as the output filename, specified by the −o option.

2.1.9 The −MQ Option: Dependency Target Name (Quoted)

The −MQ option acts as the −MT option, except it tries to quote characters that have special meaning in
Makefile syntax. This is not foolproof, as not all characters with special meaning are quotable in Make.

2.1.10 The −MP Option: Emit phony targets

When used with any of the dependency generation options, the −MP option causes NASM to emit a phony
target without dependencies for each header file. This prevents Make from complaining if a header file has
been removed.

2.1.11 The −F Option: Selecting a Debug Information Format

This option is used to select the format of the debug information emitted into the output file, to be used by a
debugger (or will be). Prior to version 2.03.01, the use of this switch did not enable output of the selected
debug info format. Use −g, see section 2.1.12, to enable output. Versions 2.03.01 and later automatically
enable −g if −F is specified.

A complete list of the available debug file formats for an output format can be seen by issuing the command
nasm −f <format> −y . Not all output formats currently support debugging output. See section 2.1.26.

This should not be confused with the −f dbg output format option which is not built into NASM by default.
For information on how to enable it when building from the sources, see section 7.14.

2.1.12 The −g Option: Enabling Debug Information.

This option can be used to generate debugging information in the specified format. See section 2.1.11. Using
−g without −F results in emitting debug info in the default format, if any, for the selected output format. If no
debug information is currently implemented in the selected output format, −g is silently ignored.

2.1.13 The −X Option: Selecting an Error Reporting Format

This option can be used to select an error reporting format for any error messages that might be produced by
NASM.

Currently, two error reporting formats may be selected. They are the −Xvc option and the −Xgnu option. The
GNU format is the default and looks like this:

filename.asm:65: error: specific error message

where filename.asm is the name of the source file in which the error was detected, 65 is the source file
line number on which the error was detected, error is the severity of the error (this could be warning),

21

and specific error message is a more detailed text message which should help pinpoint the exact
problem.

The other format, specified by −Xvc is the style used by Microsoft Visual C++ and some other programs. It
looks like this:

filename.asm(65) : error: specific error message

where the only difference is that the line number is in parentheses instead of being delimited by colons.

See also the Visual C++ output format, section 7.5.

2.1.14 The −Z Option: Send Errors to a File

Under MS−DOS it can be difficult (though there are ways) to redirect the standard−error output of a program
to a file. Since NASM usually produces its warning and error messages on stderr , this can make it hard to
capture the errors if (for example) you want to load them into an editor.

NASM therefore provides the −Z option, taking a filename argument which causes errors to be sent to the
specified files rather than standard error. Therefore you can redirect the errors into a file by typing

nasm −Z myfile.err −f obj myfile.asm

In earlier versions of NASM, this option was called −E, but it was changed since −E is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.20.

2.1.15 The −s Option: Send Errors to stdout

The −s option redirects error messages to stdout rather than stderr , so it can be redirected under
MS−DOS. To assemble the file myfile.asm and pipe its output to the more program, you can type:

nasm −s −f obj myfile.asm | more

See also the −Z option, section 2.1.14.

2.1.16 The −i Option: Include File Search Directories

When NASM sees the %include or %pathsearch directive in a source file (see section 4.6.1, section
4.6.2 or section 3.2.3), it will search for the given file not only in the current directory, but also in any
directories specified on the command line by the use of the −i option. Therefore you can include files from a
macro library, for example, by typing

nasm −ic:\macrolib\ −f obj myfile.asm

(As usual, a space between −i and the path name is allowed, and optional).

NASM, in the interests of complete source−code portability, does not understand the file naming conventions
of the OS it is running on; the string you provide as an argument to the −i option will be prepended exactly as
written to the name of the include file. Therefore the trailing backslash in the above example is necessary.
Under Unix, a trailing forward slash is similarly necessary.

(You can use this to your advantage, if you’re really perverse, by noting that the option −ifoo will cause
%include "bar.i" to search for the file foobar.i ...)

If you want to define a standard include search path, similar to /usr/include on Unix systems, you
should place one or more −i directives in the NASMENV environment variable (see section 2.1.28).

For Makefile compatibility with many C compilers, this option can also be specified as −I .

22

2.1.17 The −p Option: Pre−Include a File

NASM allows you to specify files to be pre−included into your source file, by the use of the −p option. So
running

nasm myfile.asm −p myinc.inc

is equivalent to running nasm myfile.asm and placing the directive %include "myinc.inc" at the
start of the file.

For consistency with the −I , −D and −U options, this option can also be specified as −P.

2.1.18 The −d Option: Pre−Define a Macro

Just as the −p option gives an alternative to placing %include directives at the start of a source file, the −d
option gives an alternative to placing a %define directive. You could code

nasm myfile.asm −dFOO=100

as an alternative to placing the directive

%define FOO 100

at the start of the file. You can miss off the macro value, as well: the option −dFOO is equivalent to coding
%define FOO . This form of the directive may be useful for selecting assembly−time options which are then
tested using %ifdef , for example −dDEBUG.

For Makefile compatibility with many C compilers, this option can also be specified as −D.

2.1.19 The −u Option: Undefine a Macro

The −u option undefines a macro that would otherwise have been pre−defined, either automatically or by a
−p or −d option specified earlier on the command lines.

For example, the following command line:

nasm myfile.asm −dFOO=100 −uFOO

would result in FOO not being a predefined macro in the program. This is useful to override options specified
at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified as −U.

2.1.20 The −E Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. Using the −E option (which requires no
arguments) will cause NASM to preprocess its input file, expand all the macro references, remove all the
comments and preprocessor directives, and print the resulting file on standard output (or save it to a file, if the
−o option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions which
depend on the values of symbols: so code such as

%assign tablesize ($−tablestart)

will cause an error in preprocess−only mode.

For compatiblity with older version of NASM, this option can also be written −e. −E in older versions of
NASM was the equivalent of the current −Z option, section 2.1.14.

23

2.1.21 The −a Option: Don’t Preprocess At All

If NASM is being used as the back end to a compiler, it might be desirable to suppress preprocessing
completely and assume the compiler has already done it, to save time and increase compilation speeds. The
−a option, requiring no argument, instructs NASM to replace its powerful preprocessor with a stub
preprocessor which does nothing.

2.1.22 The −O Option: Specifying Multipass Optimization

Using the −O option, you can tell NASM to carry out different levels of optimization. The syntax is:

• −O0: No optimization. All operands take their long forms, if a short form is not specified, except
conditional jumps. This is intended to match NASM 0.98 behavior.

• −O1: Minimal optimization. As above, but immediate operands which will fit in a signed byte are
optimized, unless the long form is specified. Conditional jumps default to the long form unless otherwise
specified.

• −Ox (where x is the actual letter x): Multipass optimization. Minimize branch offsets and signed
immediate bytes, overriding size specification unless the strict keyword has been used (see section
3.7). For compatibility with earlier releases, the letter x may also be any number greater than one. This
number has no effect on the actual number of passes.

The −Ox mode is recommended for most uses, and is the default since NASM 2.09.

Note that this is a capital O, and is different from a small o, which is used to specify the output file name. See
section 2.1.1.

2.1.23 The −t Option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with Borland’s TASM. When NASM’s −t option is used, the
following changes are made:

• local labels may be prefixed with @@ instead of .

• size override is supported within brackets. In TASM compatible mode, a size override inside square
brackets changes the size of the operand, and not the address type of the operand as it does in NASM
syntax. E.g. mov eax,[DWORD val] is valid syntax in TASM compatibility mode. Note that you lose
the ability to override the default address type for the instruction.

• unprefixed forms of some directives supported (arg , elif , else , endif , if , ifdef , ifdifi ,
ifndef , include , local)

2.1.24 The −w and −W Options: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to the user,
but not a sufficiently severe error to justify NASM refusing to generate an output file. These conditions are
reported like errors, but come up with the word ‘warning’ before the message. Warnings do not prevent
NASM from generating an output file and returning a success status to the operating system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the user.
Therefore NASM supports the −w command−line option, which enables or disables certain classes of
assembly warning. Such warning classes are described by a name, for example orphan−labels ; you can
enable warnings of this class by the command−line option −w+orphan−labels and disable it by
−w−orphan−labels .

The suppressible warning classes are:

24

• macro−params covers warnings about multi−line macros being invoked with the wrong number of
parameters. This warning class is enabled by default; see section 4.3.1 for an example of why you might
want to disable it.

• macro−selfref warns if a macro references itself. This warning class is disabled by default.

• macro−defaults warns when a macro has more default parameters than optional parameters. This
warning class is enabled by default; see section 4.3.5 for why you might want to disable it.

• orphan−labels covers warnings about source lines which contain no instruction but define a label
without a trailing colon. NASM warns about this somewhat obscure condition by default; see section 3.1
for more information.

• number−overflow covers warnings about numeric constants which don’t fit in 64 bits. This warning
class is enabled by default.

• gnu−elf−extensions warns if 8−bit or 16−bit relocations are used in −f elf format. The GNU
extensions allow this. This warning class is disabled by default.

• float−overflow warns about floating point overflow. Enabled by default.

• float−denorm warns about floating point denormals. Disabled by default.

• float−underflow warns about floating point underflow. Disabled by default.

• float−toolong warns about too many digits in floating−point numbers. Enabled by default.

• user controls %warning directives (see section 4.9). Enabled by default.

• lock warns about LOCK prefixes on unlockable instructions. Enabled by default.

• hle warns about invalid use of the HLE XACQUIRE or XRELEASE prefixes. Enabled by default.

• error causes warnings to be treated as errors. Disabled by default.

• all is an alias for all suppressible warning classes (not including error). Thus, −w+all enables all
available warnings.

In addition, you can set warning classes across sections. Warning classes may be enabled with
[warning +warning−name] , disabled with [warning −warning−name] or reset to their original
value with [warning *warning−name] . No "user form" (without the brackets) exists.

Since version 2.00, NASM has also supported the gcc−like syntax −Wwarning and −Wno−warning
instead of −w+warning and −w−warning , respectively.

2.1.25 The −v Option: Display Version Info

Typing NASM −v will display the version of NASM which you are using, and the date on which it was
compiled.

You will need the version number if you report a bug.

2.1.26 The −y Option: Display Available Debug Info Formats

Typing nasm −f <option> −y will display a list of the available debug info formats for the given output
format. The default format is indicated by an asterisk. For example:

nasm −f elf −y

25

valid debug formats for ’elf32’ output format are
 (’*’ denotes default):
 * stabs ELF32 (i386) stabs debug format for Linux
 dwarf elf32 (i386) dwarf debug format for Linux

2.1.27 The −−prefix and −−postfix Options.

The −−prefix and −−postfix options prepend or append (respectively) the given argument to all
global or extern variables. E.g. −−prefix _ will prepend the underscore to all global and external
variables, as C sometimes (but not always) likes it.

2.1.28 The NASMENV Environment Variable

If you define an environment variable called NASMENV, the program will interpret it as a list of extra
command−line options, which are processed before the real command line. You can use this to define
standard search directories for include files, by putting −i options in the NASMENV variable.

The value of the variable is split up at white space, so that the value −s −ic:\nasmlib\ will be treated as
two separate options. However, that means that the value −dNAME="my name" won’t do what you might
want, because it will be split at the space and the NASM command−line processing will get confused by the
two nonsensical words −dNAME="my and name" .

To get round this, NASM provides a feature whereby, if you begin the NASMENV environment variable with
some character that isn’t a minus sign, then NASM will treat this character as the separator character for
options. So setting the NASMENV variable to the value !−s!−ic:\nasmlib\ is equivalent to setting it to
−s −ic:\nasmlib\ , but !−dNAME="my name" will work.

This environment variable was previously called NASM. This was changed with version 0.98.31.

2.2 Quick Start for MASM Users
If you’re used to writing programs with MASM, or with TASM in MASM−compatible (non−Ideal) mode, or
with a86 , this section attempts to outline the major differences between MASM’s syntax and NASM’s. If
you’re not already used to MASM, it’s probably worth skipping this section.

2.2.1 NASM Is Case−Sensitive

One simple difference is that NASM is case−sensitive. It makes a difference whether you call your label foo ,
Foo or FOO. If you’re assembling to DOS or OS/2 .OBJ files, you can invoke the UPPERCASE directive
(documented in section 7.4) to ensure that all symbols exported to other code modules are forced to be upper
case; but even then, within a single module, NASM will distinguish between labels differing only in case.

2.2.2 NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it should be
possible, as far as is practical, for the user to look at a single line of NASM code and tell what opcode is
generated by it. You can’t do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

then the two lines of code

 mov ax,foo
 mov ax,bar

26

generate completely different opcodes, despite having identical−looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references. The rule is
simply that any access to the contents of a memory location requires square brackets around the address, and
any access to the address of a variable doesn’t. So an instruction of the form mov ax,foo will always refer
to a compile−time constant, whether it’s an EQU or the address of a variable; and to access the contents of the
variable bar , you must code mov ax,[bar] .

This also means that NASM has no need for MASM’s OFFSET keyword, since the MASM code
mov ax,offset bar means exactly the same thing as NASM’s mov ax,bar . If you’re trying to get
large amounts of MASM code to assemble sensibly under NASM, you can always code
%idefine offset to make the preprocessor treat the OFFSET keyword as a no−op.

This issue is even more confusing in a86 , where declaring a label with a trailing colon defines it to be a
‘label’ as opposed to a ‘variable’ and causes a86 to adopt NASM−style semantics; so in a86 , mov ax,var
has different behaviour depending on whether var was declared as var: dw 0 (a label) or var dw 0 (a
word−size variable). NASM is very simple by comparison: everything is a label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by MASM and its
clones, such as mov ax,table[bx] , where a memory reference is denoted by one portion outside square
brackets and another portion inside. The correct syntax for the above is mov ax,[table+bx] . Likewise,
mov ax,es:[di] is wrong and mov ax,[es:di] is right.

2.2.3 NASM Doesn’t Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM will
remember, on seeing var dw 0 , that you declared var as a word−size variable, and will then be able to fill
in the ambiguity in the size of the instruction mov var,2 , NASM will deliberately remember nothing about
the symbol var except where it begins, and so you must explicitly code mov word [var],2 .

For this reason, NASM doesn’t support the LODS, MOVS, STOS, SCAS, CMPS, INS , or OUTS instructions,
but only supports the forms such as LODSB, MOVSW, and SCASD, which explicitly specify the size of the
components of the strings being manipulated.

2.2.4 NASM Doesn’t ASSUME

As part of NASM’s drive for simplicity, it also does not support the ASSUME directive. NASM will not keep
track of what values you choose to put in your segment registers, and will never automatically generate a
segment override prefix.

2.2.5 NASM Doesn’t Support Memory Models

NASM also does not have any directives to support different 16−bit memory models. The programmer has to
keep track of which functions are supposed to be called with a far call and which with a near call, and is
responsible for putting the correct form of RET instruction (RETN or RETF; NASM accepts RET itself as an
alternate form for RETN); in addition, the programmer is responsible for coding CALL FAR instructions
where necessary when calling external functions, and must also keep track of which external variable
definitions are far and which are near.

2.2.6 Floating−Point Differences

NASM uses different names to refer to floating−point registers from MASM: where MASM would call them
ST(0) , ST(1) and so on, and a86 would call them simply 0, 1 and so on, NASM chooses to call them
st0 , st1 etc.

27

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM−compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was based on a
misunderstanding by the authors.

2.2.7 Other Differences

For historical reasons, NASM uses the keyword TWORD where MASM and compatible assemblers use
TBYTE.

NASM does not declare uninitialized storage in the same way as MASM: where a MASM programmer might
use stack db 64 dup (?) , NASM requires stack resb 64 , intended to be read as ‘reserve 64
bytes’. For a limited amount of compatibility, since NASM treats ? as a valid character in symbol names, you
can code ? equ 0 and then writing dw ? will at least do something vaguely useful. DUP is still not a
supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASM. See chapter 4 and
chapter 6 for further details.

28

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line
Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor directive or an
assembler directive: see chapter 4 and chapter 6) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label, an
instruction and a comment is allowed. Of course, the operand field is either required or forbidden by the
presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next line is
considered to be a part of the backslash−ended line.

NASM places no restrictions on white space within a line: labels may have white space before them, or
instructions may have no space before them, or anything. The colon after a label is also optional. (Note that
this means that if you intend to code lodsb alone on a line, and type lodab by accident, then that’s still a
valid source line which does nothing but define a label. Running NASM with the command−line option
−w+orphan−labels will cause it to warn you if you define a label alone on a line without a trailing colon.)

Valid characters in labels are letters, numbers, _, $, #, @, ~, . , and ?. The only characters which may be used
as the first character of an identifier are letters, . (with special meaning: see section 3.9), _ and ?. An
identifier may also be prefixed with a $ to indicate that it is intended to be read as an identifier and not a
reserved word; thus, if some other module you are linking with defines a symbol called eax , you can refer to
$eax in NASM code to distinguish the symbol from the register. Maximum length of an identifier is 4095
characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU instructions,
MMX instructions and even undocumented instructions are all supported. The instruction may be prefixed by
LOCK, REP, REPE/REPZ or REPNE/REPNZ, in the usual way. Explicit address−size and operand−size
prefixes A16, A32, A64, O16 and O32, O64 are provided – one example of their use is given in chapter 10.
You can also use the name of a segment register as an instruction prefix: coding es mov [bx],ax is
equivalent to coding mov [es:bx],ax . We recommend the latter syntax, since it is consistent with other
syntactic features of the language, but for instructions such as LODSB, which has no operands and yet can
require a segment override, there is no clean syntactic way to proceed apart from es lodsb .

An instruction is not required to use a prefix: prefixes such as CS, A32, LOCK or REPE can appear on a line
by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo−instructions, described in
section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the register name
(e.g. ax , bp , ebx , cr0 : NASM does not use the gas –style syntax in which register names must be prefixed
by a % sign), or they can be effective addresses (see section 3.3), constants (section 3.4) or expressions
(section 3.5).

29

For x87 floating−point instructions, NASM accepts a wide range of syntaxes: you can use two−operand forms
like MASM supports, or you can use NASM’s native single−operand forms in most cases. For example, you
can code:

 fadd st1 ; this sets st0 := st0 + st1
 fadd st0,st1 ; so does this

 fadd st1,st0 ; this sets st1 := st1 + st0
 fadd to st1 ; so does this

Almost any x87 floating−point instruction that references memory must use one of the prefixes DWORD,
QWORD or TWORD to indicate what size of memory operand it refers to.

3.2 Pseudo−Instructions
Pseudo−instructions are things which, though not real x86 machine instructions, are used in the instruction
field anyway because that’s the most convenient place to put them. The current pseudo−instructions are DB,
DW, DD, DQ, DT, DO and DY; their uninitialized counterparts RESB, RESW, RESD, RESQ, REST, RESO and
RESY; the INCBIN command, the EQU command, and the TIMES prefix.

3.2.1 DB and Friends: Declaring Initialized Data

DB, DW, DD, DQ, DT, DO and DY are used, much as in MASM, to declare initialized data in the output file.
They can be invoked in a wide range of ways:

 db 0x55 ; just the byte 0x55
 db 0x55,0x56,0x57 ; three bytes in succession
 db ’a’,0x55 ; character constants are OK
 db ’hello’,13,10,’$’ ; so are string constants
 dw 0x1234 ; 0x34 0x12
 dw ’a’ ; 0x61 0x00 (it’s just a number)
 dw ’ab’ ; 0x61 0x62 (character constant)
 dw ’abc’ ; 0x61 0x62 0x63 0x00 (string)
 dd 0x12345678 ; 0x78 0x56 0x34 0x12
 dd 1.234567e20 ; floating−point constant
 dq 0x123456789abcdef0 ; eight byte constant
 dq 1.234567e20 ; double−precision float
 dt 1.234567e20 ; extended−precision float

DT, DO and DY do not accept numeric constants as operands.

3.2.2 RESB and Friends: Declaring Uninitialized Data

RESB, RESW, RESD, RESQ, REST, RESO and RESY are designed to be used in the BSS section of a module:
they declare uninitialized storage space. Each takes a single operand, which is the number of bytes, words,
doublewords or whatever to reserve. As stated in section 2.2.7, NASM does not support the MASM/TASM
syntax of reserving uninitialized space by writing DW ? or similar things: this is what it does instead. The
operand to a RESB–type pseudo−instruction is a critical expression: see section 3.8.

For example:

buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 ; reserve a word

30

realarray resq 10 ; array of ten reals
ymmval: resy 1 ; one YMM register

3.2.3 INCBIN : Including External Binary Files

INCBIN is borrowed from the old Amiga assembler DevPac: it includes a binary file verbatim into the output
file. This can be handy for (for example) including graphics and sound data directly into a game executable
file. It can be called in one of these three ways:

 incbin "file.dat" ; include the whole file
 incbin "file.dat",1024 ; skip the first 1024 bytes
 incbin "file.dat",1024,512 ; skip the first 1024, and
 ; actually include at most 512

INCBIN is both a directive and a standard macro; the standard macro version searches for the file in the
include file search path and adds the file to the dependency lists. This macro can be overridden if desired.

3.2.4 EQU: Defining Constants

EQU defines a symbol to a given constant value: when EQU is used, the source line must contain a label. The
action of EQU is to define the given label name to the value of its (only) operand. This definition is absolute,
and cannot change later. So, for example,

message db ’hello, world’
msglen equ $−message

defines msglen to be the constant 12. msglen may not then be redefined later. This is not a preprocessor
definition either: the value of msglen is evaluated once, using the value of $ (see section 3.5 for an
explanation of $) at the point of definition, rather than being evaluated wherever it is referenced and using the
value of $ at the point of reference.

3.2.5 TIMES: Repeating Instructions or Data

The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as NASM’s
equivalent of the DUP syntax supported by MASM–compatible assemblers, in that you can code

zerobuf: times 64 db 0

or similar things; but TIMES is more versatile than that. The argument to TIMES is not just a numeric
constant, but a numeric expression, so you can do things like

buffer: db ’hello, world’
 times 64−$+buffer db ’ ’

which will store exactly enough spaces to make the total length of buffer up to 64. Finally, TIMES can be
applied to ordinary instructions, so you can code trivial unrolled loops in it:

 times 100 movsb

Note that there is no effective difference between times 100 resb 1 and resb 100 , except that the
latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand to TIMES is a critical expression (section 3.8).

Note also that TIMES can’t be applied to macros: the reason for this is that TIMES is processed after the
macro phase, which allows the argument to TIMES to contain expressions such as 64−$+buffer as above.
To repeat more than one line of code, or a complex macro, use the preprocessor %rep directive.

31

3.3 Effective Addresses
An effective address is any operand to an instruction which references memory. Effective addresses, in
NASM, have a very simple syntax: they consist of an expression evaluating to the desired address, enclosed in
square brackets. For example:

wordvar dw 123
 mov ax,[wordvar]
 mov ax,[wordvar+1]
 mov ax,[es:wordvar+bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for example
es:wordvar[bx] .

More complicated effective addresses, such as those involving more than one register, work in exactly the
same way:

 mov eax,[ebx*2+ecx+offset]
 mov ax,[bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don’t necessarily look
legal are perfectly all right:

 mov eax,[ebx*5] ; assembles as [ebx*4+ebx]
 mov eax,[label1*2−label2] ; ie [label1+(label1−label2)]

Some forms of effective address have more than one assembled form; in most such cases NASM will generate
the smallest form it can. For example, there are distinct assembled forms for the 32−bit effective addresses
[eax*2+0] and [eax+eax] , and NASM will generally generate the latter on the grounds that the former
requires four bytes to store a zero offset.

NASM has a hinting mechanism which will cause [eax+ebx] and [ebx+eax] to generate different
opcodes; this is occasionally useful because [esi+ebp] and [ebp+esi] have different default segment
registers.

However, you can force NASM to generate an effective address in a particular form by the use of the
keywords BYTE, WORD, DWORD and NOSPLIT. If you need [eax+3] to be assembled using a double−word
offset field instead of the one byte NASM will normally generate, you can code [dword eax+3] .
Similarly, you can force NASM to use a byte offset for a small value which it hasn’t seen on the first pass (see
section 3.8 for an example of such a code fragment) by using [byte eax+offset] . As special cases,
[byte eax] will code [eax+0] with a byte offset of zero, and [dword eax] will code it with a
double−word offset of zero. The normal form, [eax] , will be coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a 32−bit
segment from within 16 bit code. For more information on this see the section on mixed−size addressing
(section 10.2). In particular, if you need to access data with a known offset that is larger than will fit in a
16−bit value, if you don’t specify that it is a dword offset, nasm will cause the high word of the offset to be
lost.

Similarly, NASM will split [eax*2] into [eax+eax] because that allows the offset field to be absent and
space to be saved; in fact, it will also split [eax*2+offset] into [eax+eax+offset] . You can combat
this behaviour by the use of the NOSPLIT keyword: [nosplit eax*2] will force [eax*2+0] to be
generated literally.

32

In 64−bit mode, NASM will by default generate absolute addresses. The REL keyword makes it produce
RIP–relative addresses. Since this is frequently the normally desired behaviour, see the DEFAULT directive
(section 6.2). The keyword ABS overrides REL.

3.4 Constants
NASM understands four different types of constant: numeric, character, string and floating−point.

3.4.1 Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number bases,
in a variety of ways: you can suffix H or X, D or T, Q or O, and B or Y for hexadecimal, decimal, octal and
binary respectively, or you can prefix 0x , for hexadecimal in the style of C, or you can prefix $ for
hexadecimal in the style of Borland Pascal or Motorola Assemblers. Note, though, that the $ prefix does
double duty as a prefix on identifiers (see section 3.1), so a hex number prefixed with a $ sign must have a
digit after the $ rather than a letter. In addition, current versions of NASM accept the prefix 0h for
hexadecimal, 0d or 0t for decimal, 0o or 0q for octal, and 0b or 0y for binary. Please note that unlike C, a
0 prefix by itself does not imply an octal constant!

Numeric constants can have underscores (_) interspersed to break up long strings.

Some examples (all producing exactly the same code):

 mov ax,200 ; decimal
 mov ax,0200 ; still decimal
 mov ax,0200d ; explicitly decimal
 mov ax,0d200 ; also decimal
 mov ax,0c8h ; hex
 mov ax,$0c8 ; hex again: the 0 is required
 mov ax,0xc8 ; hex yet again
 mov ax,0hc8 ; still hex
 mov ax,310q ; octal
 mov ax,310o ; octal again
 mov ax,0o310 ; octal yet again
 mov ax,0q310 ; octal yet again
 mov ax,11001000b ; binary
 mov ax,1100_1000b ; same binary constant
 mov ax,1100_1000y ; same binary constant once more
 mov ax,0b1100_1000 ; same binary constant yet again
 mov ax,0y1100_1000 ; same binary constant yet again

3.4.2 Character Strings

A character string consists of up to eight characters enclosed in either single quotes (’...’), double quotes
("...") or backquotes (‘...‘). Single or double quotes are equivalent to NASM (except of course that
surrounding the constant with single quotes allows double quotes to appear within it and vice versa); the
contents of those are represented verbatim. Strings enclosed in backquotes support C−style \ –escapes for
special characters.

The following escape sequences are recognized by backquoted strings:

 \’ single quote (’)
 \" double quote (")
 \‘ backquote (‘)

33

 \\ backslash (\)
 \? question mark (?)
 \a BEL (ASCII 7)
 \b BS (ASCII 8)
 \t TAB (ASCII 9)
 \n LF (ASCII 10)
 \v VT (ASCII 11)
 \f FF (ASCII 12)
 \r CR (ASCII 13)
 \e ESC (ASCII 27)
 \377 Up to 3 octal digits − literal byte
 \xFF Up to 2 hexadecimal digits − literal byte
 \u1234 4 hexadecimal digits − Unicode character
 \U12345678 8 hexadecimal digits − Unicode character

All other escape sequences are reserved. Note that \0 , meaning a NUL character (ASCII 0), is a special case
of the octal escape sequence.

Unicode characters specified with \u or \U are converted to UTF−8. For example, the following lines are all
equivalent:

 db ‘\u263a‘ ; UTF−8 smiley face
 db ‘\xe2\x98\xba‘ ; UTF−8 smiley face
 db 0E2h, 098h, 0BAh ; UTF−8 smiley face

3.4.3 Character Constants

A character constant consists of a string up to eight bytes long, used in an expression context. It is treated as if
it was an integer.

A character constant with more than one byte will be arranged with little−endian order in mind: if you code

 mov eax,’abcd’

then the constant generated is not 0x61626364 , but 0x64636261 , so that if you were then to store the
value into memory, it would read abcd rather than dcba . This is also the sense of character constants
understood by the Pentium’s CPUID instruction.

3.4.4 String Constants

String constants are character strings used in the context of some pseudo−instructions, namely the DB family
and INCBIN (where it represents a filename.) They are also used in certain preprocessor directives.

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum−size character constants for the conditions. So the following are equivalent:

 db ’hello’ ; string constant
 db ’h’,’e’,’l’,’l’,’o’ ; equivalent character constants

And the following are also equivalent:

 dd ’ninechars’ ; doubleword string constant
 dd ’nine’,’char’,’s’ ; becomes three doublewords
 db ’ninechars’,0,0,0 ; and really looks like this

34

Note that when used in a string−supporting context, quoted strings are treated as a string constants even if
they are short enough to be a character constant, because otherwise db ’ab’ would have the same effect as
db ’a’ , which would be silly. Similarly, three−character or four−character constants are treated as strings
when they are operands to DW, and so forth.

3.4.5 Unicode Strings

The special operators __utf16__ , __utf16le__ , __utf16be__ , __utf32__ , __utf32le__ and
__utf32be__ allows definition of Unicode strings. They take a string in UTF−8 format and converts it to
UTF−16 or UTF−32, respectively. Unless the be forms are specified, the output is littleendian.

For example:

%define u(x) __utf16__(x)
%define w(x) __utf32__(x)

 dw u(’C:\WINDOWS’), 0 ; Pathname in UTF−16
 dd w(‘A + B = \u206a‘), 0 ; String in UTF−32

The UTF operators can be applied either to strings passed to the DB family instructions, or to character
constants in an expression context.

3.4.6 Floating−Point Constants

Floating−point constants are acceptable only as arguments to DB, DW, DD, DQ, DT, and DO, or as arguments to
the special operators __float8__ , __float16__ , __float32__ , __float64__ , __float80m__ ,
__float80e__ , __float128l__ , and __float128h__ .

Floating−point constants are expressed in the traditional form: digits, then a period, then optionally more
digits, then optionally an E followed by an exponent. The period is mandatory, so that NASM can distinguish
between dd 1 , which declares an integer constant, and dd 1.0 which declares a floating−point constant.

NASM also support C99−style hexadecimal floating−point: 0x , hexadecimal digits, period, optionally more
hexadeximal digits, then optionally a P followed by a binary (not hexadecimal) exponent in decimal notation.
As an extension, NASM additionally supports the 0h and $ prefixes for hexadecimal, as well binary and octal
floating−point, using the 0b or 0y and 0o or 0q prefixes, respectively.

Underscores to break up groups of digits are permitted in floating−point constants as well.

Some examples:

 db −0.2 ; "Quarter precision"
 dw −0.5 ; IEEE 754r/SSE5 half precision
 dd 1.2 ; an easy one
 dd 1.222_222_222 ; underscores are permitted
 dd 0x1p+2 ; 1.0x2^2 = 4.0
 dq 0x1p+32 ; 1.0x2^32 = 4 294 967 296.0
 dq 1.e10 ; 10 000 000 000.0
 dq 1.e+10 ; synonymous with 1.e10
 dq 1.e−10 ; 0.000 000 000 1
 dt 3.141592653589793238462 ; pi
 do 1.e+4000 ; IEEE 754r quad precision

35

The 8−bit "quarter−precision" floating−point format is sign:exponent:mantissa = 1:4:3 with an exponent bias
of 7. This appears to be the most frequently used 8−bit floating−point format, although it is not covered by
any formal standard. This is sometimes called a "minifloat."

The special operators are used to produce floating−point numbers in other contexts. They produce the binary
representation of a specific floating−point number as an integer, and can use anywhere integer constants are
used in an expression. __float80m__ and __float80e__ produce the 64−bit mantissa and 16−bit
exponent of an 80−bit floating−point number, and __float128l__ and __float128h__ produce the
lower and upper 64−bit halves of a 128−bit floating−point number, respectively.

For example:

 mov rax,__float64__(3.141592653589793238462)

... would assign the binary representation of pi as a 64−bit floating point number into RAX. This is exactly
equivalent to:

 mov rax,0x400921fb54442d18

NASM cannot do compile−time arithmetic on floating−point constants. This is because NASM is designed to
be portable – although it always generates code to run on x86 processors, the assembler itself can run on any
system with an ANSI C compiler. Therefore, the assembler cannot guarantee the presence of a floating−point
unit capable of handling the Intel number formats, and so for NASM to be able to do floating arithmetic it
would have to include its own complete set of floating−point routines, which would significantly increase the
size of the assembler for very little benefit.

The special tokens __Infinity__ , __QNaN__ (or __NaN__) and __SNaN__ can be used to generate
infinities, quiet NaNs, and signalling NaNs, respectively. These are normally used as macros:

%define Inf __Infinity__
%define NaN __QNaN__

 dq +1.5, −Inf, NaN ; Double−precision constants

The %use fp standard macro package contains a set of convenience macros. See section 5.3.

3.4.7 Packed BCD Constants

x87−style packed BCD constants can be used in the same contexts as 80−bit floating−point numbers. They
are suffixed with p or prefixed with 0p , and can include up to 18 decimal digits.

As with other numeric constants, underscores can be used to separate digits.

For example:

 dt 12_345_678_901_245_678p
 dt −12_345_678_901_245_678p
 dt +0p33
 dt 33p

3.5 Expressions
Expressions in NASM are similar in syntax to those in C. Expressions are evaluated as 64−bit integers which
are then adjusted to the appropriate size.

NASM supports two special tokens in expressions, allowing calculations to involve the current assembly
position: the $ and $$ tokens. $ evaluates to the assembly position at the beginning of the line containing the

36

expression; so you can code an infinite loop using JMP $. $$ evaluates to the beginning of the current
section; so you can tell how far into the section you are by using ($−$$) .

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.

3.5.1 | : Bitwise OR Operator

The | operator gives a bitwise OR, exactly as performed by the OR machine instruction. Bitwise OR is the
lowest−priority arithmetic operator supported by NASM.

3.5.2 ̂ : Bitwise XOR Operator

^ provides the bitwise XOR operation.

3.5.3 &: Bitwise AND Operator

& provides the bitwise AND operation.

3.5.4 << and >>: Bit Shift Operators

<< gives a bit−shift to the left, just as it does in C. So 5<<3 evaluates to 5 times 8, or 40. >> gives a bit−shift
to the right; in NASM, such a shift is always unsigned, so that the bits shifted in from the left−hand end are
filled with zero rather than a sign−extension of the previous highest bit.

3.5.5 + and −: Addition and Subtraction Operators

The + and − operators do perfectly ordinary addition and subtraction.

3.5.6 * , / , // , % and %%: Multiplication and Division

* is the multiplication operator. / and // are both division operators: / is unsigned division and // is signed
division. Similarly, % and %% provide unsigned and signed modulo operators respectively.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo operator.

Since the % character is used extensively by the macro preprocessor, you should ensure that both the signed
and unsigned modulo operators are followed by white space wherever they appear.

3.5.7 Unary Operators

The highest−priority operators in NASM’s expression grammar are those which only apply to one argument.
These are +, −, ~, ! , SEG, and the integer functions operators.

− negates its operand, + does nothing (it’s provided for symmetry with −), ~ computes the one’s complement
of its operand, ! is the logical negation operator.

SEG provides the segment address of its operand (explained in more detail in section 3.6).

A set of additional operators with leading and trailing double underscores are used to implement the integer
functions of the ifunc macro package, see section 5.4.

3.6 SEG and WRT
When writing large 16−bit programs, which must be split into multiple segments, it is often necessary to be
able to refer to the segment part of the address of a symbol. NASM supports the SEG operator to perform this
function.

The SEG operator returns the preferred segment base of a symbol, defined as the segment base relative to
which the offset of the symbol makes sense. So the code

37

 mov ax,seg symbol
 mov es,ax
 mov bx,symbol

will load ES:BX with a valid pointer to the symbol symbol .

Things can be more complex than this: since 16−bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one. NASM lets
you do this, by the use of the WRT (With Reference To) keyword. So you can do things like

 mov ax,weird_seg ; weird_seg is a segment base
 mov es,ax
 mov bx,symbol wrt weird_seg

to load ES:BX with a different, but functionally equivalent, pointer to the symbol symbol .

NASM supports far (inter−segment) calls and jumps by means of the syntax call segment:offset ,
where segment and offset both represent immediate values. So to call a far procedure, you could code
either of

 call (seg procedure):procedure
 call weird_seg:(procedure wrt weird_seg)

(The parentheses are included for clarity, to show the intended parsing of the above instructions. They are not
necessary in practice.)

NASM supports the syntax call far procedure as a synonym for the first of the above usages. JMP
works identically to CALL in these examples.

To declare a far pointer to a data item in a data segment, you must code

 dw symbol, seg symbol

NASM supports no convenient synonym for this, though you can always invent one using the macro
processor.

3.7 STRICT: Inhibiting Optimization
When assembling with the optimizer set to level 2 or higher (see section 2.1.22), NASM will use size
specifiers (BYTE, WORD, DWORD, QWORD, TWORD, OWORD or YWORD), but will give them the smallest
possible size. The keyword STRICT can be used to inhibit optimization and force a particular operand to be
emitted in the specified size. For example, with the optimizer on, and in BITS 16 mode,

 push dword 33

is encoded in three bytes 66 6A 21 , whereas

 push strict dword 33

is encoded in six bytes, with a full dword immediate operand 66 68 21 00 00 00 .

With the optimizer off, the same code (six bytes) is generated whether the STRICT keyword was used or not.

3.8 Critical Expressions
Although NASM has an optional multi−pass optimizer, there are some expressions which must be resolvable
on the first pass. These are called Critical Expressions.

38

The first pass is used to determine the size of all the assembled code and data, so that the second pass, when
generating all the code, knows all the symbol addresses the code refers to. So one thing NASM can’t handle is
code whose size depends on the value of a symbol declared after the code in question. For example,

 times (label−$) db 0
label: db ’Where am I?’

The argument to TIMES in this case could equally legally evaluate to anything at all; NASM will reject this
example because it cannot tell the size of the TIMES line when it first sees it. It will just as firmly reject the
slightly paradoxical code

 times (label−$+1) db 0
label: db ’NOW where am I?’

in which any value for the TIMES argument is by definition wrong!

NASM rejects these examples by means of a concept called a critical expression, which is defined to be an
expression whose value is required to be computable in the first pass, and which must therefore depend only
on symbols defined before it. The argument to the TIMES prefix is a critical expression.

3.9 Local Labels
NASM gives special treatment to symbols beginning with a period. A label beginning with a single period is
treated as a local label, which means that it is associated with the previous non−local label. So, for example:

label1 ; some code

.loop
 ; some more code

 jne .loop
 ret

label2 ; some code

.loop
 ; some more code

 jne .loop
 ret

In the above code fragment, each JNE instruction jumps to the line immediately before it, because the two
definitions of .loop are kept separate by virtue of each being associated with the previous non−local label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however, NASM goes
one step further, in allowing access to local labels from other parts of the code. This is achieved by means of
defining a local label in terms of the previous non−local label: the first definition of .loop above is really
defining a symbol called label1.loop , and the second defines a symbol called label2.loop . So, if you
really needed to, you could write

label3 ; some more code
 ; and some more

 jmp label1.loop

39

Sometimes it is useful – in a macro, for instance – to be able to define a label which can be referenced from
anywhere but which doesn’t interfere with the normal local−label mechanism. Such a label can’t be non−local
because it would interfere with subsequent definitions of, and references to, local labels; and it can’t be local
because the macro that defined it wouldn’t know the label’s full name. NASM therefore introduces a third
type of label, which is probably only useful in macro definitions: if a label begins with the special prefix ..@ ,
then it does nothing to the local label mechanism. So you could code

label1: ; a non−local label
.local: ; this is really label1.local
..@foo: ; this is a special symbol
label2: ; another non−local label
.local: ; this is really label2.local

 jmp ..@foo ; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for example,
..start is used to specify the entry point in the obj output format (see section 7.4.6), ..imagebase is
used to find out the offset from a base address of the current image in the win64 output format (see section
7.6.1). So just keep in mind that symbols beginning with a double period are special.

40

Chapter 4: The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi−level file inclusion,
two forms of macro (single−line and multi−line), and a ‘context stack’ mechanism for extra macro power.
Preprocessor directives all begin with a % sign.

The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

%define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO \
 THIS_VALUE

will work like a single−line macro without the backslash−newline sequence.

4.1 Single−Line Macros

4.1.1 The Normal Way: %define

Single−line macros are defined using the %define preprocessor directive. The definitions work in a similar
way to C; so you can do things like

%define ctrl 0x1F &
%define param(a,b) ((a)+(a)*(b))

 mov byte [param(2,ebx)], ctrl ’D’

which will expand to

 mov byte [(2)+(2)*(ebx)], 0x1F & ’D’

When the expansion of a single−line macro contains tokens which invoke another macro, the expansion is
performed at invocation time, not at definition time. Thus the code

%define a(x) 1+b(x)
%define b(x) 2*x

 mov ax,a(8)

will evaluate in the expected way to mov ax,1+2*8 , even though the macro b wasn’t defined at the time of
definition of a.

Macros defined with %define are case sensitive: after %define foo bar , only foo will expand to bar :
Foo or FOO will not. By using %idefine instead of %define (the ‘i’ stands for ‘insensitive’) you can
define all the case variants of a macro at once, so that %idefine foo bar would cause foo , Foo, FOO,
fOO and so on all to expand to bar .

There is a mechanism which detects when a macro call has occurred as a result of a previous expansion of the
same macro, to guard against circular references and infinite loops. If this happens, the preprocessor will only
expand the first occurrence of the macro. Hence, if you code

41

%define a(x) 1+a(x)

 mov ax,a(3)

the macro a(3) will expand once, becoming 1+a(3) , and will then expand no further. This behaviour can
be useful: see section 9.1 for an example of its use.

You can overload single−line macros: if you write

%define foo(x) 1+x
%define foo(x,y) 1+x*y

the preprocessor will be able to handle both types of macro call, by counting the parameters you pass; so
foo(3) will become 1+3 whereas foo(ebx,2) will become 1+ebx*2 . However, if you define

%define foo bar

then no other definition of foo will be accepted: a macro with no parameters prohibits the definition of the
same name as a macro with parameters, and vice versa.

This doesn’t prevent single−line macros being redefined: you can perfectly well define a macro with

%define foo bar

and then re−define it later in the same source file with

%define foo baz

Then everywhere the macro foo is invoked, it will be expanded according to the most recent definition. This
is particularly useful when defining single−line macros with %assign (see section 4.1.7).

You can pre−define single−line macros using the ‘−d’ option on the NASM command line: see section 2.1.18.

4.1.2 Resolving %define : %xdefine

To have a reference to an embedded single−line macro resolved at the time that the embedding macro is
defined, as opposed to when the embedding macro is expanded, you need a different mechanism to the one
offered by %define . The solution is to use %xdefine , or it’s case−insensitive counterpart %ixdefine .

Suppose you have the following code:

%define isTrue 1
%define isFalse isTrue
%define isTrue 0

val1: db isFalse

%define isTrue 1

val2: db isFalse

In this case, val1 is equal to 0, and val2 is equal to 1. This is because, when a single−line macro is defined
using %define , it is expanded only when it is called. As isFalse expands to isTrue , the expansion will
be the current value of isTrue . The first time it is called that is 0, and the second time it is 1.

If you wanted isFalse to expand to the value assigned to the embedded macro isTrue at the time that
isFalse was defined, you need to change the above code to use %xdefine .

42

%xdefine isTrue 1
%xdefine isFalse isTrue
%xdefine isTrue 0

val1: db isFalse

%xdefine isTrue 1

val2: db isFalse

Now, each time that isFalse is called, it expands to 1, as that is what the embedded macro isTrue
expanded to at the time that isFalse was defined.

4.1.3 Macro Indirection: %[...]

The %[...] construct can be used to expand macros in contexts where macro expansion would otherwise
not occur, including in the names other macros. For example, if you have a set of macros named Foo16 ,
Foo32 and Foo64 , you could write:

 mov ax,Foo%[__BITS__] ; The Foo value

to use the builtin macro __BITS__ (see section 4.12.5) to automatically select between them. Similarly, the
two statements:

%xdefine Bar Quux ; Expands due to %xdefine
%define Bar %[Quux] ; Expands due to %[...]

have, in fact, exactly the same effect.

%[...] concatenates to adjacent tokens in the same way that multi−line macro parameters do, see section
4.3.9 for details.

4.1.4 Concatenating Single Line Macro Tokens: %+

Individual tokens in single line macros can be concatenated, to produce longer tokens for later processing.
This can be useful if there are several similar macros that perform similar functions.

Please note that a space is required after %+, in order to disambiguate it from the syntax %+1 used in multiline
macros.

As an example, consider the following:

%define BDASTART 400h ; Start of BIOS data area

struc tBIOSDA ; its structure
 .COM1addr RESW 1
 .COM2addr RESW 1
 ; ..and so on
endstruc

Now, if we need to access the elements of tBIOSDA in different places, we can end up with:

 mov ax,BDASTART + tBIOSDA.COM1addr
 mov bx,BDASTART + tBIOSDA.COM2addr

This will become pretty ugly (and tedious) if used in many places, and can be reduced in size significantly by
using the following macro:

43

; Macro to access BIOS variables by their names (from tBDA):

%define BDA(x) BDASTART + tBIOSDA. %+ x

Now the above code can be written as:

 mov ax,BDA(COM1addr)
 mov bx,BDA(COM2addr)

Using this feature, we can simplify references to a lot of macros (and, in turn, reduce typing errors).

4.1.5 The Macro Name Itself: %? and %??

The special symbols %? and %?? can be used to reference the macro name itself inside a macro expansion,
this is supported for both single−and multi−line macros. %? refers to the macro name as invoked, whereas
%?? refers to the macro name as declared. The two are always the same for case−sensitive macros, but for
case−insensitive macros, they can differ.

For example:

%idefine Foo mov %?,%??

 foo
 FOO

will expand to:

 mov foo,Foo
 mov FOO,Foo

The sequence:

%idefine keyword $%?

can be used to make a keyword "disappear", for example in case a new instruction has been used as a label in
older code. For example:

%idefine pause $%? ; Hide the PAUSE instruction

4.1.6 Undefining Single−Line Macros: %undef

Single−line macros can be removed with the %undef directive. For example, the following sequence:

%define foo bar
%undef foo

 mov eax, foo

will expand to the instruction mov eax, foo , since after %undef the macro foo is no longer defined.

Macros that would otherwise be pre−defined can be undefined on the command−line using the ‘−u’ option on
the NASM command line: see section 2.1.19.

4.1.7 Preprocessor Variables: %assign

An alternative way to define single−line macros is by means of the %assign command (and its
case−insensitive counterpart %iassign , which differs from %assign in exactly the same way that
%idefine differs from %define).

44

%assign is used to define single−line macros which take no parameters and have a numeric value. This
value can be specified in the form of an expression, and it will be evaluated once, when the %assign
directive is processed.

Like %define , macros defined using %assign can be re−defined later, so you can do things like

%assign i i+1

to increment the numeric value of a macro.

%assign is useful for controlling the termination of %rep preprocessor loops: see section 4.5 for an
example of this. Another use for %assign is given in section 8.4 and section 9.1.

The expression passed to %assign is a critical expression (see section 3.8), and must also evaluate to a pure
number (rather than a relocatable reference such as a code or data address, or anything involving a register).

4.1.8 Defining Strings: %defstr

%defstr , and its case−insensitive counterpart %idefstr , define or redefine a single−line macro without
parameters but converts the entire right−hand side, after macro expansion, to a quoted string before definition.

For example:

%defstr test TEST

is equivalent to

%define test ’TEST’

This can be used, for example, with the %! construct (see section 4.10.2):

%defstr PATH %!PATH ; The operating system PATH variable

4.1.9 Defining Tokens: %deftok

%deftok , and its case−insensitive counterpart %ideftok , define or redefine a single−line macro without
parameters but converts the second parameter, after string conversion, to a sequence of tokens.

For example:

%deftok test ’TEST’

is equivalent to

%define test TEST

4.2 String Manipulation in Macros
It’s often useful to be able to handle strings in macros. NASM supports a few simple string handling macro
operators from which more complex operations can be constructed.

All the string operators define or redefine a value (either a string or a numeric value) to a single−line macro.
When producing a string value, it may change the style of quoting of the input string or strings, and possibly
use \ –escapes inside ‘ –quoted strings.

4.2.1 Concatenating Strings: %strcat

The %strcat operator concatenates quoted strings and assign them to a single−line macro.

For example:

45

%strcat alpha "Alpha: ", ’12" screen’

... would assign the value ’Alpha: 12" screen’ to alpha . Similarly:

%strcat beta ’"foo"\’, "’bar’"

... would assign the value ‘"foo"\\’bar’‘ to beta .

The use of commas to separate strings is permitted but optional.

4.2.2 String Length: %strlen

The %strlen operator assigns the length of a string to a macro. For example:

%strlen charcnt ’my string’

In this example, charcnt would receive the value 9, just as if an %assign had been used. In this example,
’my string’ was a literal string but it could also have been a single−line macro that expands to a string, as
in the following example:

%define sometext ’my string’
%strlen charcnt sometext

As in the first case, this would result in charcnt being assigned the value of 9.

4.2.3 Extracting Substrings: %substr

Individual letters or substrings in strings can be extracted using the %substr operator. An example of its use
is probably more useful than the description:

%substr mychar ’xyzw’ 1 ; equivalent to %define mychar ’x’
%substr mychar ’xyzw’ 2 ; equivalent to %define mychar ’y’
%substr mychar ’xyzw’ 3 ; equivalent to %define mychar ’z’
%substr mychar ’xyzw’ 2,2 ; equivalent to %define mychar ’yz’
%substr mychar ’xyzw’ 2,−1 ; equivalent to %define mychar ’yzw’
%substr mychar ’xyzw’ 2,−2 ; equivalent to %define mychar ’yz’

As with %strlen (see section 4.2.2), the first parameter is the single−line macro to be created and the
second is the string. The third parameter specifies the first character to be selected, and the optional fourth
parameter preceeded by comma) is the length. Note that the first index is 1, not 0 and the last index is equal to
the value that %strlen would assign given the same string. Index values out of range result in an empty
string. A negative length means "until N−1 characters before the end of string", i.e. −1 means until end of
string, −2 until one character before, etc.

4.3 Multi−Line Macros: %macro
Multi−line macros are much more like the type of macro seen in MASM and TASM: a multi−line macro
definition in NASM looks something like this.

%macro prologue 1

 push ebp
 mov ebp,esp
 sub esp,%1

%endmacro

46

This defines a C−like function prologue as a macro: so you would invoke the macro with a call such as

myfunc: prologue 12

which would expand to the three lines of code

myfunc: push ebp
 mov ebp,esp
 sub esp,12

The number 1 after the macro name in the %macro line defines the number of parameters the macro
prologue expects to receive. The use of %1 inside the macro definition refers to the first parameter to the
macro call. With a macro taking more than one parameter, subsequent parameters would be referred to as %2,
%3 and so on.

Multi−line macros, like single−line macros, are case−sensitive, unless you define them using the alternative
directive %imacro .

If you need to pass a comma as part of a parameter to a multi−line macro, you can do that by enclosing the
entire parameter in braces. So you could code things like

%macro silly 2

 %2: db %1

%endmacro

 silly ’a’, letter_a ; letter_a: db ’a’
 silly ’ab’, string_ab ; string_ab: db ’ab’
 silly {13,10}, crlf ; crlf: db 13,10

4.3.1 Overloading Multi−Line Macros

As with single−line macros, multi−line macros can be overloaded by defining the same macro name several
times with different numbers of parameters. This time, no exception is made for macros with no parameters at
all. So you could define

%macro prologue 0

 push ebp
 mov ebp,esp

%endmacro

to define an alternative form of the function prologue which allocates no local stack space.

Sometimes, however, you might want to ‘overload’ a machine instruction; for example, you might want to
define

%macro push 2

 push %1
 push %2

%endmacro

47

so that you could code

 push ebx ; this line is not a macro call
 push eax,ecx ; but this one is

Ordinarily, NASM will give a warning for the first of the above two lines, since push is now defined to be a
macro, and is being invoked with a number of parameters for which no definition has been given. The correct
code will still be generated, but the assembler will give a warning. This warning can be disabled by the use of
the −w−macro−params command−line option (see section 2.1.24).

4.3.2 Macro−Local Labels

NASM allows you to define labels within a multi−line macro definition in such a way as to make them local
to the macro call: so calling the same macro multiple times will use a different label each time. You do this by
prefixing %% to the label name. So you can invent an instruction which executes a RET if the Z flag is set by
doing this:

%macro retz 0

 jnz %%skip
 ret
 %%skip:

%endmacro

You can call this macro as many times as you want, and every time you call it NASM will make up a different
‘real’ name to substitute for the label %%skip. The names NASM invents are of the form ..@2345.skip ,
where the number 2345 changes with every macro call. The ..@ prefix prevents macro−local labels from
interfering with the local label mechanism, as described in section 3.9. You should avoid defining your own
labels in this form (the ..@ prefix, then a number, then another period) in case they interfere with
macro−local labels.

4.3.3 Greedy Macro Parameters

Occasionally it is useful to define a macro which lumps its entire command line into one parameter definition,
possibly after extracting one or two smaller parameters from the front. An example might be a macro to write
a text string to a file in MS−DOS, where you might want to be able to write

 writefile [filehandle],"hello, world",13,10

NASM allows you to define the last parameter of a macro to be greedy, meaning that if you invoke the macro
with more parameters than it expects, all the spare parameters get lumped into the last defined one along with
the separating commas. So if you code:

%macro writefile 2+

 jmp %%endstr
 %%str: db %2
 %%endstr:
 mov dx,%%str
 mov cx,%%endstr−%%str
 mov bx,%1
 mov ah,0x40
 int 0x21

48

%endmacro

then the example call to writefile above will work as expected: the text before the first comma,
[filehandle] , is used as the first macro parameter and expanded when %1 is referred to, and all the
subsequent text is lumped into %2 and placed after the db .

The greedy nature of the macro is indicated to NASM by the use of the + sign after the parameter count on the
%macro line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macro given any
number of parameters from the actual number specified up to infinity; in this case, for example, NASM now
knows what to do when it sees a call to writefile with 2, 3, 4 or more parameters. NASM will take this
into account when overloading macros, and will not allow you to define another form of writefile taking
4 parameters (for example).

Of course, the above macro could have been implemented as a non−greedy macro, in which case the call to it
would have had to look like

 writefile [filehandle], {"hello, world",13,10}

NASM provides both mechanisms for putting commas in macro parameters, and you choose which one you
prefer for each macro definition.

See section 6.3.1 for a better way to write the above macro.

4.3.4 Macro Parameters Range

NASM allows you to expand parameters via special construction %{x:y} where x is the first parameter
index and y is the last. Any index can be either negative or positive but must never be zero.

For example

%macro mpar 1−*
 db %{3:5}
%endmacro

mpar 1,2,3,4,5,6

expands to 3,4,5 range.

Even more, the parameters can be reversed so that

%macro mpar 1−*
 db %{5:3}
%endmacro

mpar 1,2,3,4,5,6

expands to 5,4,3 range.

But even this is not the last. The parameters can be addressed via negative indices so NASM will count them
reversed. The ones who know Python may see the analogue here.

%macro mpar 1−*
 db %{−1:−3}
%endmacro

49

mpar 1,2,3,4,5,6

expands to 6,5,4 range.

Note that NASM uses comma to separate parameters being expanded.

By the way, here is a trick – you might use the index %{−1:−1 } which gives you the last argument passed to
a macro.

4.3.5 Default Macro Parameters

NASM also allows you to define a multi−line macro with a range of allowable parameter counts. If you do
this, you can specify defaults for omitted parameters. So, for example:

%macro die 0−1 "Painful program death has occurred."

 writefile 2,%1
 mov ax,0x4c01
 int 0x21

%endmacro

This macro (which makes use of the writefile macro defined in section 4.3.3) can be called with an
explicit error message, which it will display on the error output stream before exiting, or it can be called with
no parameters, in which case it will use the default error message supplied in the macro definition.

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults for the
optional ones. So if a macro definition began with the line

%macro foobar 1−3 eax,[ebx+2]

then it could be called with between one and three parameters, and %1 would always be taken from the macro
call. %2, if not specified by the macro call, would default to eax , and %3 if not specified would default to
[ebx+2] .

You can provide extra information to a macro by providing too many default parameters:

%macro quux 1 something

This will trigger a warning by default; see section 2.1.24 for more information. When quux is invoked, it
receives not one but two parameters. something can be referred to as %2. The difference between passing
something this way and writing something in the macro body is that with this way something is
evaluated when the macro is defined, not when it is expanded.

You may omit parameter defaults from the macro definition, in which case the parameter default is taken to be
blank. This can be useful for macros which can take a variable number of parameters, since the %0 token (see
section 4.3.6) allows you to determine how many parameters were really passed to the macro call.

This defaulting mechanism can be combined with the greedy−parameter mechanism; so the die macro above
could be made more powerful, and more useful, by changing the first line of the definition to

%macro die 0−1+ "Painful program death has occurred.",13,10

The maximum parameter count can be infinite, denoted by * . In this case, of course, it is impossible to
provide a full set of default parameters. Examples of this usage are shown in section 4.3.8.

50

4.3.6 %0: Macro Parameter Counter

The parameter reference %0 will return a numeric constant giving the number of parameters received, that is,
if %0 is n then %n is the last parameter. %0 is mostly useful for macros that can take a variable number of
parameters. It can be used as an argument to %rep (see section 4.5) in order to iterate through all the
parameters of a macro. Examples are given in section 4.3.8.

4.3.7 %00: Label Preceeding Macro

%00 will return the label preceeding the macro invocation, if any. The label must be on the same line as the
macro invocation, may be a local label (see section 3.9), and need not end in a colon.

4.3.8 %rotate : Rotating Macro Parameters

Unix shell programmers will be familiar with the shift shell command, which allows the arguments passed
to a shell script (referenced as $1 , $2 and so on) to be moved left by one place, so that the argument
previously referenced as $2 becomes available as $1 , and the argument previously referenced as $1 is no
longer available at all.

NASM provides a similar mechanism, in the form of %rotate . As its name suggests, it differs from the
Unix shift in that no parameters are lost: parameters rotated off the left end of the argument list reappear on
the right, and vice versa.

%rotate is invoked with a single numeric argument (which may be an expression). The macro parameters
are rotated to the left by that many places. If the argument to %rotate is negative, the macro parameters are
rotated to the right.

So a pair of macros to save and restore a set of registers might work as follows:

%macro multipush 1−*

 %rep %0
 push %1
 %rotate 1
 %endrep

%endmacro

This macro invokes the PUSH instruction on each of its arguments in turn, from left to right. It begins by
pushing its first argument, %1, then invokes %rotate to move all the arguments one place to the left, so that
the original second argument is now available as %1. Repeating this procedure as many times as there were
arguments (achieved by supplying %0 as the argument to %rep) causes each argument in turn to be pushed.

Note also the use of * as the maximum parameter count, indicating that there is no upper limit on the number
of parameters you may supply to the multipush macro.

It would be convenient, when using this macro, to have a POP equivalent, which didn’t require the arguments
to be given in reverse order. Ideally, you would write the multipush macro call, then cut−and−paste the
line to where the pop needed to be done, and change the name of the called macro to multipop , and the
macro would take care of popping the registers in the opposite order from the one in which they were pushed.

This can be done by the following definition:

%macro multipop 1−*

51

 %rep %0
 %rotate −1
 pop %1
 %endrep

%endmacro

This macro begins by rotating its arguments one place to the right, so that the original last argument appears
as %1. This is then popped, and the arguments are rotated right again, so the second−to−last argument
becomes %1. Thus the arguments are iterated through in reverse order.

4.3.9 Concatenating Macro Parameters

NASM can concatenate macro parameters and macro indirection constructs on to other text surrounding them.
This allows you to declare a family of symbols, for example, in a macro definition. If, for example, you
wanted to generate a table of key codes along with offsets into the table, you could code something like

%macro keytab_entry 2

 keypos%1 equ $−keytab
 db %2

%endmacro

keytab:
 keytab_entry F1,128+1
 keytab_entry F2,128+2
 keytab_entry Return,13

which would expand to

keytab:
keyposF1 equ $−keytab
 db 128+1
keyposF2 equ $−keytab
 db 128+2
keyposReturn equ $−keytab
 db 13

You can just as easily concatenate text on to the other end of a macro parameter, by writing %1foo .

If you need to append a digit to a macro parameter, for example defining labels foo1 and foo2 when passed
the parameter foo , you can’t code %11 because that would be taken as the eleventh macro parameter.
Instead, you must code %{1}1 , which will separate the first 1 (giving the number of the macro parameter)
from the second (literal text to be concatenated to the parameter).

This concatenation can also be applied to other preprocessor in−line objects, such as macro−local labels
(section 4.3.2) and context−local labels (section 4.7.2). In all cases, ambiguities in syntax can be resolved by
enclosing everything after the % sign and before the literal text in braces: so %{%foo}bar concatenates the
text bar to the end of the real name of the macro−local label %%foo. (This is unnecessary, since the form
NASM uses for the real names of macro−local labels means that the two usages %{%foo}bar and
%%foobar would both expand to the same thing anyway; nevertheless, the capability is there.)

52

The single−line macro indirection construct, %[...] (section 4.1.3), behaves the same way as macro
parameters for the purpose of concatenation.

See also the %+ operator, section 4.1.4.

4.3.10 Condition Codes as Macro Parameters

NASM can give special treatment to a macro parameter which contains a condition code. For a start, you can
refer to the macro parameter %1 by means of the alternative syntax %+1, which informs NASM that this
macro parameter is supposed to contain a condition code, and will cause the preprocessor to report an error
message if the macro is called with a parameter which is not a valid condition code.

Far more usefully, though, you can refer to the macro parameter by means of %−1, which NASM will expand
as the inverse condition code. So the retz macro defined in section 4.3.2 can be replaced by a general
conditional−return macro like this:

%macro retc 1

 j%−1 %%skip
 ret
 %%skip:

%endmacro

This macro can now be invoked using calls like retc ne , which will cause the conditional−jump instruction
in the macro expansion to come out as JE, or retc po which will make the jump a JPE.

The %+1 macro−parameter reference is quite happy to interpret the arguments CXZ and ECXZ as valid
condition codes; however, %−1 will report an error if passed either of these, because no inverse condition
code exists.

4.3.11 Disabling Listing Expansion

When NASM is generating a listing file from your program, it will generally expand multi−line macros by
means of writing the macro call and then listing each line of the expansion. This allows you to see which
instructions in the macro expansion are generating what code; however, for some macros this clutters the
listing up unnecessarily.

NASM therefore provides the .nolist qualifier, which you can include in a macro definition to inhibit the
expansion of the macro in the listing file. The .nolist qualifier comes directly after the number of
parameters, like this:

%macro foo 1.nolist

Or like this:

%macro bar 1−5+.nolist a,b,c,d,e,f,g,h

4.3.12 Undefining Multi−Line Macros: %unmacro

Multi−line macros can be removed with the %unmacro directive. Unlike the %undef directive, however,
%unmacro takes an argument specification, and will only remove exact matches with that argument
specification.

For example:

53

%macro foo 1−3
 ; Do something
%endmacro
%unmacro foo 1−3

removes the previously defined macro foo , but

%macro bar 1−3
 ; Do something
%endmacro
%unmacro bar 1

does not remove the macro bar , since the argument specification does not match exactly.

4.4 Conditional Assembly
Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if certain
conditions are met. The general syntax of this feature looks like this:

%if<condition>
 ; some code which only appears if <condition> is met
%elif<condition2>
 ; only appears if <condition> is not met but <condition2> is
%else
 ; this appears if neither <condition> nor <condition2> was met
%endif

The inverse forms %ifn and %elifn are also supported.

The %else clause is optional, as is the %elif clause. You can have more than one %elif clause as well.

There are a number of variants of the %if directive. Each has its corresponding %elif , %ifn , and %elifn
directives; for example, the equivalents to the %ifdef directive are %elifdef , %ifndef , and
%elifndef .

4.4.1 %ifdef : Testing Single−Line Macro Existence

Beginning a conditional−assembly block with the line %ifdef MACRO will assemble the subsequent code if,
and only if, a single−line macro called MACRO is defined. If not, then the %elif and %else blocks (if any)
will be processed instead.

For example, when debugging a program, you might want to write code such as

 ; perform some function
%ifdef DEBUG
 writefile 2,"Function performed successfully",13,10
%endif
 ; go and do something else

Then you could use the command−line option −dDEBUG to create a version of the program which produced
debugging messages, and remove the option to generate the final release version of the program.

You can test for a macro not being defined by using %ifndef instead of %ifdef . You can also test for
macro definitions in %elif blocks by using %elifdef and %elifndef .

54

4.4.2 %ifmacro : Testing Multi−Line Macro Existence

The %ifmacro directive operates in the same way as the %ifdef directive, except that it checks for the
existence of a multi−line macro.

For example, you may be working with a large project and not have control over the macros in a library. You
may want to create a macro with one name if it doesn’t already exist, and another name if one with that name
does exist.

The %ifmacro is considered true if defining a macro with the given name and number of arguments would
cause a definitions conflict. For example:

%ifmacro MyMacro 1−3

 %error "MyMacro 1−3" causes a conflict with an existing macro.

%else

 %macro MyMacro 1−3

 ; insert code to define the macro

 %endmacro

%endif

This will create the macro "MyMacro 1−3" if no macro already exists which would conflict with it, and emits
a warning if there would be a definition conflict.

You can test for the macro not existing by using the %ifnmacro instead of %ifmacro . Additional tests can
be performed in %elif blocks by using %elifmacro and %elifnmacro .

4.4.3 %ifctx : Testing the Context Stack

The conditional−assembly construct %ifctx will cause the subsequent code to be assembled if and only if
the top context on the preprocessor’s context stack has the same name as one of the arguments. As with
%ifdef , the inverse and %elif forms %ifnctx , %elifctx and %elifnctx are also supported.

For more details of the context stack, see section 4.7. For a sample use of %ifctx , see section 4.7.6.

4.4.4 %if : Testing Arbitrary Numeric Expressions

The conditional−assembly construct %if expr will cause the subsequent code to be assembled if and only if
the value of the numeric expression expr is non−zero. An example of the use of this feature is in deciding
when to break out of a %rep preprocessor loop: see section 4.5 for a detailed example.

The expression given to %if , and its counterpart %elif , is a critical expression (see section 3.8).

%if extends the normal NASM expression syntax, by providing a set of relational operators which are not
normally available in expressions. The operators =, <, >, <=, >= and <> test equality, less−than, greater−than,
less−or−equal, greater−or−equal and not−equal respectively. The C−like forms == and != are supported as
alternative forms of = and <>. In addition, low−priority logical operators &&, ^^ and || are provided,
supplying logical AND, logical XOR and logical OR. These work like the C logical operators (although C has
no logical XOR), in that they always return either 0 or 1, and treat any non−zero input as 1 (so that ^^ , for

55

example, returns 1 if exactly one of its inputs is zero, and 0 otherwise). The relational operators also return 1
for true and 0 for false.

Like other %if constructs, %if has a counterpart %elif , and negative forms %ifn and %elifn .

4.4.5 %ifidn and %ifidni : Testing Exact Text Identity

The construct %ifidn text1,text2 will cause the subsequent code to be assembled if and only if
text1 and text2 , after expanding single−line macros, are identical pieces of text. Differences in white
space are not counted.

%ifidni is similar to %ifidn , but is case−insensitive.

For example, the following macro pushes a register or number on the stack, and allows you to treat IP as a
real register:

%macro pushparam 1

 %ifidni %1,ip
 call %%label
 %%label:
 %else
 push %1
 %endif

%endmacro

Like other %if constructs, %ifidn has a counterpart %elifidn , and negative forms %ifnidn and
%elifnidn . Similarly, %ifidni has counterparts %elifidni , %ifnidni and %elifnidni .

4.4.6 %ifid , %ifnum , %ifstr : Testing Token Types

Some macros will want to perform different tasks depending on whether they are passed a number, a string, or
an identifier. For example, a string output macro might want to be able to cope with being passed either a
string constant or a pointer to an existing string.

The conditional assembly construct %ifid , taking one parameter (which may be blank), assembles the
subsequent code if and only if the first token in the parameter exists and is an identifier. %ifnum works
similarly, but tests for the token being a numeric constant; %ifstr tests for it being a string.

For example, the writefile macro defined in section 4.3.3 can be extended to take advantage of %ifstr
in the following fashion:

%macro writefile 2−3+

 %ifstr %2
 jmp %%endstr
 %if %0 = 3
 %%str: db %2,%3
 %else
 %%str: db %2
 %endif
 %%endstr: mov dx,%%str
 mov cx,%%endstr−%%str

56

 %else
 mov dx,%2
 mov cx,%3
 %endif
 mov bx,%1
 mov ah,0x40
 int 0x21

%endmacro

Then the writefile macro can cope with being called in either of the following two ways:

 writefile [file], strpointer, length
 writefile [file], "hello", 13, 10

In the first, strpointer is used as the address of an already−declared string, and length is used as its
length; in the second, a string is given to the macro, which therefore declares it itself and works out the
address and length for itself.

Note the use of %if inside the %ifstr : this is to detect whether the macro was passed two arguments (so the
string would be a single string constant, and db %2 would be adequate) or more (in which case, all but the
first two would be lumped together into %3, and db %2,%3 would be required).

The usual %elif ..., %ifn ..., and %elifn ... versions exist for each of %ifid , %ifnum and %ifstr .

4.4.7 %iftoken : Test for a Single Token

Some macros will want to do different things depending on if it is passed a single token (e.g. paste it to
something else using %+) versus a multi−token sequence.

The conditional assembly construct %iftoken assembles the subsequent code if and only if the expanded
parameters consist of exactly one token, possibly surrounded by whitespace.

For example:

%iftoken 1

will assemble the subsequent code, but

%iftoken −1

will not, since −1 contains two tokens: the unary minus operator −, and the number 1.

The usual %eliftoken , %ifntoken , and %elifntoken variants are also provided.

4.4.8 %ifempty : Test for Empty Expansion

The conditional assembly construct %ifempty assembles the subsequent code if and only if the expanded
parameters do not contain any tokens at all, whitespace excepted.

The usual %elifempty , %ifnempty , and %elifnempty variants are also provided.

4.4.9 %ifenv : Test If Environment Variable Exists

The conditional assembly construct %ifenv assembles the subsequent code if and only if the environment
variable referenced by the %!<env> directive exists.

The usual %elifenv , %ifnenv , and %elifnenv variants are also provided.

57

Just as for %!<env> the argument should be written as a string if it contains characters that would not be
legal in an identifier. See section 4.10.2.

4.5 Preprocessor Loops: %rep
NASM’s TIMES prefix, though useful, cannot be used to invoke a multi−line macro multiple times, because
it is processed by NASM after macros have already been expanded. Therefore NASM provides another form
of loop, this time at the preprocessor level: %rep.

The directives %rep and %endrep (%rep takes a numeric argument, which can be an expression; %endrep
takes no arguments) can be used to enclose a chunk of code, which is then replicated as many times as
specified by the preprocessor:

%assign i 0
%rep 64
 inc word [table+2*i]
%assign i i+1
%endrep

This will generate a sequence of 64 INC instructions, incrementing every word of memory from [table] to
[table+126] .

For more complex termination conditions, or to break out of a repeat loop part way along, you can use the
%exitrep directive to terminate the loop, like this:

fibonacci:
%assign i 0
%assign j 1
%rep 100
%if j > 65535
 %exitrep
%endif
 dw j
%assign k j+i
%assign i j
%assign j k
%endrep

fib_number equ ($−fibonacci)/2

This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat count
must still be given to %rep. This is to prevent the possibility of NASM getting into an infinite loop in the
preprocessor, which (on multitasking or multi−user systems) would typically cause all the system memory to
be gradually used up and other applications to start crashing.

Note a maximum repeat count is limited by 62 bit number, though it is hardly possible that you ever need
anything bigger.

4.6 Source Files and Dependencies
These commands allow you to split your sources into multiple files.

58

4.6.1 %include : Including Other Files

Using, once again, a very similar syntax to the C preprocessor, NASM’s preprocessor lets you include other
source files into your code. This is done by the use of the %include directive:

%include "macros.mac"

will include the contents of the file macros.mac into the source file containing the %include directive.

Include files are searched for in the current directory (the directory you’re in when you run NASM, as
opposed to the location of the NASM executable or the location of the source file), plus any directories
specified on the NASM command line using the −i option.

The standard C idiom for preventing a file being included more than once is just as applicable in NASM: if
the file macros.mac has the form

%ifndef MACROS_MAC
 %define MACROS_MAC
 ; now define some macros
%endif

then including the file more than once will not cause errors, because the second time the file is included
nothing will happen because the macro MACROS_MAC will already be defined.

You can force a file to be included even if there is no %include directive that explicitly includes it, by using
the −p option on the NASM command line (see section 2.1.17).

4.6.2 %pathsearch : Search the Include Path

The %pathsearch directive takes a single−line macro name and a filename, and declare or redefines the
specified single−line macro to be the include−path−resolved version of the filename, if the file exists
(otherwise, it is passed unchanged.)

For example,

%pathsearch MyFoo "foo.bin"

... with −Ibins/ in the include path may end up defining the macro MyFoo to be "bins/foo.bin" .

4.6.3 %depend: Add Dependent Files

The %depend directive takes a filename and adds it to the list of files to be emitted as dependency generation
when the −M options and its relatives (see section 2.1.4) are used. It produces no output.

This is generally used in conjunction with %pathsearch . For example, a simplified version of the standard
macro wrapper for the INCBIN directive looks like:

%imacro incbin 1−2+ 0
%pathsearch dep %1
%depend dep
 incbin dep,%2
%endmacro

This first resolves the location of the file into the macro dep , then adds it to the dependency lists, and finally
issues the assembler−level INCBIN directive.

59

4.6.4 %use: Include Standard Macro Package

The %use directive is similar to %include , but rather than including the contents of a file, it includes a
named standard macro package. The standard macro packages are part of NASM, and are described in chapter
5.

Unlike the %include directive, package names for the %use directive do not require quotes, but quotes are
permitted. In NASM 2.04 and 2.05 the unquoted form would be macro−expanded; this is no longer true. Thus,
the following lines are equivalent:

%use altreg
%use ’altreg’

Standard macro packages are protected from multiple inclusion. When a standard macro package is used, a
testable single−line macro of the form __USE_package__ is also defined, see section 4.12.8.

4.7 The Context Stack
Having labels that are local to a macro definition is sometimes not quite powerful enough: sometimes you
want to be able to share labels between several macro calls. An example might be a REPEAT ... UNTIL loop,
in which the expansion of the REPEAT macro would need to be able to refer to a label which the UNTIL
macro had defined. However, for such a macro you would also want to be able to nest these loops.

NASM provides this level of power by means of a context stack. The preprocessor maintains a stack of
contexts, each of which is characterized by a name. You add a new context to the stack using the %push
directive, and remove one using %pop. You can define labels that are local to a particular context on the stack.

4.7.1 %push and %pop: Creating and Removing Contexts

The %push directive is used to create a new context and place it on the top of the context stack. %push takes
an optional argument, which is the name of the context. For example:

%push foobar

This pushes a new context called foobar on the stack. You can have several contexts on the stack with the
same name: they can still be distinguished. If no name is given, the context is unnamed (this is normally used
when both the %push and the %pop are inside a single macro definition.)

The directive %pop, taking one optional argument, removes the top context from the context stack and
destroys it, along with any labels associated with it. If an argument is given, it must match the name of the
current context, otherwise it will issue an error.

4.7.2 Context−Local Labels

Just as the usage %%foo defines a label which is local to the particular macro call in which it is used, the
usage %$foo is used to define a label which is local to the context on the top of the context stack. So the
REPEAT and UNTIL example given above could be implemented by means of:

%macro repeat 0

 %push repeat
 %$begin:

%endmacro

60

%macro until 1

 j%−1 %$begin
 %pop

%endmacro

and invoked by means of, for example,

 mov cx,string
 repeat
 add cx,3
 scasb
 until e

which would scan every fourth byte of a string in search of the byte in AL.

If you need to define, or access, labels local to the context below the top one on the stack, you can use
%$$foo , or %$$$foo for the context below that, and so on.

4.7.3 Context−Local Single−Line Macros

NASM also allows you to define single−line macros which are local to a particular context, in just the same
way:

%define %$localmac 3

will define the single−line macro %$localmac to be local to the top context on the stack. Of course, after a
subsequent %push, it can then still be accessed by the name %$$localmac .

4.7.4 Context Fall−Through Lookup

Context fall−through lookup (automatic searching of outer contexts) is a feature that was added in NASM
version 0.98.03. Unfortunately, this feature is unintuitive and can result in buggy code that would have
otherwise been prevented by NASM’s error reporting. As a result, this feature has been deprecated. NASM
version 2.09 will issue a warning when usage of this deprecated feature is detected. Starting with NASM
version 2.10, usage of this deprecated feature will simply result in an expression syntax error.

An example usage of this deprecated feature follows:

%macro ctxthru 0
%push ctx1
 %assign %$external 1
 %push ctx2
 %assign %$internal 1
 mov eax, %$external
 mov eax, %$internal
 %pop
%pop
%endmacro

As demonstrated, %$external is being defined in the ctx1 context and referenced within the ctx2
context. With context fall−through lookup, referencing an undefined context−local macro like this implicitly
searches through all outer contexts until a match is made or isn’t found in any context. As a result,
%$external referenced within the ctx2 context would implicitly use %$external as defined in ctx1 .

61

Most people would expect NASM to issue an error in this situation because %$external was never defined
within ctx2 and also isn’t qualified with the proper context depth, %$$external .

Here is a revision of the above example with proper context depth:

%macro ctxthru 0
%push ctx1
 %assign %$external 1
 %push ctx2
 %assign %$internal 1
 mov eax, %$$external
 mov eax, %$internal
 %pop
%pop
%endmacro

As demonstrated, %$external is still being defined in the ctx1 context and referenced within the ctx2
context. However, the reference to %$external within ctx2 has been fully qualified with the proper
context depth, %$$external , and thus is no longer ambiguous, unintuitive or erroneous.

4.7.5 %repl : Renaming a Context

If you need to change the name of the top context on the stack (in order, for example, to have it respond
differently to %ifctx), you can execute a %pop followed by a %push; but this will have the side effect of
destroying all context−local labels and macros associated with the context that was just popped.

NASM provides the directive %repl , which replaces a context with a different name, without touching the
associated macros and labels. So you could replace the destructive code

%pop
%push newname

with the non−destructive version %repl newname .

4.7.6 Example Use of the Context Stack: Block IFs

This example makes use of almost all the context−stack features, including the conditional−assembly
construct %ifctx , to implement a block IF statement as a set of macros.

%macro if 1

 %push if
 j%−1 %$ifnot

%endmacro

%macro else 0

 %ifctx if
 %repl else
 jmp %$ifend
 %$ifnot:
 %else
 %error "expected ‘if’ before ‘else’"

62

 %endif

%endmacro

%macro endif 0

 %ifctx if
 %$ifnot:
 %pop
 %elifctx else
 %$ifend:
 %pop
 %else
 %error "expected ‘if’ or ‘else’ before ‘endif’"
 %endif

%endmacro

This code is more robust than the REPEAT and UNTIL macros given in section 4.7.2, because it uses
conditional assembly to check that the macros are issued in the right order (for example, not calling endif
before if) and issues a %error if they’re not.

In addition, the endif macro has to be able to cope with the two distinct cases of either directly following an
if , or following an else . It achieves this, again, by using conditional assembly to do different things
depending on whether the context on top of the stack is if or else .

The else macro has to preserve the context on the stack, in order to have the %$ifnot referred to by the if
macro be the same as the one defined by the endif macro, but has to change the context’s name so that
endif will know there was an intervening else . It does this by the use of %repl .

A sample usage of these macros might look like:

 cmp ax,bx

 if ae
 cmp bx,cx

 if ae
 mov ax,cx
 else
 mov ax,bx
 endif

 else
 cmp ax,cx

 if ae
 mov ax,cx
 endif

 endif

63

The block−IF macros handle nesting quite happily, by means of pushing another context, describing the inner
if , on top of the one describing the outer if ; thus else and endif always refer to the last unmatched if
or else .

4.8 Stack Relative Preprocessor Directives
The following preprocessor directives provide a way to use labels to refer to local variables allocated on the
stack.

• %arg (see section 4.8.1)

• %stacksize (see section 4.8.2)

• %local (see section 4.8.3)

4.8.1 %arg Directive

The %arg directive is used to simplify the handling of parameters passed on the stack. Stack based parameter
passing is used by many high level languages, including C, C++ and Pascal.

While NASM has macros which attempt to duplicate this functionality (see section 8.4.5), the syntax is not
particularly convenient to use and is not TASM compatible. Here is an example which shows the use of %arg
without any external macros:

some_function:

 %push mycontext ; save the current context
 %stacksize large ; tell NASM to use bp
 %arg i:word, j_ptr:word

 mov ax,[i]
 mov bx,[j_ptr]
 add ax,[bx]
 ret

 %pop ; restore original context

This is similar to the procedure defined in section 8.4.5 and adds the value in i to the value pointed to by j_ptr
and returns the sum in the ax register. See section 4.7.1 for an explanation of push and pop and the use of
context stacks.

4.8.2 %stacksize Directive

The %stacksize directive is used in conjunction with the %arg (see section 4.8.1) and the %local (see
section 4.8.3) directives. It tells NASM the default size to use for subsequent %arg and %local directives.
The %stacksize directive takes one required argument which is one of flat , flat64 , large or small .

%stacksize flat

This form causes NASM to use stack−based parameter addressing relative to ebp and it assumes that a near
form of call was used to get to this label (i.e. that eip is on the stack).

%stacksize flat64

This form causes NASM to use stack−based parameter addressing relative to rbp and it assumes that a near
form of call was used to get to this label (i.e. that rip is on the stack).

64

%stacksize large

This form uses bp to do stack−based parameter addressing and assumes that a far form of call was used to get
to this address (i.e. that ip and cs are on the stack).

%stacksize small

This form also uses bp to address stack parameters, but it is different from large because it also assumes
that the old value of bp is pushed onto the stack (i.e. it expects an ENTER instruction). In other words, it
expects that bp , ip and cs are on the top of the stack, underneath any local space which may have been
allocated by ENTER. This form is probably most useful when used in combination with the %local directive
(see section 4.8.3).

4.8.3 %local Directive

The %local directive is used to simplify the use of local temporary stack variables allocated in a stack
frame. Automatic local variables in C are an example of this kind of variable. The %local directive is most
useful when used with the %stacksize (see section 4.8.2 and is also compatible with the %arg directive
(see section 4.8.1). It allows simplified reference to variables on the stack which have been allocated typically
by using the ENTER instruction. An example of its use is the following:

silly_swap:

 %push mycontext ; save the current context
 %stacksize small ; tell NASM to use bp
 %assign %$localsize 0 ; see text for explanation
 %local old_ax:word, old_dx:word

 enter %$localsize,0 ; see text for explanation
 mov [old_ax],ax ; swap ax & bx
 mov [old_dx],dx ; and swap dx & cx
 mov ax,bx
 mov dx,cx
 mov bx,[old_ax]
 mov cx,[old_dx]
 leave ; restore old bp
 ret ;

 %pop ; restore original context

The %$localsize variable is used internally by the %local directive and must be defined within the
current context before the %local directive may be used. Failure to do so will result in one expression
syntax error for each %local variable declared. It then may be used in the construction of an appropriately
sized ENTER instruction as shown in the example.

4.9 Reporting User−Defined Errors: %error , %warning , %fatal
The preprocessor directive %error will cause NASM to report an error if it occurs in assembled code. So if
other users are going to try to assemble your source files, you can ensure that they define the right macros by
means of code like this:

%ifdef F1
 ; do some setup

65

%elifdef F2
 ; do some different setup
%else
 %error "Neither F1 nor F2 was defined."
%endif

Then any user who fails to understand the way your code is supposed to be assembled will be quickly warned
of their mistake, rather than having to wait until the program crashes on being run and then not knowing what
went wrong.

Similarly, %warning issues a warning, but allows assembly to continue:

%ifdef F1
 ; do some setup
%elifdef F2
 ; do some different setup
%else
 %warning "Neither F1 nor F2 was defined, assuming F1."
 %define F1
%endif

%error and %warning are issued only on the final assembly pass. This makes them safe to use in
conjunction with tests that depend on symbol values.

%fatal terminates assembly immediately, regardless of pass. This is useful when there is no point in
continuing the assembly further, and doing so is likely just going to cause a spew of confusing error messages.

It is optional for the message string after %error , %warning or %fatal to be quoted. If it is not, then
single−line macros are expanded in it, which can be used to display more information to the user. For
example:

%if foo > 64
 %assign foo_over foo−64
 %error foo is foo_over bytes too large
%endif

4.10 Other Preprocessor Directives
NASM also has preprocessor directives which allow access to information from external sources. Currently
they include:

• %line enables NASM to correctly handle the output of another preprocessor (see section 4.10.1).

• %! enables NASM to read in the value of an environment variable, which can then be used in your
program (see section 4.10.2).

4.10.1 %line Directive

The %line directive is used to notify NASM that the input line corresponds to a specific line number in
another file. Typically this other file would be an original source file, with the current NASM input being the
output of a pre−processor. The %line directive allows NASM to output messages which indicate the line
number of the original source file, instead of the file that is being read by NASM.

This preprocessor directive is not generally of use to programmers, by may be of interest to preprocessor
authors. The usage of the %line preprocessor directive is as follows:

66

%line nnn[+mmm] [filename]

In this directive, nnn identifies the line of the original source file which this line corresponds to. mmm is an
optional parameter which specifies a line increment value; each line of the input file read in is considered to
correspond to mmm lines of the original source file. Finally, filename is an optional parameter which
specifies the file name of the original source file.

After reading a %line preprocessor directive, NASM will report all file name and line numbers relative to
the values specified therein.

4.10.2 %!<env> : Read an environment variable.

The %!<env> directive makes it possible to read the value of an environment variable at assembly time. This
could, for example, be used to store the contents of an environment variable into a string, which could be used
at some other point in your code.

For example, suppose that you have an environment variable FOO, and you want the contents of FOO to be
embedded in your program. You could do that as follows:

%defstr FOO %!FOO

See section 4.1.8 for notes on the %defstr directive.

If the name of the environment variable contains non−identifier characters, you can use string quotes to
surround the name of the variable, for example:

%defstr C_colon %!’C:’

4.11 Comment Blocks: %comment
The %comment and %endcomment directives are used to specify a block of commented (i.e. unprocessed)
code/text. Everything between %comment and %endcomment will be ignored by the preprocessor.

%comment
 ; some code, text or data to be ignored
%endcomment

4.12 Standard Macros
NASM defines a set of standard macros, which are already defined when it starts to process any source file. If
you really need a program to be assembled with no pre−defined macros, you can use the %clear directive to
empty the preprocessor of everything but context−local preprocessor variables and single−line macros.

Most user−level assembler directives (see chapter 6) are implemented as macros which invoke primitive
directives; these are described in chapter 6. The rest of the standard macro set is described here.

4.12.1 NASM Version Macros

The single−line macros __NASM_MAJOR__, __NASM_MINOR__, __NASM_SUBMINOR__ and
___NASM_PATCHLEVEL__ expand to the major, minor, subminor and patch level parts of the version
number of NASM being used. So, under NASM 0.98.32p1 for example, __NASM_MAJOR__ would be
defined to be 0, __NASM_MINOR__ would be defined as 98, __NASM_SUBMINOR__ would be defined to
32, and ___NASM_PATCHLEVEL__ would be defined as 1.

Additionally, the macro __NASM_SNAPSHOT__ is defined for automatically generated snapshot releases
only.

67

4.12.2 __NASM_VERSION_ID__: NASM Version ID

The single−line macro __NASM_VERSION_ID__ expands to a dword integer representing the full version
number of the version of nasm being used. The value is the equivalent to __NASM_MAJOR__,
__NASM_MINOR__, __NASM_SUBMINOR__ and ___NASM_PATCHLEVEL__ concatenated to produce a
single doubleword. Hence, for 0.98.32p1, the returned number would be equivalent to:

 dd 0x00622001

or

 db 1,32,98,0

Note that the above lines are generate exactly the same code, the second line is used just to give an indication
of the order that the separate values will be present in memory.

4.12.3 __NASM_VER__: NASM Version string

The single−line macro __NASM_VER__ expands to a string which defines the version number of nasm being
used. So, under NASM 0.98.32 for example,

 db __NASM_VER__

would expand to

 db "0.98.32"

4.12.4 __FILE__ and __LINE__ : File Name and Line Number

Like the C preprocessor, NASM allows the user to find out the file name and line number containing the
current instruction. The macro __FILE__ expands to a string constant giving the name of the current input
file (which may change through the course of assembly if %include directives are used), and __LINE__
expands to a numeric constant giving the current line number in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since invoking
__LINE__ inside a macro definition (either single−line or multi−line) will return the line number of the
macro call, rather than definition. So to determine where in a piece of code a crash is occurring, for example,
one could write a routine stillhere , which is passed a line number in EAX and outputs something like
‘line 155: still here’. You could then write a macro

%macro notdeadyet 0

 push eax
 mov eax,__LINE__
 call stillhere
 pop eax

%endmacro

and then pepper your code with calls to notdeadyet until you find the crash point.

4.12.5 __BITS__ : Current BITS Mode

The __BITS__ standard macro is updated every time that the BITS mode is set using the BITS XX or
[BITS XX] directive, where XX is a valid mode number of 16, 32 or 64. __BITS__ receives the specified
mode number and makes it globally available. This can be very useful for those who utilize mode−dependent
macros.

68

4.12.6 __OUTPUT_FORMAT__: Current Output Format

The __OUTPUT_FORMAT__ standard macro holds the current Output Format, as given by the −f option or
NASM’s default. Type nasm −hf for a list.

%ifidn __OUTPUT_FORMAT__, win32
 %define NEWLINE 13, 10
%elifidn __OUTPUT_FORMAT__, elf32
 %define NEWLINE 10
%endif

4.12.7 Assembly Date and Time Macros

NASM provides a variety of macros that represent the timestamp of the assembly session.

• The __DATE__ and __TIME__ macros give the assembly date and time as strings, in ISO 8601 format
("YYYY−MM−DD" and "HH:MM:SS" , respectively.)

• The __DATE_NUM__ and __TIME_NUM__ macros give the assembly date and time in numeric form; in
the format YYYYMMDD and HHMMSS respectively.

• The __UTC_DATE__ and __UTC_TIME__ macros give the assembly date and time in universal time
(UTC) as strings, in ISO 8601 format ("YYYY−MM−DD" and "HH:MM:SS" , respectively.) If the host
platform doesn’t provide UTC time, these macros are undefined.

• The __UTC_DATE_NUM__ and __UTC_TIME_NUM__ macros give the assembly date and time
universal time (UTC) in numeric form; in the format YYYYMMDD and HHMMSS respectively. If the host
platform doesn’t provide UTC time, these macros are undefined.

• The __POSIX_TIME__ macro is defined as a number containing the number of seconds since the POSIX
epoch, 1 January 1970 00:00:00 UTC; excluding any leap seconds. This is computed using UTC time if
available on the host platform, otherwise it is computed using the local time as if it was UTC.

All instances of time and date macros in the same assembly session produce consistent output. For example,
in an assembly session started at 42 seconds after midnight on January 1, 2010 in Moscow (timezone UTC+3)
these macros would have the following values, assuming, of course, a properly configured environment with a
correct clock:

 __DATE__ "2010−01−01"
 __TIME__ "00:00:42"
 __DATE_NUM__ 20100101
 __TIME_NUM__ 000042
 __UTC_DATE__ "2009−12−31"
 __UTC_TIME__ "21:00:42"
 __UTC_DATE_NUM__ 20091231
 __UTC_TIME_NUM__ 210042
 __POSIX_TIME__ 1262293242

4.12.8 __USE_package__ : Package Include Test

When a standard macro package (see chapter 5) is included with the %use directive (see section 4.6.4), a
single−line macro of the form __USE_package__ is automatically defined. This allows testing if a particular
package is invoked or not.

69

For example, if the altreg package is included (see section 5.1), then the macro __USE_ALTREG__ is
defined.

4.12.9 __PASS__: Assembly Pass

The macro __PASS__ is defined to be 1 on preparatory passes, and 2 on the final pass. In preprocess−only
mode, it is set to 3, and when running only to generate dependencies (due to the −M or −MG option, see
section 2.1.4) it is set to 0.

Avoid using this macro if at all possible. It is tremendously easy to generate very strange errors by misusing
it, and the semantics may change in future versions of NASM.

4.12.10 STRUC and ENDSTRUC: Declaring Structure Data Types

The core of NASM contains no intrinsic means of defining data structures; instead, the preprocessor is
sufficiently powerful that data structures can be implemented as a set of macros. The macros STRUC and
ENDSTRUC are used to define a structure data type.

STRUC takes one or two parameters. The first parameter is the name of the data type. The second, optional
parameter is the base offset of the structure. The name of the data type is defined as a symbol with the value
of the base offset, and the name of the data type with the suffix _size appended to it is defined as an EQU
giving the size of the structure. Once STRUC has been issued, you are defining the structure, and should
define fields using the RESB family of pseudo−instructions, and then invoke ENDSTRUC to finish the
definition.

For example, to define a structure called mytype containing a longword, a word, a byte and a string of bytes,
you might code

struc mytype

 mt_long: resd 1
 mt_word: resw 1
 mt_byte: resb 1
 mt_str: resb 32

endstruc

The above code defines six symbols: mt_long as 0 (the offset from the beginning of a mytype structure to
the longword field), mt_word as 4, mt_byte as 6, mt_str as 7, mytype_size as 39, and mytype itself
as zero.

The reason why the structure type name is defined at zero by default is a side effect of allowing structures to
work with the local label mechanism: if your structure members tend to have the same names in more than
one structure, you can define the above structure like this:

struc mytype

 .long: resd 1
 .word: resw 1
 .byte: resb 1
 .str: resb 32

endstruc

70

This defines the offsets to the structure fields as mytype.long , mytype.word , mytype.byte and
mytype.str .

NASM, since it has no intrinsic structure support, does not support any form of period notation to refer to the
elements of a structure once you have one (except the above local−label notation), so code such as
mov ax,[mystruc.mt_word] is not valid. mt_word is a constant just like any other constant, so the
correct syntax is mov ax,[mystruc+mt_word] or mov ax,[mystruc+mytype.word] .

Sometimes you only have the address of the structure displaced by an offset. For example, consider this
standard stack frame setup:

push ebp
mov ebp, esp
sub esp, 40

In this case, you could access an element by subtracting the offset:

mov [ebp − 40 + mytype.word], ax

However, if you do not want to repeat this offset, you can use –40 as a base offset:

struc mytype, −40

And access an element this way:

mov [ebp + mytype.word], ax

4.12.11 ISTRUC, AT and IEND: Declaring Instances of Structures

Having defined a structure type, the next thing you typically want to do is to declare instances of that structure
in your data segment. NASM provides an easy way to do this in the ISTRUC mechanism. To declare a
structure of type mytype in a program, you code something like this:

mystruc:
 istruc mytype

 at mt_long, dd 123456
 at mt_word, dw 1024
 at mt_byte, db ’x’
 at mt_str, db ’hello, world’, 13, 10, 0

 iend

The function of the AT macro is to make use of the TIMES prefix to advance the assembly position to the
correct point for the specified structure field, and then to declare the specified data. Therefore the structure
fields must be declared in the same order as they were specified in the structure definition.

If the data to go in a structure field requires more than one source line to specify, the remaining source lines
can easily come after the AT line. For example:

 at mt_str, db 123,134,145,156,167,178,189
 db 190,100,0

Depending on personal taste, you can also omit the code part of the AT line completely, and start the structure
field on the next line:

71

 at mt_str
 db ’hello, world’
 db 13,10,0

4.12.12 ALIGN and ALIGNB: Data Alignment

The ALIGN and ALIGNB macros provides a convenient way to align code or data on a word, longword,
paragraph or other boundary. (Some assemblers call this directive EVEN.) The syntax of the ALIGN and
ALIGNB macros is

 align 4 ; align on 4−byte boundary
 align 16 ; align on 16−byte boundary
 align 8,db 0 ; pad with 0s rather than NOPs
 align 4,resb 1 ; align to 4 in the BSS
 alignb 4 ; equivalent to previous line

Both macros require their first argument to be a power of two; they both compute the number of additional
bytes required to bring the length of the current section up to a multiple of that power of two, and then apply
the TIMES prefix to their second argument to perform the alignment.

If the second argument is not specified, the default for ALIGN is NOP, and the default for ALIGNB is
RESB 1. So if the second argument is specified, the two macros are equivalent. Normally, you can just use
ALIGN in code and data sections and ALIGNB in BSS sections, and never need the second argument except
for special purposes.

ALIGN and ALIGNB, being simple macros, perform no error checking: they cannot warn you if their first
argument fails to be a power of two, or if their second argument generates more than one byte of code. In each
of these cases they will silently do the wrong thing.

ALIGNB (or ALIGN with a second argument of RESB 1) can be used within structure definitions:

struc mytype2

 mt_byte:
 resb 1
 alignb 2
 mt_word:
 resw 1
 alignb 4
 mt_long:
 resd 1
 mt_str:
 resb 32

endstruc

This will ensure that the structure members are sensibly aligned relative to the base of the structure.

A final caveat: ALIGN and ALIGNB work relative to the beginning of the section, not the beginning of the
address space in the final executable. Aligning to a 16−byte boundary when the section you’re in is only
guaranteed to be aligned to a 4−byte boundary, for example, is a waste of effort. Again, NASM does not
check that the section’s alignment characteristics are sensible for the use of ALIGN or ALIGNB.

Both ALIGN and ALIGNB do call SECTALIGN macro implicitly. See section 4.12.13 for details.

72

See also the smartalign standard macro package, section 5.2.

4.12.13 SECTALIGN: Section Alignment

The SECTALIGN macros provides a way to modify alignment attribute of output file section. Unlike the
align= attribute (which is allowed at section definition only) the SECTALIGN macro may be used at any
time.

For example the directive

SECTALIGN 16

sets the section alignment requirements to 16 bytes. Once increased it can not be decreased, the magnitude
may grow only.

Note that ALIGN (see section 4.12.12) calls the SECTALIGN macro implicitly so the active section alignment
requirements may be updated. This is by default behaviour, if for some reason you want the ALIGN do not
call SECTALIGN at all use the directive

SECTALIGN OFF

It is still possible to turn in on again by

SECTALIGN ON

73

Chapter 5: Standard Macro Packages

The %use directive (see section 4.6.4) includes one of the standard macro packages included with the NASM
distribution and compiled into the NASM binary. It operates like the %include directive (see section 4.6.1),
but the included contents is provided by NASM itself.

The names of standard macro packages are case insensitive, and can be quoted or not.

5.1 altreg : Alternate Register Names
The altreg standard macro package provides alternate register names. It provides numeric register names
for all registers (not just R8–R15), the Intel−defined aliases R8L–R15L for the low bytes of register (as
opposed to the NASM/AMD standard names R8B–R15B), and the names R0H–R3H (by analogy with
R0L–R3L) for AH, CH, DH, and BH.

Example use:

%use altreg

proc:
 mov r0l,r3h ; mov al,bh
 ret

See also section 11.1.

5.2 smartalign : Smart ALIGN Macro
The smartalign standard macro package provides for an ALIGN macro which is more powerful than the
default (and backwards−compatible) one (see section 4.12.12). When the smartalign package is enabled,
when ALIGN is used without a second argument, NASM will generate a sequence of instructions more
efficient than a series of NOP. Furthermore, if the padding exceeds a specific threshold, then NASM will
generate a jump over the entire padding sequence.

The specific instructions generated can be controlled with the new ALIGNMODE macro. This macro takes two
parameters: one mode, and an optional jump threshold override. If (for any reason) you need to turn off the
jump completely just set jump threshold value to –1 (or set it to nojmp). The following modes are possible:

• generic : Works on all x86 CPUs and should have reasonable performance. The default jump threshold
is 8. This is the default.

• nop : Pad out with NOP instructions. The only difference compared to the standard ALIGN macro is that
NASM can still jump over a large padding area. The default jump threshold is 16.

• k7 : Optimize for the AMD K7 (Athlon/Althon XP). These instructions should still work on all x86 CPUs.
The default jump threshold is 16.

• k8 : Optimize for the AMD K8 (Opteron/Althon 64). These instructions should still work on all x86 CPUs.
The default jump threshold is 16.

74

• p6 : Optimize for Intel CPUs. This uses the long NOP instructions first introduced in Pentium Pro. This is
incompatible with all CPUs of family 5 or lower, as well as some VIA CPUs and several virtualization
solutions. The default jump threshold is 16.

The macro __ALIGNMODE__ is defined to contain the current alignment mode. A number of other macros
beginning with __ALIGN_ are used internally by this macro package.

5.3 fp : Floating−point macros
This packages contains the following floating−point convenience macros:

%define Inf __Infinity__
%define NaN __QNaN__
%define QNaN __QNaN__
%define SNaN __SNaN__

%define float8(x) __float8__(x)
%define float16(x) __float16__(x)
%define float32(x) __float32__(x)
%define float64(x) __float64__(x)
%define float80m(x) __float80m__(x)
%define float80e(x) __float80e__(x)
%define float128l(x) __float128l__(x)
%define float128h(x) __float128h__(x)

5.4 ifunc : Integer functions
This package contains a set of macros which implement integer functions. These are actually implemented as
special operators, but are most conveniently accessed via this macro package.

The macros provided are:

5.4.1 Integer logarithms

These functions calculate the integer logarithm base 2 of their argument, considered as an unsigned integer.
The only differences between the functions is their behavior if the argument provided is not a power of two.

The function ilog2e() (alias ilog2()) generate an error if the argument is not a power of two.

The function ilog2w() generate a warning if the argument is not a power of two.

The function ilog2f() rounds the argument down to the nearest power of two; if the argument is zero it
returns zero.

The function ilog2c() rounds the argument up to the nearest power of two.

75

Chapter 6: Assembler Directives

NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is nevertheless
forced to support a few directives. These are described in this chapter.

NASM’s directives come in two types: user−level directives and primitive directives. Typically, each
directive has a user−level form and a primitive form. In almost all cases, we recommend that users use the
user−level forms of the directives, which are implemented as macros which call the primitive forms.

Primitive directives are enclosed in square brackets; user−level directives are not.

In addition to the universal directives described in this chapter, each object file format can optionally supply
extra directives in order to control particular features of that file format. These format−specific directives are
documented along with the formats that implement them, in chapter 7.

6.1 BITS : Specifying Target Processor Mode
The BITS directive specifies whether NASM should generate code designed to run on a processor operating
in 16−bit mode, 32−bit mode or 64−bit mode. The syntax is BITS XX , where XX is 16, 32 or 64.

In most cases, you should not need to use BITS explicitly. The aout , coff , elf , macho, win32 and
win64 object formats, which are designed for use in 32−bit or 64−bit operating systems, all cause NASM to
select 32−bit or 64−bit mode, respectively, by default. The obj object format allows you to specify each
segment you define as either USE16 or USE32, and NASM will set its operating mode accordingly, so the
use of the BITS directive is once again unnecessary.

The most likely reason for using the BITS directive is to write 32−bit or 64−bit code in a flat binary file; this
is because the bin output format defaults to 16−bit mode in anticipation of it being used most frequently to
write DOS .COM programs, DOS .SYS device drivers and boot loader software.

You do not need to specify BITS 32 merely in order to use 32−bit instructions in a 16−bit DOS program; if
you do, the assembler will generate incorrect code because it will be writing code targeted at a 32−bit
platform, to be run on a 16−bit one.

When NASM is in BITS 16 mode, instructions which use 32−bit data are prefixed with an 0x66 byte, and
those referring to 32−bit addresses have an 0x67 prefix. In BITS 32 mode, the reverse is true: 32−bit
instructions require no prefixes, whereas instructions using 16−bit data need an 0x66 and those working on
16−bit addresses need an 0x67.

When NASM is in BITS 64 mode, most instructions operate the same as they do for BITS 32 mode.
However, there are 8 more general and SSE registers, and 16−bit addressing is no longer supported.

The default address size is 64 bits; 32−bit addressing can be selected with the 0x67 prefix. The default
operand size is still 32 bits, however, and the 0x66 prefix selects 16−bit operand size. The REX prefix is used
both to select 64−bit operand size, and to access the new registers. NASM automatically inserts REX prefixes
when necessary.

When the REX prefix is used, the processor does not know how to address the AH, BH, CH or DH (high 8−bit
legacy) registers. Instead, it is possible to access the the low 8−bits of the SP, BP SI and DI registers as SPL,
BPL, SIL and DIL, respectively; but only when the REX prefix is used.

76

The BITS directive has an exactly equivalent primitive form, [BITS 16] , [BITS 32] and [BITS 64] .
The user−level form is a macro which has no function other than to call the primitive form.

Note that the space is neccessary, e.g. BITS32 will not work!

6.1.1 USE16 & USE32: Aliases for BITS

The ‘USE16’ and ‘USE32’ directives can be used in place of ‘BITS 16 ’ and ‘BITS 32 ’, for compatibility
with other assemblers.

6.2 DEFAULT: Change the assembler defaults
The DEFAULT directive changes the assembler defaults. Normally, NASM defaults to a mode where the
programmer is expected to explicitly specify most features directly. However, this is occationally obnoxious,
as the explicit form is pretty much the only one one wishes to use.

Currently, the only DEFAULT that is settable is whether or not registerless instructions in 64−bit mode are
RIP–relative or not. By default, they are absolute unless overridden with the REL specifier (see section 3.3).
However, if DEFAULT REL is specified, REL is default, unless overridden with the ABS specifier, except
when used with an FS or GS segment override.

The special handling of FS and GS overrides are due to the fact that these registers are generally used as
thread pointers or other special functions in 64−bit mode, and generating RIP–relative addresses would be
extremely confusing.

DEFAULT REL is disabled with DEFAULT ABS.

6.3 SECTION or SEGMENT: Changing and Defining Sections
The SECTION directive (SEGMENT is an exactly equivalent synonym) changes which section of the output
file the code you write will be assembled into. In some object file formats, the number and names of sections
are fixed; in others, the user may make up as many as they wish. Hence SECTION may sometimes give an
error message, or may define a new section, if you try to switch to a section that does not (yet) exist.

The Unix object formats, and the bin object format (but see section 7.1.3, all support the standardized section
names .text , .data and .bss for the code, data and uninitialized−data sections. The obj format, by
contrast, does not recognize these section names as being special, and indeed will strip off the leading period
of any section name that has one.

6.3.1 The __SECT__ Macro

The SECTION directive is unusual in that its user−level form functions differently from its primitive form.
The primitive form, [SECTION xyz] , simply switches the current target section to the one given. The
user−level form, SECTION xyz , however, first defines the single−line macro __SECT__ to be the primitive
[SECTION] directive which it is about to issue, and then issues it. So the user−level directive

 SECTION .text

expands to the two lines

%define __SECT__ [SECTION .text]
 [SECTION .text]

Users may find it useful to make use of this in their own macros. For example, the writefile macro
defined in section 4.3.3 can be usefully rewritten in the following more sophisticated form:

77

%macro writefile 2+

 [section .data]

 %%str: db %2
 %%endstr:

 __SECT__

 mov dx,%%str
 mov cx,%%endstr−%%str
 mov bx,%1
 mov ah,0x40
 int 0x21

%endmacro

This form of the macro, once passed a string to output, first switches temporarily to the data section of the file,
using the primitive form of the SECTION directive so as not to modify __SECT__. It then declares its string
in the data section, and then invokes __SECT__ to switch back to whichever section the user was previously
working in. It thus avoids the need, in the previous version of the macro, to include a JMP instruction to jump
over the data, and also does not fail if, in a complicated OBJ format module, the user could potentially be
assembling the code in any of several separate code sections.

6.4 ABSOLUTE: Defining Absolute Labels
The ABSOLUTE directive can be thought of as an alternative form of SECTION: it causes the subsequent
code to be directed at no physical section, but at the hypothetical section starting at the given absolute address.
The only instructions you can use in this mode are the RESB family.

ABSOLUTE is used as follows:

absolute 0x1A

 kbuf_chr resw 1
 kbuf_free resw 1
 kbuf resw 16

This example describes a section of the PC BIOS data area, at segment address 0x40: the above code defines
kbuf_chr to be 0x1A, kbuf_free to be 0x1C, and kbuf to be 0x1E.

The user−level form of ABSOLUTE, like that of SECTION, redefines the __SECT__ macro when it is
invoked.

STRUC and ENDSTRUC are defined as macros which use ABSOLUTE (and also __SECT__).

ABSOLUTE doesn’t have to take an absolute constant as an argument: it can take an expression (actually, a
critical expression: see section 3.8) and it can be a value in a segment. For example, a TSR can re−use its
setup code as run−time BSS like this:

 org 100h ; it’s a .COM program

 jmp setup ; setup code comes last

78

 ; the resident part of the TSR goes here
setup:
 ; now write the code that installs the TSR here

absolute setup

runtimevar1 resw 1
runtimevar2 resd 20

tsr_end:

This defines some variables ‘on top of’ the setup code, so that after the setup has finished running, the space it
took up can be re−used as data storage for the running TSR. The symbol ‘tsr_end’ can be used to calculate the
total size of the part of the TSR that needs to be made resident.

6.5 EXTERN: Importing Symbols from Other Modules
EXTERN is similar to the MASM directive EXTRN and the C keyword extern : it is used to declare a symbol
which is not defined anywhere in the module being assembled, but is assumed to be defined in some other
module and needs to be referred to by this one. Not every object−file format can support external variables:
the bin format cannot.

The EXTERN directive takes as many arguments as you like. Each argument is the name of a symbol:

extern _printf
extern _sscanf,_fscanf

Some object−file formats provide extra features to the EXTERN directive. In all cases, the extra features are
used by suffixing a colon to the symbol name followed by object−format specific text. For example, the obj
format allows you to declare that the default segment base of an external should be the group dgroup by
means of the directive

extern _variable:wrt dgroup

The primitive form of EXTERN differs from the user−level form only in that it can take only one argument at
a time: the support for multiple arguments is implemented at the preprocessor level.

You can declare the same variable as EXTERN more than once: NASM will quietly ignore the second and
later redeclarations. You can’t declare a variable as EXTERN as well as something else, though.

6.6 GLOBAL: Exporting Symbols to Other Modules
GLOBAL is the other end of EXTERN: if one module declares a symbol as EXTERN and refers to it, then in
order to prevent linker errors, some other module must actually define the symbol and declare it as GLOBAL.
Some assemblers use the name PUBLIC for this purpose.

The GLOBAL directive applying to a symbol must appear before the definition of the symbol.

GLOBAL uses the same syntax as EXTERN, except that it must refer to symbols which are defined in the same
module as the GLOBAL directive. For example:

global _main
_main:
 ; some code

79

GLOBAL, like EXTERN, allows object formats to define private extensions by means of a colon. The elf
object format, for example, lets you specify whether global data items are functions or data:

global hashlookup:function, hashtable:data

Like EXTERN, the primitive form of GLOBAL differs from the user−level form only in that it can take only
one argument at a time.

6.7 COMMON: Defining Common Data Areas
The COMMON directive is used to declare common variables. A common variable is much like a global
variable declared in the uninitialized data section, so that

common intvar 4

is similar in function to

global intvar
section .bss

intvar resd 1

The difference is that if more than one module defines the same common variable, then at link time those
variables will be merged, and references to intvar in all modules will point at the same piece of memory.

Like GLOBAL and EXTERN, COMMON supports object−format specific extensions. For example, the obj
format allows common variables to be NEAR or FAR, and the elf format allows you to specify the
alignment requirements of a common variable:

common commvar 4:near ; works in OBJ
common intarray 100:4 ; works in ELF: 4 byte aligned

Once again, like EXTERN and GLOBAL, the primitive form of COMMON differs from the user−level form only
in that it can take only one argument at a time.

6.8 CPU: Defining CPU Dependencies
The CPU directive restricts assembly to those instructions which are available on the specified CPU.

Options are:

• CPU 8086 Assemble only 8086 instruction set

• CPU 186 Assemble instructions up to the 80186 instruction set

• CPU 286 Assemble instructions up to the 286 instruction set

• CPU 386 Assemble instructions up to the 386 instruction set

• CPU 486 486 instruction set

• CPU 586 Pentium instruction set

• CPU PENTIUM Same as 586

• CPU 686 P6 instruction set

• CPU PPRO Same as 686

• CPU P2 Same as 686

80

• CPU P3 Pentium III (Katmai) instruction sets

• CPU KATMAI Same as P3

• CPU P4 Pentium 4 (Willamette) instruction set

• CPU WILLAMETTE Same as P4

• CPU PRESCOTT Prescott instruction set

• CPU X64 x86−64 (x64/AMD64/Intel 64) instruction set

• CPU IA64 IA64 CPU (in x86 mode) instruction set

All options are case insensitive. All instructions will be selected only if they apply to the selected CPU or
lower. By default, all instructions are available.

6.9 FLOAT: Handling of floating−point constants
By default, floating−point constants are rounded to nearest, and IEEE denormals are supported. The following
options can be set to alter this behaviour:

• FLOAT DAZ Flush denormals to zero

• FLOAT NODAZ Do not flush denormals to zero (default)

• FLOAT NEAR Round to nearest (default)

• FLOAT UP Round up (toward +Infinity)

• FLOAT DOWN Round down (toward –Infinity)

• FLOAT ZERO Round toward zero

• FLOAT DEFAULT Restore default settings

The standard macros __FLOAT_DAZ__, __FLOAT_ROUND__, and __FLOAT__ contain the current state,
as long as the programmer has avoided the use of the brackeded primitive form, ([FLOAT]).

__FLOAT__ contains the full set of floating−point settings; this value can be saved away and invoked later to
restore the setting.

81

Chapter 7: Output Formats

NASM is a portable assembler, designed to be able to compile on any ANSI C−supporting platform and
produce output to run on a variety of Intel x86 operating systems. For this reason, it has a large number of
available output formats, selected using the −f option on the NASM command line. Each of these formats,
along with its extensions to the base NASM syntax, is detailed in this chapter.

As stated in section 2.1.1, NASM chooses a default name for your output file based on the input file name and
the chosen output format. This will be generated by removing the extension (.asm , .s , or whatever you like
to use) from the input file name, and substituting an extension defined by the output format. The extensions
are given with each format below.

7.1 bin : Flat−Form Binary Output
The bin format does not produce object files: it generates nothing in the output file except the code you
wrote. Such ‘pure binary’ files are used by MS−DOS: .COM executables and .SYS device drivers are pure
binary files. Pure binary output is also useful for operating system and boot loader development.

The bin format supports multiple section names. For details of how NASM handles sections in the bin
format, see section 7.1.3.

Using the bin format puts NASM by default into 16−bit mode (see section 6.1). In order to use bin to write
32−bit or 64−bit code, such as an OS kernel, you need to explicitly issue the BITS 32 or BITS 64 directive.

bin has no default output file name extension: instead, it leaves your file name as it is once the original
extension has been removed. Thus, the default is for NASM to assemble binprog.asm into a binary file
called binprog .

7.1.1 ORG: Binary File Program Origin

The bin format provides an additional directive to the list given in chapter 6: ORG. The function of the ORG
directive is to specify the origin address which NASM will assume the program begins at when it is loaded
into memory.

For example, the following code will generate the longword 0x00000104 :

 org 0x100
 dd label
label:

Unlike the ORG directive provided by MASM−compatible assemblers, which allows you to jump around in
the object file and overwrite code you have already generated, NASM’s ORG does exactly what the directive
says: origin. Its sole function is to specify one offset which is added to all internal address references within
the section; it does not permit any of the trickery that MASM’s version does. See section 12.1.3 for further
comments.

82

7.1.2 bin Extensions to the SECTION Directive

The bin output format extends the SECTION (or SEGMENT) directive to allow you to specify the alignment
requirements of segments. This is done by appending the ALIGN qualifier to the end of the section−definition
line. For example,

section .data align=16

switches to the section .data and also specifies that it must be aligned on a 16−byte boundary.

The parameter to ALIGN specifies how many low bits of the section start address must be forced to zero. The
alignment value given may be any power of two.

7.1.3 Multisection Support for the bin Format

The bin format allows the use of multiple sections, of arbitrary names, besides the "known" .text , .data ,
and .bss names.

• Sections may be designated progbits or nobits . Default is progbits (except .bss , which defaults
to nobits , of course).

• Sections can be aligned at a specified boundary following the previous section with align= , or at an
arbitrary byte−granular position with start= .

• Sections can be given a virtual start address, which will be used for the calculation of all memory
references within that section with vstart= .

• Sections can be ordered using follows=<section> or vfollows=<section> as an alternative to
specifying an explicit start address.

• Arguments to org , start , vstart , and align= are critical expressions. See section 3.8. E.g.
align=(1 << ALIGN_SHIFT) – ALIGN_SHIFT must be defined before it is used here.

• Any code which comes before an explicit SECTION directive is directed by default into the .text
section.

• If an ORG statement is not given, ORG 0 is used by default.

• The .bss section will be placed after the last progbits section, unless start= , vstart= ,
follows= , or vfollows= has been specified.

• All sections are aligned on dword boundaries, unless a different alignment has been specified.

• Sections may not overlap.

• NASM creates the section.<secname>.start for each section, which may be used in your code.

7.1.4 Map Files

Map files can be generated in −f bin format by means of the [map] option. Map types of all (default),
brief , sections , segments , or symbols may be specified. Output may be directed to stdout
(default), stderr , or a specified file. E.g. [map symbols myfile.map] . No "user form" exists, the
square brackets must be used.

83

7.2 ith : Intel Hex Output
The ith file format produces Intel hex−format files. Just as the bin format, this is a flat memory image
format with no support for relocation or linking. It is usually used with ROM programmers and similar
utilities.

All extensions supported by the bin file format is also supported by the ith file format.

ith provides a default output file−name extension of .ith .

7.3 srec : Motorola S−Records Output
The srec file format produces Motorola S−records files. Just as the bin format, this is a flat memory image
format with no support for relocation or linking. It is usually used with ROM programmers and similar
utilities.

All extensions supported by the bin file format is also supported by the srec file format.

srec provides a default output file−name extension of .srec .

7.4 obj : Microsoft OMF Object Files
The obj file format (NASM calls it obj rather than omf for historical reasons) is the one produced by
MASM and TASM, which is typically fed to 16−bit DOS linkers to produce .EXE files. It is also the format
used by OS/2.

obj provides a default output file−name extension of .obj .

obj is not exclusively a 16−bit format, though: NASM has full support for the 32−bit extensions to the
format. In particular, 32−bit obj format files are used by Borland’s Win32 compilers, instead of using
Microsoft’s newer win32 object file format.

The obj format does not define any special segment names: you can call your segments anything you like.
Typical names for segments in obj format files are CODE, DATA and BSS.

If your source file contains code before specifying an explicit SEGMENT directive, then NASM will invent its
own segment called __NASMDEFSEG for you.

When you define a segment in an obj file, NASM defines the segment name as a symbol as well, so that you
can access the segment address of the segment. So, for example:

segment data

dvar: dw 1234

segment code

function:
 mov ax,data ; get segment address of data
 mov ds,ax ; and move it into DS
 inc word [dvar] ; now this reference will work
 ret

The obj format also enables the use of the SEG and WRT operators, so that you can write code which does
things like

84

extern foo

 mov ax,seg foo ; get preferred segment of foo
 mov ds,ax
 mov ax,data ; a different segment
 mov es,ax
 mov ax,[ds:foo] ; this accesses ‘foo’
 mov [es:foo wrt data],bx ; so does this

7.4.1 obj Extensions to the SEGMENT Directive

The obj output format extends the SEGMENT (or SECTION) directive to allow you to specify various
properties of the segment you are defining. This is done by appending extra qualifiers to the end of the
segment−definition line. For example,

segment code private align=16

defines the segment code , but also declares it to be a private segment, and requires that the portion of it
described in this code module must be aligned on a 16−byte boundary.

The available qualifiers are:

• PRIVATE, PUBLIC, COMMON and STACK specify the combination characteristics of the segment.
PRIVATE segments do not get combined with any others by the linker; PUBLIC and STACK segments get
concatenated together at link time; and COMMON segments all get overlaid on top of each other rather than
stuck end−to−end.

• ALIGN is used, as shown above, to specify how many low bits of the segment start address must be forced
to zero. The alignment value given may be any power of two from 1 to 4096; in reality, the only values
supported are 1, 2, 4, 16, 256 and 4096, so if 8 is specified it will be rounded up to 16, and 32, 64 and 128
will all be rounded up to 256, and so on. Note that alignment to 4096−byte boundaries is a PharLap
extension to the format and may not be supported by all linkers.

• CLASS can be used to specify the segment class; this feature indicates to the linker that segments of the
same class should be placed near each other in the output file. The class name can be any word, e.g.
CLASS=CODE.

• OVERLAY, like CLASS, is specified with an arbitrary word as an argument, and provides overlay
information to an overlay−capable linker.

• Segments can be declared as USE16 or USE32, which has the effect of recording the choice in the object
file and also ensuring that NASM’s default assembly mode when assembling in that segment is 16−bit or
32−bit respectively.

• When writing OS/2 object files, you should declare 32−bit segments as FLAT, which causes the default
segment base for anything in the segment to be the special group FLAT, and also defines the group if it is
not already defined.

• The obj file format also allows segments to be declared as having a pre−defined absolute segment
address, although no linkers are currently known to make sensible use of this feature; nevertheless, NASM
allows you to declare a segment such as SEGMENT SCREEN ABSOLUTE=0xB800 if you need to. The
ABSOLUTE and ALIGN keywords are mutually exclusive.

NASM’s default segment attributes are PUBLIC, ALIGN=1, no class, no overlay, and USE16.

85

7.4.2 GROUP: Defining Groups of Segments

The obj format also allows segments to be grouped, so that a single segment register can be used to refer to
all the segments in a group. NASM therefore supplies the GROUP directive, whereby you can code

segment data

 ; some data

segment bss

 ; some uninitialized data

group dgroup data bss

which will define a group called dgroup to contain the segments data and bss . Like SEGMENT, GROUP
causes the group name to be defined as a symbol, so that you can refer to a variable var in the data segment
as var wrt data or as var wrt dgroup , depending on which segment value is currently in your
segment register.

If you just refer to var , however, and var is declared in a segment which is part of a group, then NASM will
default to giving you the offset of var from the beginning of the group, not the segment. Therefore
SEG var , also, will return the group base rather than the segment base.

NASM will allow a segment to be part of more than one group, but will generate a warning if you do this.
Variables declared in a segment which is part of more than one group will default to being relative to the first
group that was defined to contain the segment.

A group does not have to contain any segments; you can still make WRT references to a group which does not
contain the variable you are referring to. OS/2, for example, defines the special group FLAT with no segments
in it.

7.4.3 UPPERCASE: Disabling Case Sensitivity in Output

Although NASM itself is case sensitive, some OMF linkers are not; therefore it can be useful for NASM to
output single−case object files. The UPPERCASE format−specific directive causes all segment, group and
symbol names that are written to the object file to be forced to upper case just before being written. Within a
source file, NASM is still case−sensitive; but the object file can be written entirely in upper case if desired.

UPPERCASE is used alone on a line; it requires no parameters.

7.4.4 IMPORT: Importing DLL Symbols

The IMPORT format−specific directive defines a symbol to be imported from a DLL, for use if you are
writing a DLL’s import library in NASM. You still need to declare the symbol as EXTERN as well as using
the IMPORT directive.

The IMPORT directive takes two required parameters, separated by white space, which are (respectively) the
name of the symbol you wish to import and the name of the library you wish to import it from. For example:

 import WSAStartup wsock32.dll

A third optional parameter gives the name by which the symbol is known in the library you are importing it
from, in case this is not the same as the name you wish the symbol to be known by to your code once you
have imported it. For example:

86

 import asyncsel wsock32.dll WSAAsyncSelect

7.4.5 EXPORT: Exporting DLL Symbols

The EXPORT format−specific directive defines a global symbol to be exported as a DLL symbol, for use if
you are writing a DLL in NASM. You still need to declare the symbol as GLOBAL as well as using the
EXPORT directive.

EXPORT takes one required parameter, which is the name of the symbol you wish to export, as it was defined
in your source file. An optional second parameter (separated by white space from the first) gives the external
name of the symbol: the name by which you wish the symbol to be known to programs using the DLL. If this
name is the same as the internal name, you may leave the second parameter off.

Further parameters can be given to define attributes of the exported symbol. These parameters, like the
second, are separated by white space. If further parameters are given, the external name must also be
specified, even if it is the same as the internal name. The available attributes are:

• resident indicates that the exported name is to be kept resident by the system loader. This is an
optimisation for frequently used symbols imported by name.

• nodata indicates that the exported symbol is a function which does not make use of any initialized data.

• parm=NNN, where NNN is an integer, sets the number of parameter words for the case in which the symbol
is a call gate between 32−bit and 16−bit segments.

• An attribute which is just a number indicates that the symbol should be exported with an identifying
number (ordinal), and gives the desired number.

For example:

 export myfunc
 export myfunc TheRealMoreFormalLookingFunctionName
 export myfunc myfunc 1234 ; export by ordinal
 export myfunc myfunc resident parm=23 nodata

7.4.6 ..start : Defining the Program Entry Point

OMF linkers require exactly one of the object files being linked to define the program entry point, where
execution will begin when the program is run. If the object file that defines the entry point is assembled using
NASM, you specify the entry point by declaring the special symbol ..start at the point where you wish
execution to begin.

7.4.7 obj Extensions to the EXTERN Directive

If you declare an external symbol with the directive

 extern foo

then references such as mov ax,foo will give you the offset of foo from its preferred segment base (as
specified in whichever module foo is actually defined in). So to access the contents of foo you will usually
need to do something like

 mov ax,seg foo ; get preferred segment base
 mov es,ax ; move it into ES
 mov ax,[es:foo] ; and use offset ‘foo’ from it

87

This is a little unwieldy, particularly if you know that an external is going to be accessible from a given
segment or group, say dgroup . So if DS already contained dgroup , you could simply code

 mov ax,[foo wrt dgroup]

However, having to type this every time you want to access foo can be a pain; so NASM allows you to
declare foo in the alternative form

 extern foo:wrt dgroup

This form causes NASM to pretend that the preferred segment base of foo is in fact dgroup ; so the
expression seg foo will now return dgroup , and the expression foo is equivalent to foo wrt dgroup .

This default−WRT mechanism can be used to make externals appear to be relative to any group or segment in
your program. It can also be applied to common variables: see section 7.4.8.

7.4.8 obj Extensions to the COMMON Directive

The obj format allows common variables to be either near or far; NASM allows you to specify which your
variables should be by the use of the syntax

common nearvar 2:near ; ‘nearvar’ is a near common
common farvar 10:far ; and ‘farvar’ is far

Far common variables may be greater in size than 64Kb, and so the OMF specification says that they are
declared as a number of elements of a given size. So a 10−byte far common variable could be declared as ten
one−byte elements, five two−byte elements, two five−byte elements or one ten−byte element.

Some OMF linkers require the element size, as well as the variable size, to match when resolving common
variables declared in more than one module. Therefore NASM must allow you to specify the element size on
your far common variables. This is done by the following syntax:

common c_5by2 10:far 5 ; two five−byte elements
common c_2by5 10:far 2 ; five two−byte elements

If no element size is specified, the default is 1. Also, the FAR keyword is not required when an element size is
specified, since only far commons may have element sizes at all. So the above declarations could equivalently
be

common c_5by2 10:5 ; two five−byte elements
common c_2by5 10:2 ; five two−byte elements

In addition to these extensions, the COMMON directive in obj also supports default−WRT specification like
EXTERN does (explained in section 7.4.7). So you can also declare things like

common foo 10:wrt dgroup
common bar 16:far 2:wrt data
common baz 24:wrt data:6

7.5 win32 : Microsoft Win32 Object Files
The win32 output format generates Microsoft Win32 object files, suitable for passing to Microsoft linkers
such as Visual C++. Note that Borland Win32 compilers do not use this format, but use obj instead (see
section 7.4).

win32 provides a default output file−name extension of .obj .

88

Note that although Microsoft say that Win32 object files follow the COFF (Common Object File Format)
standard, the object files produced by Microsoft Win32 compilers are not compatible with COFF linkers such
as DJGPP’s, and vice versa. This is due to a difference of opinion over the precise semantics of PC−relative
relocations. To produce COFF files suitable for DJGPP, use NASM’s coff output format; conversely, the
coff format does not produce object files that Win32 linkers can generate correct output from.

7.5.1 win32 Extensions to the SECTION Directive

Like the obj format, win32 allows you to specify additional information on the SECTION directive line, to
control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section names .text , .data and .bss , but may still be
overridden by these qualifiers.

The available qualifiers are:

• code , or equivalently text , defines the section to be a code section. This marks the section as readable
and executable, but not writable, and also indicates to the linker that the type of the section is code.

• data and bss define the section to be a data section, analogously to code . Data sections are marked as
readable and writable, but not executable. data declares an initialized data section, whereas bss declares
an uninitialized data section.

• rdata declares an initialized data section that is readable but not writable. Microsoft compilers use this
section to place constants in it.

• info defines the section to be an informational section, which is not included in the executable file by the
linker, but may (for example) pass information to the linker. For example, declaring an info –type section
called .drectve causes the linker to interpret the contents of the section as command−line options.

• align= , used with a trailing number as in obj , gives the alignment requirements of the section. The
maximum you may specify is 64: the Win32 object file format contains no means to request a greater
section alignment than this. If alignment is not explicitly specified, the defaults are 16−byte alignment for
code sections, 8−byte alignment for rdata sections and 4−byte alignment for data (and BSS) sections.
Informational sections get a default alignment of 1 byte (no alignment), though the value does not matter.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text code align=16
section .data data align=4
section .rdata rdata align=8
section .bss bss align=4

Any other section name is treated by default like .text .

7.5.2 win32 : Safe Structured Exception Handling

Among other improvements in Windows XP SP2 and Windows Server 2003 Microsoft has introduced
concept of "safe structured exception handling." General idea is to collect handlers’ entry points in designated
read−only table and have alleged entry point verified against this table prior exception control is passed to the
handler. In order for an executable module to be equipped with such "safe exception handler table," all object
modules on linker command line has to comply with certain criteria. If one single module among them does
not, then the table in question is omitted and above mentioned run−time checks will not be performed for
application in question. Table omission is by default silent and therefore can be easily overlooked. One can
instruct linker to refuse to produce binary without such table by passing /safeseh command line option.

89

Without regard to this run−time check merits it’s natural to expect NASM to be capable of generating
modules suitable for /safeseh linking. From developer’s viewpoint the problem is two−fold:

• how to adapt modules not deploying exception handlers of their own;

• how to adapt/develop modules utilizing custom exception handling;

Former can be easily achieved with any NASM version by adding following line to source code:

$@feat.00 equ 1

As of version 2.03 NASM adds this absolute symbol automatically. If it’s not already present to be precise.
I.e. if for whatever reason developer would choose to assign another value in source file, it would still be
perfectly possible.

Registering custom exception handler on the other hand requires certain "magic." As of version 2.03
additional directive is implemented, safeseh , which instructs the assembler to produce appropriately
formatted input data for above mentioned "safe exception handler table." Its typical use would be:

section .text
extern _MessageBoxA@16
%if __NASM_VERSION_ID__ >= 0x02030000
safeseh handler ; register handler as "safe handler"
%endif
handler:
 push DWORD 1 ; MB_OKCANCEL
 push DWORD caption
 push DWORD text
 push DWORD 0
 call _MessageBoxA@16
 sub eax,1 ; incidentally suits as return value
 ; for exception handler
 ret
global _main
_main:
 push DWORD handler
 push DWORD [fs:0]
 mov DWORD [fs:0],esp ; engage exception handler
 xor eax,eax
 mov eax,DWORD[eax] ; cause exception
 pop DWORD [fs:0] ; disengage exception handler
 add esp,4
 ret
text: db ’OK to rethrow, CANCEL to generate core dump’,0
caption:db ’SEGV’,0

section .drectve info
 db ’/defaultlib:user32.lib /defaultlib:msvcrt.lib ’

As you might imagine, it’s perfectly possible to produce .exe binary with "safe exception handler table" and
yet engage unregistered exception handler. Indeed, handler is engaged by simply manipulating [fs:0]
location at run−time, something linker has no power over, run−time that is. It should be explicitly mentioned
that such failure to register handler’s entry point with safeseh directive has undesired side effect at

90

run−time. If exception is raised and unregistered handler is to be executed, the application is abruptly
terminated without any notification whatsoever. One can argue that system could at least have logged some
kind "non−safe exception handler in x.exe at address n" message in event log, but no, literally no notification
is provided and user is left with no clue on what caused application failure.

Finally, all mentions of linker in this paragraph refer to Microsoft linker version 7.x and later. Presence of
@feat.00 symbol and input data for "safe exception handler table" causes no backward incompatibilities
and "safeseh" modules generated by NASM 2.03 and later can still be linked by earlier versions or
non−Microsoft linkers.

7.6 win64 : Microsoft Win64 Object Files
The win64 output format generates Microsoft Win64 object files, which is nearly 100% identical to the
win32 object format (section 7.5) with the exception that it is meant to target 64−bit code and the x86−64
platform altogether. This object file is used exactly the same as the win32 object format (section 7.5), in
NASM, with regard to this exception.

7.6.1 win64 : Writing Position−Independent Code

While REL takes good care of RIP−relative addressing, there is one aspect that is easy to overlook for a
Win64 programmer: indirect references. Consider a switch dispatch table:

 jmp qword [dsptch+rax*8]
 ...
dsptch: dq case0
 dq case1
 ...

Even a novice Win64 assembler programmer will soon realize that the code is not 64−bit savvy. Most notably
linker will refuse to link it with

’ADDR32’ relocation to ’.text’ invalid without /LARGEADDRESSAWARE:NO

So [s]he will have to split jmp instruction as following:

 lea rbx,[rel dsptch]
 jmp qword [rbx+rax*8]

What happens behind the scene is that effective address in lea is encoded relative to instruction pointer, or in
perfectly position−independent manner. But this is only part of the problem! Trouble is that in .dll context
caseN relocations will make their way to the final module and might have to be adjusted at .dll load time. To
be specific when it can’t be loaded at preferred address. And when this occurs, pages with such relocations
will be rendered private to current process, which kind of undermines the idea of sharing .dll. But no worry,
it’s trivial to fix:

 lea rbx,[rel dsptch]
 add rbx,[rbx+rax*8]
 jmp rbx
 ...
dsptch: dq case0−dsptch
 dq case1−dsptch
 ...

NASM version 2.03 and later provides another alternative, wrt ..imagebase operator, which returns
offset from base address of the current image, be it .exe or .dll module, therefore the name. For those

91

acquainted with PE−COFF format base address denotes start of IMAGE_DOS_HEADER structure. Here is
how to implement switch with these image−relative references:

 lea rbx,[rel dsptch]
 mov eax,[rbx+rax*4]
 sub rbx,dsptch wrt ..imagebase
 add rbx,rax
 jmp rbx
 ...
dsptch: dd case0 wrt ..imagebase
 dd case1 wrt ..imagebase

One can argue that the operator is redundant. Indeed, snippet before last works just fine with any NASM
version and is not even Windows specific... The real reason for implementing wrt ..imagebase will
become apparent in next paragraph.

It should be noted that wrt ..imagebase is defined as 32−bit operand only:

 dd label wrt ..imagebase ; ok
 dq label wrt ..imagebase ; bad
 mov eax,label wrt ..imagebase ; ok
 mov rax,label wrt ..imagebase ; bad

7.6.2 win64 : Structured Exception Handling

Structured exception handing in Win64 is completely different matter from Win32. Upon exception program
counter value is noted, and linker−generated table comprising start and end addresses of all the functions [in
given executable module] is traversed and compared to the saved program counter. Thus so called
UNWIND_INFO structure is identified. If it’s not found, then offending subroutine is assumed to be "leaf" and
just mentioned lookup procedure is attempted for its caller. In Win64 leaf function is such function that does
not call any other function nor modifies any Win64 non−volatile registers, including stack pointer. The latter
ensures that it’s possible to identify leaf function’s caller by simply pulling the value from the top of the stack.

While majority of subroutines written in assembler are not calling any other function, requirement for
non−volatile registers’ immutability leaves developer with not more than 7 registers and no stack frame,
which is not necessarily what [s]he counted with. Customarily one would meet the requirement by saving
non−volatile registers on stack and restoring them upon return, so what can go wrong? If [and only if] an
exception is raised at run−time and no UNWIND_INFO structure is associated with such "leaf" function, the
stack unwind procedure will expect to find caller’s return address on the top of stack immediately followed by
its frame. Given that developer pushed caller’s non−volatile registers on stack, would the value on top point at
some code segment or even addressable space? Well, developer can attempt copying caller’s return address to
the top of stack and this would actually work in some very specific circumstances. But unless developer can
guarantee that these circumstances are always met, it’s more appropriate to assume worst case scenario, i.e.
stack unwind procedure going berserk. Relevant question is what happens then? Application is abruptly
terminated without any notification whatsoever. Just like in Win32 case, one can argue that system could at
least have logged "unwind procedure went berserk in x.exe at address n" in event log, but no, no trace of
failure is left.

Now, when we understand significance of the UNWIND_INFO structure, let’s discuss what’s in it and/or how
it’s processed. First of all it is checked for presence of reference to custom language−specific exception
handler. If there is one, then it’s invoked. Depending on the return value, execution flow is resumed
(exception is said to be "handled"), or rest of UNWIND_INFO structure is processed as following. Beside
optional reference to custom handler, it carries information about current callee’s stack frame and where

92

non−volatile registers are saved. Information is detailed enough to be able to reconstruct contents of caller’s
non−volatile registers upon call to current callee. And so caller’s context is reconstructed, and then unwind
procedure is repeated, i.e. another UNWIND_INFO structure is associated, this time, with caller’s instruction
pointer, which is then checked for presence of reference to language−specific handler, etc. The procedure is
recursively repeated till exception is handled. As last resort system "handles" it by generating memory core
dump and terminating the application.

As for the moment of this writing NASM unfortunately does not facilitate generation of above mentioned
detailed information about stack frame layout. But as of version 2.03 it implements building blocks for
generating structures involved in stack unwinding. As simplest example, here is how to deploy custom
exception handler for leaf function:

default rel
section .text
extern MessageBoxA
handler:
 sub rsp,40
 mov rcx,0
 lea rdx,[text]
 lea r8,[caption]
 mov r9,1 ; MB_OKCANCEL
 call MessageBoxA
 sub eax,1 ; incidentally suits as return value
 ; for exception handler
 add rsp,40
 ret
global main
main:
 xor rax,rax
 mov rax,QWORD[rax] ; cause exception
 ret
main_end:
text: db ’OK to rethrow, CANCEL to generate core dump’,0
caption:db ’SEGV’,0

section .pdata rdata align=4
 dd main wrt ..imagebase
 dd main_end wrt ..imagebase
 dd xmain wrt ..imagebase
section .xdata rdata align=8
xmain: db 9,0,0,0
 dd handler wrt ..imagebase
section .drectve info
 db ’/defaultlib:user32.lib /defaultlib:msvcrt.lib ’

What you see in .pdata section is element of the "table comprising start and end addresses of function"
along with reference to associated UNWIND_INFO structure. And what you see in .xdata section is
UNWIND_INFO structure describing function with no frame, but with designated exception handler.
References are required to be image−relative (which is the real reason for implementing
wrt ..imagebase operator). It should be noted that rdata align=n , as well as

93

wrt ..imagebase , are optional in these two segments’ contexts, i.e. can be omitted. Latter means that all
32−bit references, not only above listed required ones, placed into these two segments turn out
image−relative. Why is it important to understand? Developer is allowed to append handler−specific data to
UNWIND_INFO structure, and if [s]he adds a 32−bit reference, then [s]he will have to remember to adjust its
value to obtain the real pointer.

As already mentioned, in Win64 terms leaf function is one that does not call any other function nor modifies
any non−volatile register, including stack pointer. But it’s not uncommon that assembler programmer plans to
utilize every single register and sometimes even have variable stack frame. Is there anything one can do with
bare building blocks? I.e. besides manually composing fully−fledged UNWIND_INFO structure, which would
surely be considered error−prone? Yes, there is. Recall that exception handler is called first, before stack
layout is analyzed. As it turned out, it’s perfectly possible to manipulate current callee’s context in custom
handler in manner that permits further stack unwinding. General idea is that handler would not actually
"handle" the exception, but instead restore callee’s context, as it was at its entry point and thus mimic leaf
function. In other words, handler would simply undertake part of unwinding procedure. Consider following
example:

function:
 mov rax,rsp ; copy rsp to volatile register
 push r15 ; save non−volatile registers
 push rbx
 push rbp
 mov r11,rsp ; prepare variable stack frame
 sub r11,rcx
 and r11,−64
 mov QWORD[r11],rax ; check for exceptions
 mov rsp,r11 ; allocate stack frame
 mov QWORD[rsp],rax ; save original rsp value
magic_point:
 ...
 mov r11,QWORD[rsp] ; pull original rsp value
 mov rbp,QWORD[r11−24]
 mov rbx,QWORD[r11−16]
 mov r15,QWORD[r11−8]
 mov rsp,r11 ; destroy frame
 ret

The keyword is that up to magic_point original rsp value remains in chosen volatile register and no
non−volatile register, except for rsp , is modified. While past magic_point rsp remains constant till the
very end of the function . In this case custom language−specific exception handler would look like this:

EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
 CONTEXT *context,DISPATCHER_CONTEXT *disp)
{ ULONG64 *rsp;
 if (context−>Rip<(ULONG64)magic_point)
 rsp = (ULONG64 *)context−>Rax;
 else
 { rsp = ((ULONG64 **)context−>Rsp)[0];
 context−>Rbp = rsp[−3];
 context−>Rbx = rsp[−2];
 context−>R15 = rsp[−1];

94

 }
 context−>Rsp = (ULONG64)rsp;

 memcpy (disp−>ContextRecord,context,sizeof(CONTEXT));
 RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp−>ImageBase,
 dips−>ControlPc,disp−>FunctionEntry,disp−>ContextRecord,
 &disp−>HandlerData,&disp−>EstablisherFrame,NULL);
 return ExceptionContinueSearch;
}

As custom handler mimics leaf function, corresponding UNWIND_INFO structure does not have to contain
any information about stack frame and its layout.

7.7 coff : Common Object File Format
The coff output type produces COFF object files suitable for linking with the DJGPP linker.

coff provides a default output file−name extension of .o .

The coff format supports the same extensions to the SECTION directive as win32 does, except that the
align qualifier and the info section type are not supported.

7.8 macho32 and macho64 : Mach Object File Format
The macho32 and macho64 output formts produces Mach−O object files suitable for linking with the
MacOS X linker. macho is a synonym for macho32 .

macho provides a default output file−name extension of .o .

7.9 elf32 , elf64 , elfx32 : Executable and Linkable Format Object Files
The elf32 , elf64 and elfx32 output formats generate ELF32 and ELF64 (Executable and Linkable
Format) object files, as used by Linux as well as Unix System V, including Solaris x86, UnixWare and SCO
Unix. elf provides a default output file−name extension of .o . elf is a synonym for elf32 .

The elfx32 format is used for the x32 ABI, which is a 32−bit ABI with the CPU in 64−bit mode.

7.9.1 ELF specific directive osabi

The ELF header specifies the application binary interface for the target operating system (OSABI). This field
can be set by using the osabi directive with the numeric value (0−255) of the target system. If this directive
is not used, the default value will be "UNIX System V ABI" (0) which will work on most systems which
support ELF.

7.9.2 elf Extensions to the SECTION Directive

Like the obj format, elf allows you to specify additional information on the SECTION directive line, to
control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section names, but may still be overridden by these qualifiers.

The available qualifiers are:

• alloc defines the section to be one which is loaded into memory when the program is run. noalloc
defines it to be one which is not, such as an informational or comment section.

95

• exec defines the section to be one which should have execute permission when the program is run.
noexec defines it as one which should not.

• write defines the section to be one which should be writable when the program is run. nowrite defines
it as one which should not.

• progbits defines the section to be one with explicit contents stored in the object file: an ordinary code
or data section, for example, nobits defines the section to be one with no explicit contents given, such as
a BSS section.

• align= , used with a trailing number as in obj , gives the alignment requirements of the section.

• tls defines the section to be one which contains thread local variables.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text progbits alloc exec nowrite align=16
section .rodata progbits alloc noexec nowrite align=4
section .lrodata progbits alloc noexec nowrite align=4
section .data progbits alloc noexec write align=4
section .ldata progbits alloc noexec write align=4
section .bss nobits alloc noexec write align=4
section .lbss nobits alloc noexec write align=4
section .tdata progbits alloc noexec write align=4 tls
section .tbss nobits alloc noexec write align=4 tls
section .comment progbits noalloc noexec nowrite align=1
section other progbits alloc noexec nowrite align=1

(Any section name other than those in the above table is treated by default like other in the above table.
Please note that section names are case sensitive.)

7.9.3 Position−Independent Code: elf Special Symbols and WRT

The ELF specification contains enough features to allow position−independent code (PIC) to be written,
which makes ELF shared libraries very flexible. However, it also means NASM has to be able to generate a
variety of ELF specific relocation types in ELF object files, if it is to be an assembler which can write PIC.

Since ELF does not support segment−base references, the WRT operator is not used for its normal purpose;
therefore NASM’s elf output format makes use of WRT for a different purpose, namely the PIC−specific
relocation types.

elf defines five special symbols which you can use as the right−hand side of the WRT operator to obtain PIC
relocation types. They are ..gotpc , ..gotoff , ..got , ..plt and ..sym . Their functions are
summarized here:

• Referring to the symbol marking the global offset table base using wrt ..gotpc will end up giving the
distance from the beginning of the current section to the global offset table.
(_GLOBAL_OFFSET_TABLE_ is the standard symbol name used to refer to the GOT.) So you would then
need to add $$ to the result to get the real address of the GOT.

• Referring to a location in one of your own sections using wrt ..gotoff will give the distance from the
beginning of the GOT to the specified location, so that adding on the address of the GOT would give the
real address of the location you wanted.

96

• Referring to an external or global symbol using wrt ..got causes the linker to build an entry in the
GOT containing the address of the symbol, and the reference gives the distance from the beginning of the
GOT to the entry; so you can add on the address of the GOT, load from the resulting address, and end up
with the address of the symbol.

• Referring to a procedure name using wrt ..plt causes the linker to build a procedure linkage table
entry for the symbol, and the reference gives the address of the PLT entry. You can only use this in
contexts which would generate a PC−relative relocation normally (i.e. as the destination for CALL or JMP),
since ELF contains no relocation type to refer to PLT entries absolutely.

• Referring to a symbol name using wrt ..sym causes NASM to write an ordinary relocation, but instead
of making the relocation relative to the start of the section and then adding on the offset to the symbol, it
will write a relocation record aimed directly at the symbol in question. The distinction is a necessary one
due to a peculiarity of the dynamic linker.

A fuller explanation of how to use these relocation types to write shared libraries entirely in NASM is given in
section 9.2.

7.9.4 Thread Local Storage: elf Special Symbols and WRT

• In ELF32 mode, referring to an external or global symbol using wrt ..tlsie causes the linker to build
an entry in the GOT containing the offset of the symbol within the TLS block, so you can access the value
of the symbol with code such as:

 mov eax,[tid wrt ..tlsie]
 mov [gs:eax],ebx

• In ELF64 or ELFx32 mode, referring to an external or global symbol using wrt ..gottpoff causes
the linker to build an entry in the GOT containing the offset of the symbol within the TLS block, so you
can access the value of the symbol with code such as:

 mov rax,[rel tid wrt ..gottpoff]
 mov rcx,[fs:rax]

7.9.5 elf Extensions to the GLOBAL Directive

ELF object files can contain more information about a global symbol than just its address: they can contain
the size of the symbol and its type as well. These are not merely debugger conveniences, but are actually
necessary when the program being written is a shared library. NASM therefore supports some extensions to
the GLOBAL directive, allowing you to specify these features.

You can specify whether a global variable is a function or a data object by suffixing the name with a colon
and the word function or data . (object is a synonym for data .) For example:

global hashlookup:function, hashtable:data

exports the global symbol hashlookup as a function and hashtable as a data object.

Optionally, you can control the ELF visibility of the symbol. Just add one of the visibility keywords:
default , internal , hidden , or protected . The default is default of course. For example, to make
hashlookup hidden:

global hashlookup:function hidden

You can also specify the size of the data associated with the symbol, as a numeric expression (which may
involve labels, and even forward references) after the type specifier. Like this:

97

global hashtable:data (hashtable.end − hashtable)

hashtable:
 db this,that,theother ; some data here
.end:

This makes NASM automatically calculate the length of the table and place that information into the ELF
symbol table.

Declaring the type and size of global symbols is necessary when writing shared library code. For more
information, see section 9.2.4.

7.9.6 elf Extensions to the COMMON Directive

ELF also allows you to specify alignment requirements on common variables. This is done by putting a
number (which must be a power of two) after the name and size of the common variable, separated (as usual)
by a colon. For example, an array of doublewords would benefit from 4−byte alignment:

common dwordarray 128:4

This declares the total size of the array to be 128 bytes, and requires that it be aligned on a 4−byte boundary.

7.9.7 16−bit code and ELF

The ELF32 specification doesn’t provide relocations for 8− and 16−bit values, but the GNU ld linker adds
these as an extension. NASM can generate GNU−compatible relocations, to allow 16−bit code to be linked as
ELF using GNU ld . If NASM is used with the −w+gnu−elf−extensions option, a warning is issued
when one of these relocations is generated.

7.9.8 Debug formats and ELF

ELF provides debug information in STABS and DWARF formats. Line number information is generated for all
executable sections, but please note that only the ".text" section is executable by default.

7.10 aout : Linux a.out Object Files
The aout format generates a.out object files, in the form used by early Linux systems (current Linux
systems use ELF, see section 7.9.) These differ from other a.out object files in that the magic number in the
first four bytes of the file is different; also, some implementations of a.out , for example NetBSD’s, support
position−independent code, which Linux’s implementation does not.

a.out provides a default output file−name extension of .o .

a.out is a very simple object format. It supports no special directives, no special symbols, no use of SEG or
WRT, and no extensions to any standard directives. It supports only the three standard section names .text ,
.data and .bss .

7.11 aoutb : NetBSD/FreeBSD/OpenBSD a.out Object Files
The aoutb format generates a.out object files, in the form used by the various free BSD Unix clones,
NetBSD, FreeBSD and OpenBSD. For simple object files, this object format is exactly the same as aout
except for the magic number in the first four bytes of the file. However, the aoutb format supports
position−independent code in the same way as the elf format, so you can use it to write BSD shared libraries.

aoutb provides a default output file−name extension of .o .

98

aoutb supports no special directives, no special symbols, and only the three standard section names .text ,
.data and .bss . However, it also supports the same use of WRT as elf does, to provide
position−independent code relocation types. See section 7.9.3 for full documentation of this feature.

aoutb also supports the same extensions to the GLOBAL directive as elf does: see section 7.9.5 for
documentation of this.

7.12 as86 : Minix/Linux as86 Object Files
The Minix/Linux 16−bit assembler as86 has its own non−standard object file format. Although its
companion linker ld86 produces something close to ordinary a.out binaries as output, the object file
format used to communicate between as86 and ld86 is not itself a.out .

NASM supports this format, just in case it is useful, as as86 . as86 provides a default output file−name
extension of .o .

as86 is a very simple object format (from the NASM user’s point of view). It supports no special directives,
no use of SEG or WRT, and no extensions to any standard directives. It supports only the three standard section
names .text , .data and .bss . The only special symbol supported is ..start .

7.13 rdf : Relocatable Dynamic Object File Format
The rdf output format produces RDOFF object files. RDOFF (Relocatable Dynamic Object File Format) is a
home−grown object−file format, designed alongside NASM itself and reflecting in its file format the internal
structure of the assembler.

RDOFF is not used by any well−known operating systems. Those writing their own systems, however, may
well wish to use RDOFF as their object format, on the grounds that it is designed primarily for simplicity and
contains very little file−header bureaucracy.

The Unix NASM archive, and the DOS archive which includes sources, both contain an rdoff subdirectory
holding a set of RDOFF utilities: an RDF linker, an RDF static−library manager, an RDF file dump utility,
and a program which will load and execute an RDF executable under Linux.

rdf supports only the standard section names .text , .data and .bss .

7.13.1 Requiring a Library: The LIBRARY Directive

RDOFF contains a mechanism for an object file to demand a given library to be linked to the module, either at
load time or run time. This is done by the LIBRARY directive, which takes one argument which is the name
of the module:

 library mylib.rdl

7.13.2 Specifying a Module Name: The MODULE Directive

Special RDOFF header record is used to store the name of the module. It can be used, for example, by
run−time loader to perform dynamic linking. MODULE directive takes one argument which is the name of
current module:

 module mymodname

Note that when you statically link modules and tell linker to strip the symbols from output file, all module
names will be stripped too. To avoid it, you should start module names with $, like:

 module $kernel.core

99

7.13.3 rdf Extensions to the GLOBAL Directive

RDOFF global symbols can contain additional information needed by the static linker. You can mark a global
symbol as exported, thus telling the linker do not strip it from target executable or library file. Like in ELF,
you can also specify whether an exported symbol is a procedure (function) or data object.

Suffixing the name with a colon and the word export you make the symbol exported:

 global sys_open:export

To specify that exported symbol is a procedure (function), you add the word proc or function after
declaration:

 global sys_open:export proc

Similarly, to specify exported data object, add the word data or object to the directive:

 global kernel_ticks:export data

7.13.4 rdf Extensions to the EXTERN Directive

By default the EXTERN directive in RDOFF declares a "pure external" symbol (i.e. the static linker will
complain if such a symbol is not resolved). To declare an "imported" symbol, which must be resolved later
during a dynamic linking phase, RDOFF offers an additional import modifier. As in GLOBAL, you can also
specify whether an imported symbol is a procedure (function) or data object. For example:

 library $libc
 extern _open:import
 extern _printf:import proc
 extern _errno:import data

Here the directive LIBRARY is also included, which gives the dynamic linker a hint as to where to find
requested symbols.

7.14 dbg : Debugging Format
The dbg output format is not built into NASM in the default configuration. If you are building your own
NASM executable from the sources, you can define OF_DBG in output/outform.h or on the compiler
command line, and obtain the dbg output format.

The dbg format does not output an object file as such; instead, it outputs a text file which contains a complete
list of all the transactions between the main body of NASM and the output−format back end module. It is
primarily intended to aid people who want to write their own output drivers, so that they can get a clearer idea
of the various requests the main program makes of the output driver, and in what order they happen.

For simple files, one can easily use the dbg format like this:

nasm −f dbg filename.asm

which will generate a diagnostic file called filename.dbg . However, this will not work well on files
which were designed for a different object format, because each object format defines its own macros (usually
user−level forms of directives), and those macros will not be defined in the dbg format. Therefore it can be
useful to run NASM twice, in order to do the preprocessing with the native object format selected:

nasm −e −f rdf −o rdfprog.i rdfprog.asm
nasm −a −f dbg rdfprog.i

100

This preprocesses rdfprog.asm into rdfprog.i , keeping the rdf object format selected in order to
make sure RDF special directives are converted into primitive form correctly. Then the preprocessed source is
fed through the dbg format to generate the final diagnostic output.

This workaround will still typically not work for programs intended for obj format, because the obj
SEGMENT and GROUP directives have side effects of defining the segment and group names as symbols; dbg
will not do this, so the program will not assemble. You will have to work around that by defining the symbols
yourself (using EXTERN, for example) if you really need to get a dbg trace of an obj –specific source file.

dbg accepts any section name and any directives at all, and logs them all to its output file.

101

Chapter 8: Writing 16−bit Code (DOS, Windows 3/3.1)

This chapter attempts to cover some of the common issues encountered when writing 16−bit code to run
under MS−DOS or Windows 3.x . It covers how to link programs to produce .EXE or .COM files, how to
write .SYS device drivers, and how to interface assembly language code with 16−bit C compilers and with
Borland Pascal.

8.1 Producing .EXE Files
Any large program written under DOS needs to be built as a .EXE file: only .EXE files have the necessary
internal structure required to span more than one 64K segment. Windows programs, also, have to be built as
.EXE files, since Windows does not support the .COM format.

In general, you generate .EXE files by using the obj output format to produce one or more .OBJ files, and
then linking them together using a linker. However, NASM also supports the direct generation of simple DOS
.EXE files using the bin output format (by using DB and DW to construct the .EXE file header), and a macro
package is supplied to do this. Thanks to Yann Guidon for contributing the code for this.

NASM may also support .EXE natively as another output format in future releases.

8.1.1 Using the obj Format To Generate .EXE Files

This section describes the usual method of generating .EXE files by linking .OBJ files together.

Most 16−bit programming language packages come with a suitable linker; if you have none of these, there is a
free linker called VAL, available in LZH archive format from x2ftp.oulu.fi . An LZH archiver can be
found at ftp.simtel.net . There is another ‘free’ linker (though this one doesn’t come with sources)
called FREELINK, available from www.pcorner.com . A third, djlink , written by DJ Delorie, is
available at www.delorie.com . A fourth linker, ALINK , written by Anthony A.J. Williams, is available at
alink.sourceforge.net .

When linking several .OBJ files into a .EXE file, you should ensure that exactly one of them has a start point
defined (using the ..start special symbol defined by the obj format: see section 7.4.6). If no module
defines a start point, the linker will not know what value to give the entry−point field in the output file header;
if more than one defines a start point, the linker will not know which value to use.

An example of a NASM source file which can be assembled to a .OBJ file and linked on its own to a .EXE
is given here. It demonstrates the basic principles of defining a stack, initialising the segment registers, and
declaring a start point. This file is also provided in the test subdirectory of the NASM archives, under the
name objexe.asm .

segment code

..start:
 mov ax,data
 mov ds,ax
 mov ax,stack
 mov ss,ax
 mov sp,stacktop

102

ftp://x2ftp.oulu.fi/pub/msdos/programming/lang/
ftp://ftp.simtel.net/pub/simtelnet/msdos/arcers
http://www.pcorner.com/tpc/old/3-101.html
http://www.delorie.com/djgpp/16bit/djlink/
http://alink.sourceforge.net

This initial piece of code sets up DS to point to the data segment, and initializes SS and SP to point to the top
of the provided stack. Notice that interrupts are implicitly disabled for one instruction after a move into SS,
precisely for this situation, so that there’s no chance of an interrupt occurring between the loads of SS and SP
and not having a stack to execute on.

Note also that the special symbol ..start is defined at the beginning of this code, which means that will be
the entry point into the resulting executable file.

 mov dx,hello
 mov ah,9
 int 0x21

The above is the main program: load DS:DX with a pointer to the greeting message (hello is implicitly
relative to the segment data , which was loaded into DS in the setup code, so the full pointer is valid), and
call the DOS print−string function.

 mov ax,0x4c00
 int 0x21

This terminates the program using another DOS system call.

segment data

hello: db ’hello, world’, 13, 10, ’$’

The data segment contains the string we want to display.

segment stack stack
 resb 64
stacktop:

The above code declares a stack segment containing 64 bytes of uninitialized stack space, and points
stacktop at the top of it. The directive segment stack stack defines a segment called stack , and
also of type STACK. The latter is not necessary to the correct running of the program, but linkers are likely to
issue warnings or errors if your program has no segment of type STACK.

The above file, when assembled into a .OBJ file, will link on its own to a valid .EXE file, which when run
will print ‘hello, world’ and then exit.

8.1.2 Using the bin Format To Generate .EXE Files

The .EXE file format is simple enough that it’s possible to build a .EXE file by writing a pure−binary
program and sticking a 32−byte header on the front. This header is simple enough that it can be generated
using DB and DW commands by NASM itself, so that you can use the bin output format to directly generate
.EXE files.

Included in the NASM archives, in the misc subdirectory, is a file exebin.mac of macros. It defines three
macros: EXE_begin , EXE_stack and EXE_end.

To produce a .EXE file using this method, you should start by using %include to load the exebin.mac
macro package into your source file. You should then issue the EXE_begin macro call (which takes no
arguments) to generate the file header data. Then write code as normal for the bin format – you can use all
three standard sections .text , .data and .bss . At the end of the file you should call the EXE_end macro
(again, no arguments), which defines some symbols to mark section sizes, and these symbols are referred to in
the header code generated by EXE_begin .

103

In this model, the code you end up writing starts at 0x100 , just like a .COM file – in fact, if you strip off the
32−byte header from the resulting .EXE file, you will have a valid .COM program. All the segment bases are
the same, so you are limited to a 64K program, again just like a .COM file. Note that an ORG directive is
issued by the EXE_begin macro, so you should not explicitly issue one of your own.

You can’t directly refer to your segment base value, unfortunately, since this would require a relocation in the
header, and things would get a lot more complicated. So you should get your segment base by copying it out
of CS instead.

On entry to your .EXE file, SS:SP are already set up to point to the top of a 2Kb stack. You can adjust the
default stack size of 2Kb by calling the EXE_stack macro. For example, to change the stack size of your
program to 64 bytes, you would call EXE_stack 64 .

A sample program which generates a .EXE file in this way is given in the test subdirectory of the NASM
archive, as binexe.asm .

8.2 Producing .COM Files
While large DOS programs must be written as .EXE files, small ones are often better written as .COM files.
.COM files are pure binary, and therefore most easily produced using the bin output format.

8.2.1 Using the bin Format To Generate .COM Files

.COM files expect to be loaded at offset 100h into their segment (though the segment may change).
Execution then begins at 100h , i.e. right at the start of the program. So to write a .COM program, you would
create a source file looking like

 org 100h

section .text

start:
 ; put your code here

section .data

 ; put data items here

section .bss

 ; put uninitialized data here

The bin format puts the .text section first in the file, so you can declare data or BSS items before
beginning to write code if you want to and the code will still end up at the front of the file where it belongs.

The BSS (uninitialized data) section does not take up space in the .COM file itself: instead, addresses of BSS
items are resolved to point at space beyond the end of the file, on the grounds that this will be free memory
when the program is run. Therefore you should not rely on your BSS being initialized to all zeros when you
run.

To assemble the above program, you should use a command line like

nasm myprog.asm −fbin −o myprog.com

104

The bin format would produce a file called myprog if no explicit output file name were specified, so you
have to override it and give the desired file name.

8.2.2 Using the obj Format To Generate .COM Files

If you are writing a .COM program as more than one module, you may wish to assemble several .OBJ files
and link them together into a .COM program. You can do this, provided you have a linker capable of
outputting .COM files directly (TLINK does this), or alternatively a converter program such as EXE2BIN to
transform the .EXE file output from the linker into a .COM file.

If you do this, you need to take care of several things:

• The first object file containing code should start its code segment with a line like RESB 100h . This is to
ensure that the code begins at offset 100h relative to the beginning of the code segment, so that the linker
or converter program does not have to adjust address references within the file when generating the .COM
file. Other assemblers use an ORG directive for this purpose, but ORG in NASM is a format−specific
directive to the bin output format, and does not mean the same thing as it does in MASM−compatible
assemblers.

• You don’t need to define a stack segment.

• All your segments should be in the same group, so that every time your code or data references a symbol
offset, all offsets are relative to the same segment base. This is because, when a .COM file is loaded, all the
segment registers contain the same value.

8.3 Producing .SYS Files
MS−DOS device drivers – .SYS files – are pure binary files, similar to .COM files, except that they start at
origin zero rather than 100h . Therefore, if you are writing a device driver using the bin format, you do not
need the ORG directive, since the default origin for bin is zero. Similarly, if you are using obj , you do not
need the RESB 100h at the start of your code segment.

.SYS files start with a header structure, containing pointers to the various routines inside the driver which do
the work. This structure should be defined at the start of the code segment, even though it is not actually code.

For more information on the format of .SYS files, and the data which has to go in the header structure, a list
of books is given in the Frequently Asked Questions list for the newsgroup
comp.os.msdos.programmer .

8.4 Interfacing to 16−bit C Programs
This section covers the basics of writing assembly routines that call, or are called from, C programs. To do
this, you would typically write an assembly module as a .OBJ file, and link it with your C modules to
produce a mixed−language program.

8.4.1 External Symbol Names

C compilers have the convention that the names of all global symbols (functions or data) they define are
formed by prefixing an underscore to the name as it appears in the C program. So, for example, the function a
C programmer thinks of as printf appears to an assembly language programmer as _printf . This means
that in your assembly programs, you can define symbols without a leading underscore, and not have to worry
about name clashes with C symbols.

If you find the underscores inconvenient, you can define macros to replace the GLOBAL and EXTERN
directives as follows:

105

news:comp.os.msdos.programmer

%macro cglobal 1

 global _%1
 %define %1 _%1

%endmacro

%macro cextern 1

 extern _%1
 %define %1 _%1

%endmacro

(These forms of the macros only take one argument at a time; a %rep construct could solve this.)

If you then declare an external like this:

cextern printf

then the macro will expand it as

extern _printf
%define printf _printf

Thereafter, you can reference printf as if it was a symbol, and the preprocessor will put the leading
underscore on where necessary.

The cglobal macro works similarly. You must use cglobal before defining the symbol in question, but
you would have had to do that anyway if you used GLOBAL.

Also see section 2.1.27.

8.4.2 Memory Models

NASM contains no mechanism to support the various C memory models directly; you have to keep track
yourself of which one you are writing for. This means you have to keep track of the following things:

• In models using a single code segment (tiny, small and compact), functions are near. This means that
function pointers, when stored in data segments or pushed on the stack as function arguments, are 16 bits
long and contain only an offset field (the CS register never changes its value, and always gives the segment
part of the full function address), and that functions are called using ordinary near CALL instructions and
return using RETN (which, in NASM, is synonymous with RET anyway). This means both that you should
write your own routines to return with RETN, and that you should call external C routines with near CALL
instructions.

• In models using more than one code segment (medium, large and huge), functions are far. This means that
function pointers are 32 bits long (consisting of a 16−bit offset followed by a 16−bit segment), and that
functions are called using CALL FAR (or CALL seg:offset) and return using RETF. Again, you
should therefore write your own routines to return with RETF and use CALL FAR to call external routines.

• In models using a single data segment (tiny, small and medium), data pointers are 16 bits long, containing
only an offset field (the DS register doesn’t change its value, and always gives the segment part of the full
data item address).

106

• In models using more than one data segment (compact, large and huge), data pointers are 32 bits long,
consisting of a 16−bit offset followed by a 16−bit segment. You should still be careful not to modify DS in
your routines without restoring it afterwards, but ES is free for you to use to access the contents of 32−bit
data pointers you are passed.

• The huge memory model allows single data items to exceed 64K in size. In all other memory models, you
can access the whole of a data item just by doing arithmetic on the offset field of the pointer you are given,
whether a segment field is present or not; in huge model, you have to be more careful of your pointer
arithmetic.

• In most memory models, there is a default data segment, whose segment address is kept in DS throughout
the program. This data segment is typically the same segment as the stack, kept in SS, so that functions’
local variables (which are stored on the stack) and global data items can both be accessed easily without
changing DS. Particularly large data items are typically stored in other segments. However, some memory
models (though not the standard ones, usually) allow the assumption that SS and DS hold the same value to
be removed. Be careful about functions’ local variables in this latter case.

In models with a single code segment, the segment is called _TEXT, so your code segment must also go by
this name in order to be linked into the same place as the main code segment. In models with a single data
segment, or with a default data segment, it is called _DATA.

8.4.3 Function Definitions and Function Calls

The C calling convention in 16−bit programs is as follows. In the following description, the words caller and
callee are used to denote the function doing the calling and the function which gets called.

• The caller pushes the function’s parameters on the stack, one after another, in reverse order (right to left, so
that the first argument specified to the function is pushed last).

• The caller then executes a CALL instruction to pass control to the callee. This CALL is either near or far
depending on the memory model.

• The callee receives control, and typically (although this is not actually necessary, in functions which do not
need to access their parameters) starts by saving the value of SP in BP so as to be able to use BP as a base
pointer to find its parameters on the stack. However, the caller was probably doing this too, so part of the
calling convention states that BP must be preserved by any C function. Hence the callee, if it is going to set
up BP as a frame pointer, must push the previous value first.

• The callee may then access its parameters relative to BP. The word at [BP] holds the previous value of BP
as it was pushed; the next word, at [BP+2] , holds the offset part of the return address, pushed implicitly
by CALL. In a small−model (near) function, the parameters start after that, at [BP+4] ; in a large−model
(far) function, the segment part of the return address lives at [BP+4] , and the parameters begin at
[BP+6] . The leftmost parameter of the function, since it was pushed last, is accessible at this offset from
BP; the others follow, at successively greater offsets. Thus, in a function such as printf which takes a
variable number of parameters, the pushing of the parameters in reverse order means that the function
knows where to find its first parameter, which tells it the number and type of the remaining ones.

• The callee may also wish to decrease SP further, so as to allocate space on the stack for local variables,
which will then be accessible at negative offsets from BP.

• The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or DX:AX
depending on the size of the value. Floating−point results are sometimes (depending on the compiler)
returned in ST0.

107

• Once the callee has finished processing, it restores SP from BP if it had allocated local stack space, then
pops the previous value of BP, and returns via RETN or RETF depending on memory model.

• When the caller regains control from the callee, the function parameters are still on the stack, so it typically
adds an immediate constant to SP to remove them (instead of executing a number of slow POP
instructions). Thus, if a function is accidentally called with the wrong number of parameters due to a
prototype mismatch, the stack will still be returned to a sensible state since the caller, which knows how
many parameters it pushed, does the removing.

It is instructive to compare this calling convention with that for Pascal programs (described in section 8.5.1).
Pascal has a simpler convention, since no functions have variable numbers of parameters. Therefore the callee
knows how many parameters it should have been passed, and is able to deallocate them from the stack itself
by passing an immediate argument to the RET or RETF instruction, so the caller does not have to do it. Also,
the parameters are pushed in left−to−right order, not right−to−left, which means that a compiler can give
better guarantees about sequence points without performance suffering.

Thus, you would define a function in C style in the following way. The following example is for small model:

global _myfunc

_myfunc:
 push bp
 mov bp,sp
 sub sp,0x40 ; 64 bytes of local stack space
 mov bx,[bp+4] ; first parameter to function

 ; some more code

 mov sp,bp ; undo "sub sp,0x40" above
 pop bp
 ret

For a large−model function, you would replace RET by RETF, and look for the first parameter at [BP+6]
instead of [BP+4] . Of course, if one of the parameters is a pointer, then the offsets of subsequent parameters
will change depending on the memory model as well: far pointers take up four bytes on the stack when passed
as a parameter, whereas near pointers take up two.

At the other end of the process, to call a C function from your assembly code, you would do something like
this:

extern _printf

 ; and then, further down...

 push word [myint] ; one of my integer variables
 push word mystring ; pointer into my data segment
 call _printf
 add sp,byte 4 ; ‘byte’ saves space

 ; then those data items...

segment _DATA

108

myint dw 1234
mystring db ’This number −> %d <− should be 1234’,10,0

This piece of code is the small−model assembly equivalent of the C code

 int myint = 1234;
 printf("This number −> %d <− should be 1234\n", myint);

In large model, the function−call code might look more like this. In this example, it is assumed that DS
already holds the segment base of the segment _DATA. If not, you would have to initialize it first.

 push word [myint]
 push word seg mystring ; Now push the segment, and...
 push word mystring ; ... offset of "mystring"
 call far _printf
 add sp,byte 6

The integer value still takes up one word on the stack, since large model does not affect the size of the int
data type. The first argument (pushed last) to printf , however, is a data pointer, and therefore has to
contain a segment and offset part. The segment should be stored second in memory, and therefore must be
pushed first. (Of course, PUSH DS would have been a shorter instruction than
PUSH WORD SEG mystring , if DS was set up as the above example assumed.) Then the actual call
becomes a far call, since functions expect far calls in large model; and SP has to be increased by 6 rather than
4 afterwards to make up for the extra word of parameters.

8.4.4 Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only declare the
names as GLOBAL or EXTERN. (Again, the names require leading underscores, as stated in section 8.4.1.)
Thus, a C variable declared as int i can be accessed from assembler as

extern _i

 mov ax,[_i]

And to declare your own integer variable which C programs can access as extern int j , you do this
(making sure you are assembling in the _DATA segment, if necessary):

global _j

_j dw 0

To access a C array, you need to know the size of the components of the array. For example, int variables
are two bytes long, so if a C program declares an array as int a[10] , you can access a[3] by coding
mov ax,[_a+6] . (The byte offset 6 is obtained by multiplying the desired array index, 3, by the size of the
array element, 2.) The sizes of the C base types in 16−bit compilers are: 1 for char , 2 for short and int , 4
for long and float , and 8 for double .

To access a C data structure, you need to know the offset from the base of the structure to the field you are
interested in. You can either do this by converting the C structure definition into a NASM structure definition
(using STRUC), or by calculating the one offset and using just that.

109

To do either of these, you should read your C compiler’s manual to find out how it organizes data structures.
NASM gives no special alignment to structure members in its own STRUC macro, so you have to specify
alignment yourself if the C compiler generates it. Typically, you might find that a structure like

struct {
 char c;
 int i;
} foo;

might be four bytes long rather than three, since the int field would be aligned to a two−byte boundary.
However, this sort of feature tends to be a configurable option in the C compiler, either using command−line
options or #pragma lines, so you have to find out how your own compiler does it.

8.4.5 c16.mac : Helper Macros for the 16−bit C Interface

Included in the NASM archives, in the misc directory, is a file c16.mac of macros. It defines three macros:
proc , arg and endproc . These are intended to be used for C−style procedure definitions, and they
automate a lot of the work involved in keeping track of the calling convention.

(An alternative, TASM compatible form of arg is also now built into NASM’s preprocessor. See section 4.8
for details.)

An example of an assembly function using the macro set is given here:

proc _nearproc

%$i arg
%$j arg
 mov ax,[bp + %$i]
 mov bx,[bp + %$j]
 add ax,[bx]

endproc

This defines _nearproc to be a procedure taking two arguments, the first (i) an integer and the second (j)
a pointer to an integer. It returns i + *j .

Note that the arg macro has an EQU as the first line of its expansion, and since the label before the macro call
gets prepended to the first line of the expanded macro, the EQU works, defining %$i to be an offset from BP.
A context−local variable is used, local to the context pushed by the proc macro and popped by the
endproc macro, so that the same argument name can be used in later procedures. Of course, you don’t have
to do that.

The macro set produces code for near functions (tiny, small and compact−model code) by default. You can
have it generate far functions (medium, large and huge−model code) by means of coding
%define FARCODE . This changes the kind of return instruction generated by endproc , and also changes
the starting point for the argument offsets. The macro set contains no intrinsic dependency on whether data
pointers are far or not.

arg can take an optional parameter, giving the size of the argument. If no size is given, 2 is assumed, since it
is likely that many function parameters will be of type int .

The large−model equivalent of the above function would look like this:

110

%define FARCODE

proc _farproc

%$i arg
%$j arg 4
 mov ax,[bp + %$i]
 mov bx,[bp + %$j]
 mov es,[bp + %$j + 2]
 add ax,[bx]

endproc

This makes use of the argument to the arg macro to define a parameter of size 4, because j is now a far
pointer. When we load from j , we must load a segment and an offset.

8.5 Interfacing to Borland Pascal Programs
Interfacing to Borland Pascal programs is similar in concept to interfacing to 16−bit C programs. The
differences are:

• The leading underscore required for interfacing to C programs is not required for Pascal.

• The memory model is always large: functions are far, data pointers are far, and no data item can be more
than 64K long. (Actually, some functions are near, but only those functions that are local to a Pascal unit
and never called from outside it. All assembly functions that Pascal calls, and all Pascal functions that
assembly routines are able to call, are far.) However, all static data declared in a Pascal program goes into
the default data segment, which is the one whose segment address will be in DS when control is passed to
your assembly code. The only things that do not live in the default data segment are local variables (they
live in the stack segment) and dynamically allocated variables. All data pointers, however, are far.

• The function calling convention is different – described below.

• Some data types, such as strings, are stored differently.

• There are restrictions on the segment names you are allowed to use – Borland Pascal will ignore code or
data declared in a segment it doesn’t like the name of. The restrictions are described below.

8.5.1 The Pascal Calling Convention

The 16−bit Pascal calling convention is as follows. In the following description, the words caller and callee
are used to denote the function doing the calling and the function which gets called.

• The caller pushes the function’s parameters on the stack, one after another, in normal order (left to right, so
that the first argument specified to the function is pushed first).

• The caller then executes a far CALL instruction to pass control to the callee.

• The callee receives control, and typically (although this is not actually necessary, in functions which do not
need to access their parameters) starts by saving the value of SP in BP so as to be able to use BP as a base
pointer to find its parameters on the stack. However, the caller was probably doing this too, so part of the
calling convention states that BP must be preserved by any function. Hence the callee, if it is going to set
up BP as a frame pointer, must push the previous value first.

111

• The callee may then access its parameters relative to BP. The word at [BP] holds the previous value of BP
as it was pushed. The next word, at [BP+2] , holds the offset part of the return address, and the next one at
[BP+4] the segment part. The parameters begin at [BP+6] . The rightmost parameter of the function,
since it was pushed last, is accessible at this offset from BP; the others follow, at successively greater
offsets.

• The callee may also wish to decrease SP further, so as to allocate space on the stack for local variables,
which will then be accessible at negative offsets from BP.

• The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or DX:AX
depending on the size of the value. Floating−point results are returned in ST0. Results of type Real
(Borland’s own custom floating−point data type, not handled directly by the FPU) are returned in
DX:BX:AX . To return a result of type String , the caller pushes a pointer to a temporary string before
pushing the parameters, and the callee places the returned string value at that location. The pointer is not a
parameter, and should not be removed from the stack by the RETF instruction.

• Once the callee has finished processing, it restores SP from BP if it had allocated local stack space, then
pops the previous value of BP, and returns via RETF. It uses the form of RETF with an immediate
parameter, giving the number of bytes taken up by the parameters on the stack. This causes the parameters
to be removed from the stack as a side effect of the return instruction.

• When the caller regains control from the callee, the function parameters have already been removed from
the stack, so it needs to do nothing further.

Thus, you would define a function in Pascal style, taking two Integer –type parameters, in the following
way:

global myfunc

myfunc: push bp
 mov bp,sp
 sub sp,0x40 ; 64 bytes of local stack space
 mov bx,[bp+8] ; first parameter to function
 mov bx,[bp+6] ; second parameter to function

 ; some more code

 mov sp,bp ; undo "sub sp,0x40" above
 pop bp
 retf 4 ; total size of params is 4

At the other end of the process, to call a Pascal function from your assembly code, you would do something
like this:

extern SomeFunc

 ; and then, further down...

 push word seg mystring ; Now push the segment, and...
 push word mystring ; ... offset of "mystring"
 push word [myint] ; one of my variables
 call far SomeFunc

112

This is equivalent to the Pascal code

procedure SomeFunc(String: PChar; Int: Integer);
 SomeFunc(@mystring, myint);

8.5.2 Borland Pascal Segment Name Restrictions

Since Borland Pascal’s internal unit file format is completely different from OBJ, it only makes a very
sketchy job of actually reading and understanding the various information contained in a real OBJ file when it
links that in. Therefore an object file intended to be linked to a Pascal program must obey a number of
restrictions:

• Procedures and functions must be in a segment whose name is either CODE, CSEG, or something ending in
_TEXT.

• initialized data must be in a segment whose name is either CONST or something ending in _DATA.

• Uninitialized data must be in a segment whose name is either DATA, DSEG, or something ending in _BSS.

• Any other segments in the object file are completely ignored. GROUP directives and segment attributes are
also ignored.

8.5.3 Using c16.mac With Pascal Programs

The c16.mac macro package, described in section 8.4.5, can also be used to simplify writing functions to be
called from Pascal programs, if you code %define PASCAL . This definition ensures that functions are far
(it implies FARCODE), and also causes procedure return instructions to be generated with an operand.

Defining PASCAL does not change the code which calculates the argument offsets; you must declare your
function’s arguments in reverse order. For example:

%define PASCAL

proc _pascalproc

%$j arg 4
%$i arg
 mov ax,[bp + %$i]
 mov bx,[bp + %$j]
 mov es,[bp + %$j + 2]
 add ax,[bx]

endproc

This defines the same routine, conceptually, as the example in section 8.4.5: it defines a function taking two
arguments, an integer and a pointer to an integer, which returns the sum of the integer and the contents of the
pointer. The only difference between this code and the large−model C version is that PASCAL is defined
instead of FARCODE, and that the arguments are declared in reverse order.

113

Chapter 9: Writing 32−bit Code (Unix, Win32, DJGPP)

This chapter attempts to cover some of the common issues involved when writing 32−bit code, to run under
Win32 or Unix, or to be linked with C code generated by a Unix−style C compiler such as DJGPP. It covers
how to write assembly code to interface with 32−bit C routines, and how to write position−independent code
for shared libraries.

Almost all 32−bit code, and in particular all code running under Win32 , DJGPP or any of the PC Unix
variants, runs in flat memory model. This means that the segment registers and paging have already been set
up to give you the same 32−bit 4Gb address space no matter what segment you work relative to, and that you
should ignore all segment registers completely. When writing flat−model application code, you never need to
use a segment override or modify any segment register, and the code−section addresses you pass to CALL and
JMP live in the same address space as the data−section addresses you access your variables by and the
stack−section addresses you access local variables and procedure parameters by. Every address is 32 bits long
and contains only an offset part.

9.1 Interfacing to 32−bit C Programs
A lot of the discussion in section 8.4, about interfacing to 16−bit C programs, still applies when working in 32
bits. The absence of memory models or segmentation worries simplifies things a lot.

9.1.1 External Symbol Names

Most 32−bit C compilers share the convention used by 16−bit compilers, that the names of all global symbols
(functions or data) they define are formed by prefixing an underscore to the name as it appears in the C
program. However, not all of them do: the ELF specification states that C symbols do not have a leading
underscore on their assembly−language names.

The older Linux a.out C compiler, all Win32 compilers, DJGPP, and NetBSD and FreeBSD , all use the
leading underscore; for these compilers, the macros cextern and cglobal , as given in section 8.4.1, will
still work. For ELF, though, the leading underscore should not be used.

See also section 2.1.27.

9.1.2 Function Definitions and Function Calls

The C calling convention in 32−bit programs is as follows. In the following description, the words caller and
callee are used to denote the function doing the calling and the function which gets called.

• The caller pushes the function’s parameters on the stack, one after another, in reverse order (right to left, so
that the first argument specified to the function is pushed last).

• The caller then executes a near CALL instruction to pass control to the callee.

• The callee receives control, and typically (although this is not actually necessary, in functions which do not
need to access their parameters) starts by saving the value of ESP in EBP so as to be able to use EBP as a
base pointer to find its parameters on the stack. However, the caller was probably doing this too, so part of
the calling convention states that EBP must be preserved by any C function. Hence the callee, if it is going
to set up EBP as a frame pointer, must push the previous value first.

114

• The callee may then access its parameters relative to EBP. The doubleword at [EBP] holds the previous
value of EBP as it was pushed; the next doubleword, at [EBP+4] , holds the return address, pushed
implicitly by CALL. The parameters start after that, at [EBP+8] . The leftmost parameter of the function,
since it was pushed last, is accessible at this offset from EBP; the others follow, at successively greater
offsets. Thus, in a function such as printf which takes a variable number of parameters, the pushing of
the parameters in reverse order means that the function knows where to find its first parameter, which tells
it the number and type of the remaining ones.

• The callee may also wish to decrease ESP further, so as to allocate space on the stack for local variables,
which will then be accessible at negative offsets from EBP.

• The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or EAX depending
on the size of the value. Floating−point results are typically returned in ST0.

• Once the callee has finished processing, it restores ESP from EBP if it had allocated local stack space, then
pops the previous value of EBP, and returns via RET (equivalently, RETN).

• When the caller regains control from the callee, the function parameters are still on the stack, so it typically
adds an immediate constant to ESP to remove them (instead of executing a number of slow POP
instructions). Thus, if a function is accidentally called with the wrong number of parameters due to a
prototype mismatch, the stack will still be returned to a sensible state since the caller, which knows how
many parameters it pushed, does the removing.

There is an alternative calling convention used by Win32 programs for Windows API calls, and also for
functions called by the Windows API such as window procedures: they follow what Microsoft calls the
__stdcall convention. This is slightly closer to the Pascal convention, in that the callee clears the stack by
passing a parameter to the RET instruction. However, the parameters are still pushed in right−to−left order.

Thus, you would define a function in C style in the following way:

global _myfunc

_myfunc:
 push ebp
 mov ebp,esp
 sub esp,0x40 ; 64 bytes of local stack space
 mov ebx,[ebp+8] ; first parameter to function

 ; some more code

 leave ; mov esp,ebp / pop ebp
 ret

At the other end of the process, to call a C function from your assembly code, you would do something like
this:

extern _printf

 ; and then, further down...

 push dword [myint] ; one of my integer variables
 push dword mystring ; pointer into my data segment
 call _printf

115

 add esp,byte 8 ; ‘byte’ saves space

 ; then those data items...

segment _DATA

myint dd 1234
mystring db ’This number −> %d <− should be 1234’,10,0

This piece of code is the assembly equivalent of the C code

 int myint = 1234;
 printf("This number −> %d <− should be 1234\n", myint);

9.1.3 Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only declare the
names as GLOBAL or EXTERN. (Again, the names require leading underscores, as stated in section 9.1.1.)
Thus, a C variable declared as int i can be accessed from assembler as

 extern _i
 mov eax,[_i]

And to declare your own integer variable which C programs can access as extern int j , you do this
(making sure you are assembling in the _DATA segment, if necessary):

 global _j
_j dd 0

To access a C array, you need to know the size of the components of the array. For example, int variables
are four bytes long, so if a C program declares an array as int a[10] , you can access a[3] by coding
mov ax,[_a+12] . (The byte offset 12 is obtained by multiplying the desired array index, 3, by the size of
the array element, 4.) The sizes of the C base types in 32−bit compilers are: 1 for char , 2 for short , 4 for
int , long and float , and 8 for double . Pointers, being 32−bit addresses, are also 4 bytes long.

To access a C data structure, you need to know the offset from the base of the structure to the field you are
interested in. You can either do this by converting the C structure definition into a NASM structure definition
(using STRUC), or by calculating the one offset and using just that.

To do either of these, you should read your C compiler’s manual to find out how it organizes data structures.
NASM gives no special alignment to structure members in its own STRUC macro, so you have to specify
alignment yourself if the C compiler generates it. Typically, you might find that a structure like

struct {
 char c;
 int i;
} foo;

might be eight bytes long rather than five, since the int field would be aligned to a four−byte boundary.
However, this sort of feature is sometimes a configurable option in the C compiler, either using
command−line options or #pragma lines, so you have to find out how your own compiler does it.

116

9.1.4 c32.mac : Helper Macros for the 32−bit C Interface

Included in the NASM archives, in the misc directory, is a file c32.mac of macros. It defines three macros:
proc , arg and endproc . These are intended to be used for C−style procedure definitions, and they
automate a lot of the work involved in keeping track of the calling convention.

An example of an assembly function using the macro set is given here:

proc _proc32

%$i arg
%$j arg
 mov eax,[ebp + %$i]
 mov ebx,[ebp + %$j]
 add eax,[ebx]

endproc

This defines _proc32 to be a procedure taking two arguments, the first (i) an integer and the second (j) a
pointer to an integer. It returns i + *j .

Note that the arg macro has an EQU as the first line of its expansion, and since the label before the macro call
gets prepended to the first line of the expanded macro, the EQU works, defining %$i to be an offset from BP.
A context−local variable is used, local to the context pushed by the proc macro and popped by the
endproc macro, so that the same argument name can be used in later procedures. Of course, you don’t have
to do that.

arg can take an optional parameter, giving the size of the argument. If no size is given, 4 is assumed, since it
is likely that many function parameters will be of type int or pointers.

9.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries
ELF replaced the older a.out object file format under Linux because it contains support for
position−independent code (PIC), which makes writing shared libraries much easier. NASM supports the ELF
position−independent code features, so you can write Linux ELF shared libraries in NASM.

NetBSD, and its close cousins FreeBSD and OpenBSD, take a different approach by hacking PIC support into
the a.out format. NASM supports this as the aoutb output format, so you can write BSD shared libraries
in NASM too.

The operating system loads a PIC shared library by memory−mapping the library file at an arbitrarily chosen
point in the address space of the running process. The contents of the library’s code section must therefore not
depend on where it is loaded in memory.

Therefore, you cannot get at your variables by writing code like this:

 mov eax,[myvar] ; WRONG

Instead, the linker provides an area of memory called the global offset table, or GOT; the GOT is situated at a
constant distance from your library’s code, so if you can find out where your library is loaded (which is
typically done using a CALL and POP combination), you can obtain the address of the GOT, and you can then
load the addresses of your variables out of linker−generated entries in the GOT.

The data section of a PIC shared library does not have these restrictions: since the data section is writable, it
has to be copied into memory anyway rather than just paged in from the library file, so as long as it’s being

117

copied it can be relocated too. So you can put ordinary types of relocation in the data section without too
much worry (but see section 9.2.4 for a caveat).

9.2.1 Obtaining the Address of the GOT

Each code module in your shared library should define the GOT as an external symbol:

extern _GLOBAL_OFFSET_TABLE_ ; in ELF
extern __GLOBAL_OFFSET_TABLE_ ; in BSD a.out

At the beginning of any function in your shared library which plans to access your data or BSS sections, you
must first calculate the address of the GOT. This is typically done by writing the function in this form:

func: push ebp
 mov ebp,esp
 push ebx
 call .get_GOT
.get_GOT:
 pop ebx
 add ebx,_GLOBAL_OFFSET_TABLE_+$$−.get_GOT wrt ..gotpc

 ; the function body comes here

 mov ebx,[ebp−4]
 mov esp,ebp
 pop ebp
 ret

(For BSD, again, the symbol _GLOBAL_OFFSET_TABLE requires a second leading underscore.)

The first two lines of this function are simply the standard C prologue to set up a stack frame, and the last
three lines are standard C function epilogue. The third line, and the fourth to last line, save and restore the
EBX register, because PIC shared libraries use this register to store the address of the GOT.

The interesting bit is the CALL instruction and the following two lines. The CALL and POP combination
obtains the address of the label .get_GOT , without having to know in advance where the program was
loaded (since the CALL instruction is encoded relative to the current position). The ADD instruction makes use
of one of the special PIC relocation types: GOTPC relocation. With the WRT ..gotpc qualifier specified,
the symbol referenced (here _GLOBAL_OFFSET_TABLE_, the special symbol assigned to the GOT) is given
as an offset from the beginning of the section. (Actually, ELF encodes it as the offset from the operand field
of the ADD instruction, but NASM simplifies this deliberately, so you do things the same way for both ELF
and BSD.) So the instruction then adds the beginning of the section, to get the real address of the GOT, and
subtracts the value of .get_GOT which it knows is in EBX. Therefore, by the time that instruction has
finished, EBX contains the address of the GOT.

If you didn’t follow that, don’t worry: it’s never necessary to obtain the address of the GOT by any other
means, so you can put those three instructions into a macro and safely ignore them:

%macro get_GOT 0

 call %%getgot
 %%getgot:
 pop ebx
 add ebx,_GLOBAL_OFFSET_TABLE_+$$−%%getgot wrt ..gotpc

118

%endmacro

9.2.2 Finding Your Local Data Items

Having got the GOT, you can then use it to obtain the addresses of your data items. Most variables will reside
in the sections you have declared; they can be accessed using the ..gotoff special WRT type. The way this
works is like this:

 lea eax,[ebx+myvar wrt ..gotoff]

The expression myvar wrt ..gotoff is calculated, when the shared library is linked, to be the offset to
the local variable myvar from the beginning of the GOT. Therefore, adding it to EBX as above will place the
real address of myvar in EAX.

If you declare variables as GLOBAL without specifying a size for them, they are shared between code modules
in the library, but do not get exported from the library to the program that loaded it. They will still be in your
ordinary data and BSS sections, so you can access them in the same way as local variables, using the above
..gotoff mechanism.

Note that due to a peculiarity of the way BSD a.out format handles this relocation type, there must be at
least one non−local symbol in the same section as the address you’re trying to access.

9.2.3 Finding External and Common Data Items

If your library needs to get at an external variable (external to the library, not just to one of the modules
within it), you must use the ..got type to get at it. The ..got type, instead of giving you the offset from
the GOT base to the variable, gives you the offset from the GOT base to a GOT entry containing the address
of the variable. The linker will set up this GOT entry when it builds the library, and the dynamic linker will
place the correct address in it at load time. So to obtain the address of an external variable extvar in EAX,
you would code

 mov eax,[ebx+extvar wrt ..got]

This loads the address of extvar out of an entry in the GOT. The linker, when it builds the shared library,
collects together every relocation of type ..got , and builds the GOT so as to ensure it has every necessary
entry present.

Common variables must also be accessed in this way.

9.2.4 Exporting Symbols to the Library User

If you want to export symbols to the user of the library, you have to declare whether they are functions or
data, and if they are data, you have to give the size of the data item. This is because the dynamic linker has to
build procedure linkage table entries for any exported functions, and also moves exported data items away
from the library’s data section in which they were declared.

So to export a function to users of the library, you must use

global func:function ; declare it as a function

func: push ebp

 ; etc.

And to export a data item such as an array, you would have to code

119

global array:data array.end−array ; give the size too

array: resd 128
.end:

Be careful: If you export a variable to the library user, by declaring it as GLOBAL and supplying a size, the
variable will end up living in the data section of the main program, rather than in your library’s data section,
where you declared it. So you will have to access your own global variable with the ..got mechanism rather
than ..gotoff , as if it were external (which, effectively, it has become).

Equally, if you need to store the address of an exported global in one of your data sections, you can’t do it by
means of the standard sort of code:

dataptr: dd global_data_item ; WRONG

NASM will interpret this code as an ordinary relocation, in which global_data_item is merely an offset
from the beginning of the .data section (or whatever); so this reference will end up pointing at your data
section instead of at the exported global which resides elsewhere.

Instead of the above code, then, you must write

dataptr: dd global_data_item wrt ..sym

which makes use of the special WRT type ..sym to instruct NASM to search the symbol table for a particular
symbol at that address, rather than just relocating by section base.

Either method will work for functions: referring to one of your functions by means of

funcptr: dd my_function

will give the user the address of the code you wrote, whereas

funcptr: dd my_function wrt ..sym

will give the address of the procedure linkage table for the function, which is where the calling program will
believe the function lives. Either address is a valid way to call the function.

9.2.5 Calling Procedures Outside the Library

Calling procedures outside your shared library has to be done by means of a procedure linkage table, or PLT.
The PLT is placed at a known offset from where the library is loaded, so the library code can make calls to the
PLT in a position−independent way. Within the PLT there is code to jump to offsets contained in the GOT, so
function calls to other shared libraries or to routines in the main program can be transparently passed off to
their real destinations.

To call an external routine, you must use another special PIC relocation type, WRT ..plt . This is much
easier than the GOT−based ones: you simply replace calls such as CALL printf with the PLT−relative
version CALL printf WRT ..plt .

9.2.6 Generating the Library File

Having written some code modules and assembled them to .o files, you then generate your shared library
with a command such as

ld −shared −o library.so module1.o module2.o # for ELF
ld −Bshareable −o library.so module1.o module2.o # for BSD

120

For ELF, if your shared library is going to reside in system directories such as /usr/lib or /lib , it is
usually worth using the −soname flag to the linker, to store the final library file name, with a version
number, into the library:

ld −shared −soname library.so.1 −o library.so.1.2 *.o

You would then copy library.so.1.2 into the library directory, and create library.so.1 as a
symbolic link to it.

121

Chapter 10: Mixing 16 and 32 Bit Code

This chapter tries to cover some of the issues, largely related to unusual forms of addressing and jump
instructions, encountered when writing operating system code such as protected−mode initialisation routines,
which require code that operates in mixed segment sizes, such as code in a 16−bit segment trying to modify
data in a 32−bit one, or jumps between different−size segments.

10.1 Mixed−Size Jumps
The most common form of mixed−size instruction is the one used when writing a 32−bit OS: having done
your setup in 16−bit mode, such as loading the kernel, you then have to boot it by switching into protected
mode and jumping to the 32−bit kernel start address. In a fully 32−bit OS, this tends to be the only mixed−size
instruction you need, since everything before it can be done in pure 16−bit code, and everything after it can be
pure 32−bit.

This jump must specify a 48−bit far address, since the target segment is a 32−bit one. However, it must be
assembled in a 16−bit segment, so just coding, for example,

 jmp 0x1234:0x56789ABC ; wrong!

will not work, since the offset part of the address will be truncated to 0x9ABC and the jump will be an
ordinary 16−bit far one.

The Linux kernel setup code gets round the inability of as86 to generate the required instruction by coding it
manually, using DB instructions. NASM can go one better than that, by actually generating the right
instruction itself. Here’s how to do it right:

 jmp dword 0x1234:0x56789ABC ; right

The DWORD prefix (strictly speaking, it should come after the colon, since it is declaring the offset field to be a
doubleword; but NASM will accept either form, since both are unambiguous) forces the offset part to be
treated as far, in the assumption that you are deliberately writing a jump from a 16−bit segment to a 32−bit
one.

You can do the reverse operation, jumping from a 32−bit segment to a 16−bit one, by means of the WORD
prefix:

 jmp word 0x8765:0x4321 ; 32 to 16 bit

If the WORD prefix is specified in 16−bit mode, or the DWORD prefix in 32−bit mode, they will be ignored,
since each is explicitly forcing NASM into a mode it was in anyway.

10.2 Addressing Between Different−Size Segments
If your OS is mixed 16 and 32−bit, or if you are writing a DOS extender, you are likely to have to deal with
some 16−bit segments and some 32−bit ones. At some point, you will probably end up writing code in a
16−bit segment which has to access data in a 32−bit segment, or vice versa.

If the data you are trying to access in a 32−bit segment lies within the first 64K of the segment, you may be
able to get away with using an ordinary 16−bit addressing operation for the purpose; but sooner or later, you
will want to do 32−bit addressing from 16−bit mode.

122

The easiest way to do this is to make sure you use a register for the address, since any effective address
containing a 32−bit register is forced to be a 32−bit address. So you can do

 mov eax,offset_into_32_bit_segment_specified_by_fs
 mov dword [fs:eax],0x11223344

This is fine, but slightly cumbersome (since it wastes an instruction and a register) if you already know the
precise offset you are aiming at. The x86 architecture does allow 32−bit effective addresses to specify nothing
but a 4−byte offset, so why shouldn’t NASM be able to generate the best instruction for the purpose?

It can. As in section 10.1, you need only prefix the address with the DWORD keyword, and it will be forced to
be a 32−bit address:

 mov dword [fs:dword my_offset],0x11223344

Also as in section 10.1, NASM is not fussy about whether the DWORD prefix comes before or after the
segment override, so arguably a nicer−looking way to code the above instruction is

 mov dword [dword fs:my_offset],0x11223344

Don’t confuse the DWORD prefix outside the square brackets, which controls the size of the data stored at the
address, with the one inside the square brackets which controls the length of the address itself. The two can
quite easily be different:

 mov word [dword 0x12345678],0x9ABC

This moves 16 bits of data to an address specified by a 32−bit offset.

You can also specify WORD or DWORD prefixes along with the FAR prefix to indirect far jumps or calls. For
example:

 call dword far [fs:word 0x4321]

This instruction contains an address specified by a 16−bit offset; it loads a 48−bit far pointer from that (16−bit
segment and 32−bit offset), and calls that address.

10.3 Other Mixed−Size Instructions
The other way you might want to access data might be using the string instructions (LODSx, STOSx and so
on) or the XLATB instruction. These instructions, since they take no parameters, might seem to have no easy
way to make them perform 32−bit addressing when assembled in a 16−bit segment.

This is the purpose of NASM’s a16 , a32 and a64 prefixes. If you are coding LODSB in a 16−bit segment
but it is supposed to be accessing a string in a 32−bit segment, you should load the desired address into ESI
and then code

 a32 lodsb

The prefix forces the addressing size to 32 bits, meaning that LODSB loads from [DS:ESI] instead of
[DS:SI] . To access a string in a 16−bit segment when coding in a 32−bit one, the corresponding a16 prefix
can be used.

The a16 , a32 and a64 prefixes can be applied to any instruction in NASM’s instruction table, but most of
them can generate all the useful forms without them. The prefixes are necessary only for instructions with
implicit addressing: CMPSx, SCASx, LODSx, STOSx, MOVSx, INSx , OUTSx, and XLATB. Also, the various
push and pop instructions (PUSHA and POPF as well as the more usual PUSH and POP) can accept a16 , a32

123

or a64 prefixes to force a particular one of SP, ESP or RSP to be used as a stack pointer, in case the stack
segment in use is a different size from the code segment.

PUSH and POP, when applied to segment registers in 32−bit mode, also have the slightly odd behaviour that
they push and pop 4 bytes at a time, of which the top two are ignored and the bottom two give the value of the
segment register being manipulated. To force the 16−bit behaviour of segment−register push and pop
instructions, you can use the operand−size prefix o16 :

 o16 push ss
 o16 push ds

This code saves a doubleword of stack space by fitting two segment registers into the space which would
normally be consumed by pushing one.

(You can also use the o32 prefix to force the 32−bit behaviour when in 16−bit mode, but this seems less
useful.)

124

Chapter 11: Writing 64−bit Code (Unix, Win64)

This chapter attempts to cover some of the common issues involved when writing 64−bit code, to run under
Win64 or Unix. It covers how to write assembly code to interface with 64−bit C routines, and how to write
position−independent code for shared libraries.

All 64−bit code uses a flat memory model, since segmentation is not available in 64−bit mode. The one
exception is the FS and GS registers, which still add their bases.

Position independence in 64−bit mode is significantly simpler, since the processor supports RIP–relative
addressing directly; see the REL keyword (section 3.3). On most 64−bit platforms, it is probably desirable to
make that the default, using the directive DEFAULT REL (section 6.2).

64−bit programming is relatively similar to 32−bit programming, but of course pointers are 64 bits long;
additionally, all existing platforms pass arguments in registers rather than on the stack. Furthermore, 64−bit
platforms use SSE2 by default for floating point. Please see the ABI documentation for your platform.

64−bit platforms differ in the sizes of the fundamental datatypes, not just from 32−bit platforms but from each
other. If a specific size data type is desired, it is probably best to use the types defined in the Standard C
header <inttypes.h> .

In 64−bit mode, the default instruction size is still 32 bits. When loading a value into a 32−bit register (but not
an 8− or 16−bit register), the upper 32 bits of the corresponding 64−bit register are set to zero.

11.1 Register Names in 64−bit Mode
NASM uses the following names for general−purpose registers in 64−bit mode, for 8−, 16−, 32− and 64−bit
references, respecitively:

 AL/AH, CL/CH, DL/DH, BL/BH, SPL, BPL, SIL, DIL, R8B−R15B
 AX, CX, DX, BX, SP, BP, SI, DI, R8W−R15W
 EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, R8D−R15D
 RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8−R15

This is consistent with the AMD documentation and most other assemblers. The Intel documentation,
however, uses the names R8L−R15L for 8−bit references to the higher registers. It is possible to use those
names by definiting them as macros; similarly, if one wants to use numeric names for the low 8 registers,
define them as macros. The standard macro package altreg (see section 5.1) can be used for this purpose.

11.2 Immediates and Displacements in 64−bit Mode
In 64−bit mode, immediates and displacements are generally only 32 bits wide. NASM will therefore truncate
most displacements and immediates to 32 bits.

The only instruction which takes a full 64−bit immediate is:

 MOV reg64,imm64

NASM will produce this instruction whenever the programmer uses MOV with an immediate into a 64−bit
register. If this is not desirable, simply specify the equivalent 32−bit register, which will be automatically
zero−extended by the processor, or specify the immediate as DWORD:

125

 mov rax,foo ; 64−bit immediate
 mov rax,qword foo ; (identical)
 mov eax,foo ; 32−bit immediate, zero−extended
 mov rax,dword foo ; 32−bit immediate, sign−extended

The length of these instructions are 10, 5 and 7 bytes, respectively.

The only instructions which take a full 64−bit displacement is loading or storing, using MOV, AL, AX, EAX or
RAX (but no other registers) to an absolute 64−bit address. Since this is a relatively rarely used instruction
(64−bit code generally uses relative addressing), the programmer has to explicitly declare the displacement
size as QWORD:

 default abs

 mov eax,[foo] ; 32−bit absolute disp, sign−extended
 mov eax,[a32 foo] ; 32−bit absolute disp, zero−extended
 mov eax,[qword foo] ; 64−bit absolute disp

 default rel

 mov eax,[foo] ; 32−bit relative disp
 mov eax,[a32 foo] ; d:o, address truncated to 32 bits(!)
 mov eax,[qword foo] ; error
 mov eax,[abs qword foo] ; 64−bit absolute disp

A sign−extended absolute displacement can access from –2 GB to +2 GB; a zero−extended absolute
displacement can access from 0 to 4 GB.

11.3 Interfacing to 64−bit C Programs (Unix)
On Unix, the 64−bit ABI is defined by the document:

http://www.nasm.us/links/unix64abi

Although written for AT&T−syntax assembly, the concepts apply equally well for NASM−style assembly.
What follows is a simplified summary.

The first six integer arguments (from the left) are passed in RDI, RSI , RDX, RCX, R8, and R9, in that order.
Additional integer arguments are passed on the stack. These registers, plus RAX, R10 and R11 are destroyed
by function calls, and thus are available for use by the function without saving.

Integer return values are passed in RAX and RDX, in that order.

Floating point is done using SSE registers, except for long double . Floating−point arguments are passed
in XMM0 to XMM7; return is XMM0 and XMM1. long double are passed on the stack, and returned in ST0
and ST1.

All SSE and x87 registers are destroyed by function calls.

On 64−bit Unix, long is 64 bits.

Integer and SSE register arguments are counted separately, so for the case of

 void foo(long a, double b, int c)

a is passed in RDI, b in XMM0, and c in ESI .

126

http://www.nasm.us/links/unix64abi

11.4 Interfacing to 64−bit C Programs (Win64)
The Win64 ABI is described at:

http://www.nasm.us/links/win64abi

What follows is a simplified summary.

The first four integer arguments are passed in RCX, RDX, R8 and R9, in that order. Additional integer
arguments are passed on the stack. These registers, plus RAX, R10 and R11 are destroyed by function calls,
and thus are available for use by the function without saving.

Integer return values are passed in RAX only.

Floating point is done using SSE registers, except for long double . Floating−point arguments are passed
in XMM0 to XMM3; return is XMM0 only.

On Win64, long is 32 bits; long long or _int64 is 64 bits.

Integer and SSE register arguments are counted together, so for the case of

 void foo(long long a, double b, int c)

a is passed in RCX, b in XMM1, and c in R8D.

127

http://www.nasm.us/links/win64abi

Chapter 12: Troubleshooting

This chapter describes some of the common problems that users have been known to encounter with NASM,
and answers them. It also gives instructions for reporting bugs in NASM if you find a difficulty that isn’t
listed here.

12.1 Common Problems

12.1.1 NASM Generates Inefficient Code

We sometimes get ‘bug’ reports about NASM generating inefficient, or even ‘wrong’, code on instructions
such as ADD ESP,8 . This is a deliberate design feature, connected to predictability of output: NASM, on
seeing ADD ESP,8 , will generate the form of the instruction which leaves room for a 32−bit offset. You
need to code ADD ESP,BYTE 8 if you want the space−efficient form of the instruction. This isn’t a bug, it’s
user error: if you prefer to have NASM produce the more efficient code automatically enable optimization
with the −O option (see section 2.1.22).

12.1.2 My Jumps are Out of Range

Similarly, people complain that when they issue conditional jumps (which are SHORT by default) that try to
jump too far, NASM reports ‘short jump out of range’ instead of making the jumps longer.

This, again, is partly a predictability issue, but in fact has a more practical reason as well. NASM has no
means of being told what type of processor the code it is generating will be run on; so it cannot decide for
itself that it should generate Jcc NEAR type instructions, because it doesn’t know that it’s working for a 386
or above. Alternatively, it could replace the out−of−range short JNE instruction with a very short JE
instruction that jumps over a JMP NEAR; this is a sensible solution for processors below a 386, but hardly
efficient on processors which have good branch prediction and could have used JNE NEAR instead. So, once
again, it’s up to the user, not the assembler, to decide what instructions should be generated. See section
2.1.22.

12.1.3 ORG Doesn’t Work

People writing boot sector programs in the bin format often complain that ORG doesn’t work the way they’d
like: in order to place the 0xAA55 signature word at the end of a 512−byte boot sector, people who are used
to MASM tend to code

 ORG 0

 ; some boot sector code

 ORG 510
 DW 0xAA55

This is not the intended use of the ORG directive in NASM, and will not work. The correct way to solve this
problem in NASM is to use the TIMES directive, like this:

 ORG 0

128

 ; some boot sector code

 TIMES 510−($−$$) DB 0
 DW 0xAA55

The TIMES directive will insert exactly enough zero bytes into the output to move the assembly point up to
510. This method also has the advantage that if you accidentally fill your boot sector too full, NASM will
catch the problem at assembly time and report it, so you won’t end up with a boot sector that you have to
disassemble to find out what’s wrong with it.

12.1.4 TIMES Doesn’t Work

The other common problem with the above code is people who write the TIMES line as

 TIMES 510−$ DB 0

by reasoning that $ should be a pure number, just like 510, so the difference between them is also a pure
number and can happily be fed to TIMES.

NASM is a modular assembler: the various component parts are designed to be easily separable for re−use, so
they don’t exchange information unnecessarily. In consequence, the bin output format, even though it has
been told by the ORG directive that the .text section should start at 0, does not pass that information back to
the expression evaluator. So from the evaluator’s point of view, $ isn’t a pure number: it’s an offset from a
section base. Therefore the difference between $ and 510 is also not a pure number, but involves a section
base. Values involving section bases cannot be passed as arguments to TIMES.

The solution, as in the previous section, is to code the TIMES line in the form

 TIMES 510−($−$$) DB 0

in which $ and $$ are offsets from the same section base, and so their difference is a pure number. This will
solve the problem and generate sensible code.

12.2 Bugs
We have never yet released a version of NASM with any known bugs. That doesn’t usually stop there being
plenty we didn’t know about, though. Any that you find should be reported firstly via the bugtracker at
http://www.nasm.us/ (click on "Bug Tracker"), or if that fails then through one of the contacts in
section 1.2.

Please read section 2.2 first, and don’t report the bug if it’s listed in there as a deliberate feature. (If you think
the feature is badly thought out, feel free to send us reasons why you think it should be changed, but don’t just
send us mail saying ‘This is a bug’ if the documentation says we did it on purpose.) Then read section 12.1,
and don’t bother reporting the bug if it’s listed there.

If you do report a bug, please give us all of the following information:

• What operating system you’re running NASM under. DOS, Linux, NetBSD, Win16, Win32, VMS (I’d be
impressed), whatever.

• If you’re running NASM under DOS or Win32, tell us whether you’ve compiled your own executable from
the DOS source archive, or whether you were using the standard distribution binaries out of the archive. If
you were using a locally built executable, try to reproduce the problem using one of the standard binaries,
as this will make it easier for us to reproduce your problem prior to fixing it.

129

http://www.nasm.us/

• Which version of NASM you’re using, and exactly how you invoked it. Give us the precise command line,
and the contents of the NASMENV environment variable if any.

• Which versions of any supplementary programs you’re using, and how you invoked them. If the problem
only becomes visible at link time, tell us what linker you’re using, what version of it you’ve got, and the
exact linker command line. If the problem involves linking against object files generated by a compiler, tell
us what compiler, what version, and what command line or options you used. (If you’re compiling in an
IDE, please try to reproduce the problem with the command−line version of the compiler.)

• If at all possible, send us a NASM source file which exhibits the problem. If this causes copyright
problems (e.g. you can only reproduce the bug in restricted−distribution code) then bear in mind the
following two points: firstly, we guarantee that any source code sent to us for the purposes of debugging
NASM will be used only for the purposes of debugging NASM, and that we will delete all our copies of it
as soon as we have found and fixed the bug or bugs in question; and secondly, we would prefer not to be
mailed large chunks of code anyway. The smaller the file, the better. A three−line sample file that does
nothing useful except demonstrate the problem is much easier to work with than a fully fledged
ten−thousand−line program. (Of course, some errors do only crop up in large files, so this may not be
possible.)

• A description of what the problem actually is. ‘It doesn’t work’ is not a helpful description! Please describe
exactly what is happening that shouldn’t be, or what isn’t happening that should. Examples might be:
‘NASM generates an error message saying Line 3 for an error that’s actually on Line 5’; ‘NASM generates
an error message that I believe it shouldn’t be generating at all’; ‘NASM fails to generate an error message
that I believe it should be generating’; ‘the object file produced from this source code crashes my linker’;
‘the ninth byte of the output file is 66 and I think it should be 77 instead’.

• If you believe the output file from NASM to be faulty, send it to us. That allows us to determine whether
our own copy of NASM generates the same file, or whether the problem is related to portability issues
between our development platforms and yours. We can handle binary files mailed to us as MIME
attachments, uuencoded, and even BinHex. Alternatively, we may be able to provide an FTP site you can
upload the suspect files to; but mailing them is easier for us.

• Any other information or data files that might be helpful. If, for example, the problem involves NASM
failing to generate an object file while TASM can generate an equivalent file without trouble, then send us
both object files, so we can see what TASM is doing differently from us.

130

Appendix A: Ndisasm

The Netwide Disassembler, NDISASM

A.1 Introduction
The Netwide Disassembler is a small companion program to the Netwide Assembler, NASM. It seemed a
shame to have an x86 assembler, complete with a full instruction table, and not make as much use of it as
possible, so here’s a disassembler which shares the instruction table (and some other bits of code) with NASM.

The Netwide Disassembler does nothing except to produce disassemblies of binary source files. NDISASM
does not have any understanding of object file formats, like objdump , and it will not understand DOS .EXE
files like debug will. It just disassembles.

A.2 Getting Started: Installation
See section 1.3 for installation instructions. NDISASM, like NASM, has a man page which you may want
to put somewhere useful, if you are on a Unix system.

A.3 Running NDISASM
To disassemble a file, you will typically use a command of the form

 ndisasm −b {16|32|64} filename

NDISASM can disassemble 16−, 32− or 64−bit code equally easily, provided of course that you remember to
specify which it is to work with. If no −b switch is present, NDISASM works in 16−bit mode by default. The
−u switch (for USE32) also invokes 32−bit mode.

Two more command line options are −r which reports the version number of NDISASM you are running, and
−h which gives a short summary of command line options.

A.3.1 COM Files: Specifying an Origin

To disassemble a DOS .COM file correctly, a disassembler must assume that the first instruction in the file is
loaded at address 0x100 , rather than at zero. NDISASM, which assumes by default that any file you give it is
loaded at zero, will therefore need to be informed of this.

The −o option allows you to declare a different origin for the file you are disassembling. Its argument may be
expressed in any of the NASM numeric formats: decimal by default, if it begins with ‘$’ or ‘0x ’ or ends in
‘H’ it’s hex , if it ends in ‘Q’ it’s octal , and if it ends in ‘B’ it’s binary .

Hence, to disassemble a .COM file:

 ndisasm −o100h filename.com

will do the trick.

131

A.3.2 Code Following Data: Synchronisation

Suppose you are disassembling a file which contains some data which isn’t machine code, and then contains
some machine code. NDISASM will faithfully plough through the data section, producing machine
instructions wherever it can (although most of them will look bizarre, and some may have unusual prefixes,
e.g. ‘FS OR AX,0x240A ’), and generating ‘DB’ instructions ever so often if it’s totally stumped. Then it
will reach the code section.

Supposing NDISASM has just finished generating a strange machine instruction from part of the data section,
and its file position is now one byte before the beginning of the code section. It’s entirely possible that another
spurious instruction will get generated, starting with the final byte of the data section, and then the correct first
instruction in the code section will not be seen because the starting point skipped over it. This isn’t really ideal.

To avoid this, you can specify a ‘synchronisation ’ point, or indeed as many synchronisation points as
you like (although NDISASM can only handle 2147483647 sync points internally). The definition of a sync
point is this: NDISASM guarantees to hit sync points exactly during disassembly. If it is thinking about
generating an instruction which would cause it to jump over a sync point, it will discard that instruction and
output a ‘db ’ instead. So it will start disassembly exactly from the sync point, and so you will see all the
instructions in your code section.

Sync points are specified using the −s option: they are measured in terms of the program origin, not the file
position. So if you want to synchronize after 32 bytes of a .COM file, you would have to do

 ndisasm −o100h −s120h file.com

rather than

 ndisasm −o100h −s20h file.com

As stated above, you can specify multiple sync markers if you need to, just by repeating the −s option.

A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation

Suppose you are disassembling the boot sector of a DOS floppy (maybe it has a virus, and you need to
understand the virus so that you know what kinds of damage it might have done you). Typically, this will
contain a JMP instruction, then some data, then the rest of the code. So there is a very good chance of
NDISASM being misaligned when the data ends and the code begins. Hence a sync point is needed.

On the other hand, why should you have to specify the sync point manually? What you’d do in order to find
where the sync point would be, surely, would be to read the JMP instruction, and then to use its target address
as a sync point. So can NDISASM do that for you?

The answer, of course, is yes: using either of the synonymous switches −a (for automatic sync) or −i (for
intelligent sync) will enable auto−sync mode. Auto−sync mode automatically generates a sync point for
any forward−referring PC−relative jump or call instruction that NDISASM encounters. (Since NDISASM is
one−pass, if it encounters a PC−relative jump whose target has already been processed, there isn’t much it can
do about it...)

Only PC−relative jumps are processed, since an absolute jump is either through a register (in which case
NDISASM doesn’t know what the register contains) or involves a segment address (in which case the target
code isn’t in the same segment that NDISASM is working in, and so the sync point can’t be placed anywhere
useful).

132

For some kinds of file, this mechanism will automatically put sync points in all the right places, and save you
from having to place any sync points manually. However, it should be stressed that auto−sync mode is not
guaranteed to catch all the sync points, and you may still have to place some manually.

Auto−sync mode doesn’t prevent you from declaring manual sync points: it just adds automatically generated
ones to the ones you provide. It’s perfectly feasible to specify −i and some −s options.

Another caveat with auto−sync mode is that if, by some unpleasant fluke, something in your data section
should disassemble to a PC−relative call or jump instruction, NDISASM may obediently place a sync point in
a totally random place, for example in the middle of one of the instructions in your code section. So you may
end up with a wrong disassembly even if you use auto−sync. Again, there isn’t much I can do about this. If
you have problems, you’ll have to use manual sync points, or use the −k option (documented below) to
suppress disassembly of the data area.

A.3.4 Other Options

The −e option skips a header on the file, by ignoring the first N bytes. This means that the header is not
counted towards the disassembly offset: if you give −e10 −o10 , disassembly will start at byte 10 in the file,
and this will be given offset 10, not 20.

The −k option is provided with two comma−separated numeric arguments, the first of which is an assembly
offset and the second is a number of bytes to skip. This will count the skipped bytes towards the assembly
offset: its use is to suppress disassembly of a data section which wouldn’t contain anything you wanted to see
anyway.

A.4 Bugs and Improvements
There are no known bugs. However, any you find, with patches if possible, should be sent to
nasm−bugs@lists.sourceforge.net , or to the developer’s site at http://www.nasm.us/ and
we’ll try to fix them. Feel free to send contributions and new features as well.

133

mailto:nasm-bugs@lists.sourceforge.net
http://www.nasm.us/

Appendix B: Instruction List

B.1 Introduction
The following sections show the instructions which NASM currently supports. For each instruction, there is a
separate entry for each supported addressing mode. The third column shows the processor type in which the
instruction was introduced and, when appropriate, one or more usage flags.

B.1.1 Special instructions...

DB
DW
DD
DQ
DT
DO
DY
RESB imm 8086
RESW
RESD
RESQ
REST
RESO
RESY

B.1.2 Conventional instructions

AAA 8086,NOLONG
AAD 8086,NOLONG
AAD imm 8086,NOLONG
AAM 8086,NOLONG
AAM imm 8086,NOLONG
AAS 8086,NOLONG
ADC mem,reg8 8086,LOCK
ADC reg8,reg8 8086
ADC mem,reg16 8086,LOCK
ADC reg16,reg16 8086
ADC mem,reg32 386,LOCK
ADC reg32,reg32 386
ADC mem,reg64 X64,LOCK
ADC reg64,reg64 X64
ADC reg8,mem 8086
ADC reg8,reg8 8086
ADC reg16,mem 8086
ADC reg16,reg16 8086
ADC reg32,mem 386

134

ADC reg32,reg32 386
ADC reg64,mem X64
ADC reg64,reg64 X64
ADC rm16,imm8 8086,LOCK
ADC rm32,imm8 386,LOCK
ADC rm64,imm8 X64,LOCK
ADC reg_al,imm 8086
ADC reg_ax,sbyte16 8086
ADC reg_ax,imm 8086
ADC reg_eax,sbyte32 386
ADC reg_eax,imm 386
ADC reg_rax,sbyte64 X64
ADC reg_rax,imm X64
ADC rm8,imm 8086,LOCK
ADC rm16,imm 8086,LOCK
ADC rm32,imm 386,LOCK
ADC rm64,imm X64,LOCK
ADC mem,imm8 8086,LOCK
ADC mem,imm16 8086,LOCK
ADC mem,imm32 386,LOCK
ADC rm8,imm 8086,LOCK,ND,NOLONG
ADD mem,reg8 8086,LOCK
ADD reg8,reg8 8086
ADD mem,reg16 8086,LOCK
ADD reg16,reg16 8086
ADD mem,reg32 386,LOCK
ADD reg32,reg32 386
ADD mem,reg64 X64,LOCK
ADD reg64,reg64 X64
ADD reg8,mem 8086
ADD reg8,reg8 8086
ADD reg16,mem 8086
ADD reg16,reg16 8086
ADD reg32,mem 386
ADD reg32,reg32 386
ADD reg64,mem X64
ADD reg64,reg64 X64
ADD rm16,imm8 8086,LOCK
ADD rm32,imm8 386,LOCK
ADD rm64,imm8 X64,LOCK
ADD reg_al,imm 8086
ADD reg_ax,sbyte16 8086
ADD reg_ax,imm 8086
ADD reg_eax,sbyte32 386
ADD reg_eax,imm 386
ADD reg_rax,sbyte64 X64
ADD reg_rax,imm X64
ADD rm8,imm 8086,LOCK
ADD rm16,imm 8086,LOCK

135

ADD rm32,imm 386,LOCK
ADD rm64,imm X64,LOCK
ADD mem,imm8 8086,LOCK
ADD mem,imm16 8086,LOCK
ADD mem,imm32 386,LOCK
ADD rm8,imm 8086,LOCK,ND,NOLONG
AND mem,reg8 8086,LOCK
AND reg8,reg8 8086
AND mem,reg16 8086,LOCK
AND reg16,reg16 8086
AND mem,reg32 386,LOCK
AND reg32,reg32 386
AND mem,reg64 X64,LOCK
AND reg64,reg64 X64
AND reg8,mem 8086
AND reg8,reg8 8086
AND reg16,mem 8086
AND reg16,reg16 8086
AND reg32,mem 386
AND reg32,reg32 386
AND reg64,mem X64
AND reg64,reg64 X64
AND rm16,imm8 8086,LOCK
AND rm32,imm8 386,LOCK
AND rm64,imm8 X64,LOCK
AND reg_al,imm 8086
AND reg_ax,sbyte16 8086
AND reg_ax,imm 8086
AND reg_eax,sbyte32 386
AND reg_eax,imm 386
AND reg_rax,sbyte64 X64
AND reg_rax,imm X64
AND rm8,imm 8086,LOCK
AND rm16,imm 8086,LOCK
AND rm32,imm 386,LOCK
AND rm64,imm X64,LOCK
AND mem,imm8 8086,LOCK
AND mem,imm16 8086,LOCK
AND mem,imm32 386,LOCK
AND rm8,imm 8086,LOCK,ND,NOLONG
ARPL mem,reg16 286,PROT,NOLONG
ARPL reg16,reg16 286,PROT,NOLONG
BB0_RESET PENT,CYRIX,ND
BB1_RESET PENT,CYRIX,ND
BOUND reg16,mem 186,NOLONG
BOUND reg32,mem 386,NOLONG
BSF reg16,mem 386
BSF reg16,reg16 386
BSF reg32,mem 386

136

BSF reg32,reg32 386
BSF reg64,mem X64
BSF reg64,reg64 X64
BSR reg16,mem 386
BSR reg16,reg16 386
BSR reg32,mem 386
BSR reg32,reg32 386
BSR reg64,mem X64
BSR reg64,reg64 X64
BSWAP reg32 486
BSWAP reg64 X64
BT mem,reg16 386
BT reg16,reg16 386
BT mem,reg32 386
BT reg32,reg32 386
BT mem,reg64 X64
BT reg64,reg64 X64
BT rm16,imm 386
BT rm32,imm 386
BT rm64,imm X64
BTC mem,reg16 386,LOCK
BTC reg16,reg16 386
BTC mem,reg32 386,LOCK
BTC reg32,reg32 386
BTC mem,reg64 X64,LOCK
BTC reg64,reg64 X64
BTC rm16,imm 386,LOCK
BTC rm32,imm 386,LOCK
BTC rm64,imm X64,LOCK
BTR mem,reg16 386,LOCK
BTR reg16,reg16 386
BTR mem,reg32 386,LOCK
BTR reg32,reg32 386
BTR mem,reg64 X64,LOCK
BTR reg64,reg64 X64
BTR rm16,imm 386,LOCK
BTR rm32,imm 386,LOCK
BTR rm64,imm X64,LOCK
BTS mem,reg16 386,LOCK
BTS reg16,reg16 386
BTS mem,reg32 386,LOCK
BTS reg32,reg32 386
BTS mem,reg64 X64,LOCK
BTS reg64,reg64 X64
BTS rm16,imm 386,LOCK
BTS rm32,imm 386,LOCK
BTS rm64,imm X64,LOCK
CALL imm 8086
CALL imm|near 8086

137

CALL imm|far 8086,ND,NOLONG
CALL imm16 8086
CALL imm16|near 8086
CALL imm16|far 8086,ND,NOLONG
CALL imm32 386
CALL imm32|near 386
CALL imm32|far 386,ND,NOLONG
CALL imm:imm 8086,NOLONG
CALL imm16:imm 8086,NOLONG
CALL imm:imm16 8086,NOLONG
CALL imm32:imm 386,NOLONG
CALL imm:imm32 386,NOLONG
CALL mem|far 8086,NOLONG
CALL mem|far X64
CALL mem16|far 8086
CALL mem32|far 386
CALL mem64|far X64
CALL mem|near 8086,ND
CALL mem16|near 8086,ND
CALL mem32|near 386,NOLONG,ND
CALL mem64|near X64,ND
CALL reg16 8086
CALL reg32 386,NOLONG
CALL reg64 X64
CALL mem 8086
CALL mem16 8086
CALL mem32 386,NOLONG
CALL mem X64
CALL mem64 X64
CBW 8086
CDQ 386
CDQE X64
CLC 8086
CLD 8086
CLGI X64,AMD
CLI 8086
CLTS 286,PRIV
CMC 8086
CMP mem,reg8 8086
CMP reg8,reg8 8086
CMP mem,reg16 8086
CMP reg16,reg16 8086
CMP mem,reg32 386
CMP reg32,reg32 386
CMP mem,reg64 X64
CMP reg64,reg64 X64
CMP reg8,mem 8086
CMP reg8,reg8 8086
CMP reg16,mem 8086

138

CMP reg16,reg16 8086
CMP reg32,mem 386
CMP reg32,reg32 386
CMP reg64,mem X64
CMP reg64,reg64 X64
CMP rm16,imm8 8086
CMP rm32,imm8 386
CMP rm64,imm8 X64
CMP reg_al,imm 8086
CMP reg_ax,sbyte16 8086
CMP reg_ax,imm 8086
CMP reg_eax,sbyte32 386
CMP reg_eax,imm 386
CMP reg_rax,sbyte64 X64
CMP reg_rax,imm X64
CMP rm8,imm 8086
CMP rm16,imm 8086
CMP rm32,imm 386
CMP rm64,imm X64
CMP mem,imm8 8086
CMP mem,imm16 8086
CMP mem,imm32 386
CMP rm8,imm 8086,ND,NOLONG
CMPSB 8086
CMPSD 386
CMPSQ X64
CMPSW 8086
CMPXCHG mem,reg8 PENT,LOCK
CMPXCHG reg8,reg8 PENT
CMPXCHG mem,reg16 PENT,LOCK
CMPXCHG reg16,reg16 PENT
CMPXCHG mem,reg32 PENT,LOCK
CMPXCHG reg32,reg32 PENT
CMPXCHG mem,reg64 X64,LOCK
CMPXCHG reg64,reg64 X64
CMPXCHG486 mem,reg8 486,UNDOC,ND,LOCK
CMPXCHG486 reg8,reg8 486,UNDOC,ND
CMPXCHG486 mem,reg16 486,UNDOC,ND,LOCK
CMPXCHG486 reg16,reg16 486,UNDOC,ND
CMPXCHG486 mem,reg32 486,UNDOC,ND,LOCK
CMPXCHG486 reg32,reg32 486,UNDOC,ND
CMPXCHG8B mem PENT,LOCK
CMPXCHG16B mem X64,LOCK
CPUID PENT
CPU_READ PENT,CYRIX
CPU_WRITE PENT,CYRIX
CQO X64
CWD 8086
CWDE 386

139

DAA 8086,NOLONG
DAS 8086,NOLONG
DEC reg16 8086,NOLONG
DEC reg32 386,NOLONG
DEC rm8 8086,LOCK
DEC rm16 8086,LOCK
DEC rm32 386,LOCK
DEC rm64 X64,LOCK
DIV rm8 8086
DIV rm16 8086
DIV rm32 386
DIV rm64 X64
DMINT P6,CYRIX
EMMS PENT,MMX
ENTER imm,imm 186
EQU imm 8086
EQU imm:imm 8086
F2XM1 8086,FPU
FABS 8086,FPU
FADD mem32 8086,FPU
FADD mem64 8086,FPU
FADD fpureg|to 8086,FPU
FADD fpureg 8086,FPU
FADD fpureg,fpu0 8086,FPU
FADD fpu0,fpureg 8086,FPU
FADD 8086,FPU,ND
FADDP fpureg 8086,FPU
FADDP fpureg,fpu0 8086,FPU
FADDP 8086,FPU,ND
FBLD mem80 8086,FPU
FBLD mem 8086,FPU
FBSTP mem80 8086,FPU
FBSTP mem 8086,FPU
FCHS 8086,FPU
FCLEX 8086,FPU
FCMOVB fpureg P6,FPU
FCMOVB fpu0,fpureg P6,FPU
FCMOVB P6,FPU,ND
FCMOVBE fpureg P6,FPU
FCMOVBE fpu0,fpureg P6,FPU
FCMOVBE P6,FPU,ND
FCMOVE fpureg P6,FPU
FCMOVE fpu0,fpureg P6,FPU
FCMOVE P6,FPU,ND
FCMOVNB fpureg P6,FPU
FCMOVNB fpu0,fpureg P6,FPU
FCMOVNB P6,FPU,ND
FCMOVNBE fpureg P6,FPU
FCMOVNBE fpu0,fpureg P6,FPU

140

FCMOVNBE P6,FPU,ND
FCMOVNE fpureg P6,FPU
FCMOVNE fpu0,fpureg P6,FPU
FCMOVNE P6,FPU,ND
FCMOVNU fpureg P6,FPU
FCMOVNU fpu0,fpureg P6,FPU
FCMOVNU P6,FPU,ND
FCMOVU fpureg P6,FPU
FCMOVU fpu0,fpureg P6,FPU
FCMOVU P6,FPU,ND
FCOM mem32 8086,FPU
FCOM mem64 8086,FPU
FCOM fpureg 8086,FPU
FCOM fpu0,fpureg 8086,FPU
FCOM 8086,FPU,ND
FCOMI fpureg P6,FPU
FCOMI fpu0,fpureg P6,FPU
FCOMI P6,FPU,ND
FCOMIP fpureg P6,FPU
FCOMIP fpu0,fpureg P6,FPU
FCOMIP P6,FPU,ND
FCOMP mem32 8086,FPU
FCOMP mem64 8086,FPU
FCOMP fpureg 8086,FPU
FCOMP fpu0,fpureg 8086,FPU
FCOMP 8086,FPU,ND
FCOMPP 8086,FPU
FCOS 386,FPU
FDECSTP 8086,FPU
FDISI 8086,FPU
FDIV mem32 8086,FPU
FDIV mem64 8086,FPU
FDIV fpureg|to 8086,FPU
FDIV fpureg 8086,FPU
FDIV fpureg,fpu0 8086,FPU
FDIV fpu0,fpureg 8086,FPU
FDIV 8086,FPU,ND
FDIVP fpureg 8086,FPU
FDIVP fpureg,fpu0 8086,FPU
FDIVP 8086,FPU,ND
FDIVR mem32 8086,FPU
FDIVR mem64 8086,FPU
FDIVR fpureg|to 8086,FPU
FDIVR fpureg,fpu0 8086,FPU
FDIVR fpureg 8086,FPU
FDIVR fpu0,fpureg 8086,FPU
FDIVR 8086,FPU,ND
FDIVRP fpureg 8086,FPU
FDIVRP fpureg,fpu0 8086,FPU

141

FDIVRP 8086,FPU,ND
FEMMS PENT,3DNOW
FENI 8086,FPU
FFREE fpureg 8086,FPU
FFREE 8086,FPU
FFREEP fpureg 286,FPU,UNDOC
FFREEP 286,FPU,UNDOC
FIADD mem32 8086,FPU
FIADD mem16 8086,FPU
FICOM mem32 8086,FPU
FICOM mem16 8086,FPU
FICOMP mem32 8086,FPU
FICOMP mem16 8086,FPU
FIDIV mem32 8086,FPU
FIDIV mem16 8086,FPU
FIDIVR mem32 8086,FPU
FIDIVR mem16 8086,FPU
FILD mem32 8086,FPU
FILD mem16 8086,FPU
FILD mem64 8086,FPU
FIMUL mem32 8086,FPU
FIMUL mem16 8086,FPU
FINCSTP 8086,FPU
FINIT 8086,FPU
FIST mem32 8086,FPU
FIST mem16 8086,FPU
FISTP mem32 8086,FPU
FISTP mem16 8086,FPU
FISTP mem64 8086,FPU
FISTTP mem16 PRESCOTT,FPU
FISTTP mem32 PRESCOTT,FPU
FISTTP mem64 PRESCOTT,FPU
FISUB mem32 8086,FPU
FISUB mem16 8086,FPU
FISUBR mem32 8086,FPU
FISUBR mem16 8086,FPU
FLD mem32 8086,FPU
FLD mem64 8086,FPU
FLD mem80 8086,FPU
FLD fpureg 8086,FPU
FLD 8086,FPU,ND
FLD1 8086,FPU
FLDCW mem 8086,FPU,SW
FLDENV mem 8086,FPU
FLDL2E 8086,FPU
FLDL2T 8086,FPU
FLDLG2 8086,FPU
FLDLN2 8086,FPU
FLDPI 8086,FPU

142

FLDZ 8086,FPU
FMUL mem32 8086,FPU
FMUL mem64 8086,FPU
FMUL fpureg|to 8086,FPU
FMUL fpureg,fpu0 8086,FPU
FMUL fpureg 8086,FPU
FMUL fpu0,fpureg 8086,FPU
FMUL 8086,FPU,ND
FMULP fpureg 8086,FPU
FMULP fpureg,fpu0 8086,FPU
FMULP 8086,FPU,ND
FNCLEX 8086,FPU
FNDISI 8086,FPU
FNENI 8086,FPU
FNINIT 8086,FPU
FNOP 8086,FPU
FNSAVE mem 8086,FPU
FNSTCW mem 8086,FPU,SW
FNSTENV mem 8086,FPU
FNSTSW mem 8086,FPU,SW
FNSTSW reg_ax 286,FPU
FPATAN 8086,FPU
FPREM 8086,FPU
FPREM1 386,FPU
FPTAN 8086,FPU
FRNDINT 8086,FPU
FRSTOR mem 8086,FPU
FSAVE mem 8086,FPU
FSCALE 8086,FPU
FSETPM 286,FPU
FSIN 386,FPU
FSINCOS 386,FPU
FSQRT 8086,FPU
FST mem32 8086,FPU
FST mem64 8086,FPU
FST fpureg 8086,FPU
FST 8086,FPU,ND
FSTCW mem 8086,FPU,SW
FSTENV mem 8086,FPU
FSTP mem32 8086,FPU
FSTP mem64 8086,FPU
FSTP mem80 8086,FPU
FSTP fpureg 8086,FPU
FSTP 8086,FPU,ND
FSTSW mem 8086,FPU,SW
FSTSW reg_ax 286,FPU
FSUB mem32 8086,FPU
FSUB mem64 8086,FPU
FSUB fpureg|to 8086,FPU

143

FSUB fpureg,fpu0 8086,FPU
FSUB fpureg 8086,FPU
FSUB fpu0,fpureg 8086,FPU
FSUB 8086,FPU,ND
FSUBP fpureg 8086,FPU
FSUBP fpureg,fpu0 8086,FPU
FSUBP 8086,FPU,ND
FSUBR mem32 8086,FPU
FSUBR mem64 8086,FPU
FSUBR fpureg|to 8086,FPU
FSUBR fpureg,fpu0 8086,FPU
FSUBR fpureg 8086,FPU
FSUBR fpu0,fpureg 8086,FPU
FSUBR 8086,FPU,ND
FSUBRP fpureg 8086,FPU
FSUBRP fpureg,fpu0 8086,FPU
FSUBRP 8086,FPU,ND
FTST 8086,FPU
FUCOM fpureg 386,FPU
FUCOM fpu0,fpureg 386,FPU
FUCOM 386,FPU,ND
FUCOMI fpureg P6,FPU
FUCOMI fpu0,fpureg P6,FPU
FUCOMI P6,FPU,ND
FUCOMIP fpureg P6,FPU
FUCOMIP fpu0,fpureg P6,FPU
FUCOMIP P6,FPU,ND
FUCOMP fpureg 386,FPU
FUCOMP fpu0,fpureg 386,FPU
FUCOMP 386,FPU,ND
FUCOMPP 386,FPU
FXAM 8086,FPU
FXCH fpureg 8086,FPU
FXCH fpureg,fpu0 8086,FPU
FXCH fpu0,fpureg 8086,FPU
FXCH 8086,FPU,ND
FXTRACT 8086,FPU
FYL2X 8086,FPU
FYL2XP1 8086,FPU
HLT 8086,PRIV
IBTS mem,reg16 386,SW,UNDOC,ND
IBTS reg16,reg16 386,UNDOC,ND
IBTS mem,reg32 386,SD,UNDOC,ND
IBTS reg32,reg32 386,UNDOC,ND
ICEBP 386,ND
IDIV rm8 8086
IDIV rm16 8086
IDIV rm32 386
IDIV rm64 X64

144

IMUL rm8 8086
IMUL rm16 8086
IMUL rm32 386
IMUL rm64 X64
IMUL reg16,mem 386
IMUL reg16,reg16 386
IMUL reg32,mem 386
IMUL reg32,reg32 386
IMUL reg64,mem X64
IMUL reg64,reg64 X64
IMUL reg16,mem,imm8 186
IMUL reg16,mem,sbyte16 186,ND
IMUL reg16,mem,imm16 186
IMUL reg16,mem,imm 186,ND
IMUL reg16,reg16,imm8 186
IMUL reg16,reg16,sbyte16 186,ND
IMUL reg16,reg16,imm16 186
IMUL reg16,reg16,imm 186,ND
IMUL reg32,mem,imm8 386
IMUL reg32,mem,sbyte32 386,ND
IMUL reg32,mem,imm32 386
IMUL reg32,mem,imm 386,ND
IMUL reg32,reg32,imm8 386
IMUL reg32,reg32,sbyte32 386,ND
IMUL reg32,reg32,imm32 386
IMUL reg32,reg32,imm 386,ND
IMUL reg64,mem,imm8 X64
IMUL reg64,mem,sbyte64 X64,ND
IMUL reg64,mem,imm32 X64
IMUL reg64,mem,imm X64,ND
IMUL reg64,reg64,imm8 X64
IMUL reg64,reg64,sbyte64 X64,ND
IMUL reg64,reg64,imm32 X64
IMUL reg64,reg64,imm X64,ND
IMUL reg16,imm8 186
IMUL reg16,sbyte16 186,ND
IMUL reg16,imm16 186
IMUL reg16,imm 186,ND
IMUL reg32,imm8 386
IMUL reg32,sbyte32 386,ND
IMUL reg32,imm32 386
IMUL reg32,imm 386,ND
IMUL reg64,imm8 X64
IMUL reg64,sbyte64 X64,ND
IMUL reg64,imm32 X64
IMUL reg64,imm X64,ND
IN reg_al,imm 8086
IN reg_ax,imm 8086
IN reg_eax,imm 386

145

IN reg_al,reg_dx 8086
IN reg_ax,reg_dx 8086
IN reg_eax,reg_dx 386
INC reg16 8086,NOLONG
INC reg32 386,NOLONG
INC rm8 8086,LOCK
INC rm16 8086,LOCK
INC rm32 386,LOCK
INC rm64 X64,LOCK
INCBIN
INSB 186
INSD 386
INSW 186
INT imm 8086
INT01 386,ND
INT1 386
INT03 8086,ND
INT3 8086
INTO 8086,NOLONG
INVD 486,PRIV
INVPCID reg32,mem128 FUTURE,INVPCID,PRIV,NOLONG
INVPCID reg64,mem128 FUTURE,INVPCID,PRIV,LONG
INVLPG mem 486,PRIV
INVLPGA reg_ax,reg_ecx X86_64,AMD,NOLONG
INVLPGA reg_eax,reg_ecx X86_64,AMD
INVLPGA reg_rax,reg_ecx X64,AMD
INVLPGA X86_64,AMD
IRET 8086
IRETD 386
IRETQ X64
IRETW 8086
JCXZ imm 8086,NOLONG
JECXZ imm 386
JRCXZ imm X64
JMP imm|short 8086
JMP imm 8086,ND
JMP imm 8086
JMP imm|near 8086,ND
JMP imm|far 8086,ND,NOLONG
JMP imm16 8086
JMP imm16|near 8086,ND
JMP imm16|far 8086,ND,NOLONG
JMP imm32 386
JMP imm32|near 386,ND
JMP imm32|far 386,ND,NOLONG
JMP imm:imm 8086,NOLONG
JMP imm16:imm 8086,NOLONG
JMP imm:imm16 8086,NOLONG
JMP imm32:imm 386,NOLONG

146

JMP imm:imm32 386,NOLONG
JMP mem|far 8086,NOLONG
JMP mem|far X64
JMP mem16|far 8086
JMP mem32|far 386
JMP mem64|far X64
JMP mem|near 8086,ND
JMP mem16|near 8086,ND
JMP mem32|near 386,NOLONG,ND
JMP mem64|near X64,ND
JMP reg16 8086
JMP reg32 386,NOLONG
JMP reg64 X64
JMP mem 8086
JMP mem16 8086
JMP mem32 386,NOLONG
JMP mem X64
JMP mem64 X64
JMPE imm IA64
JMPE imm16 IA64
JMPE imm32 IA64
JMPE rm16 IA64
JMPE rm32 IA64
LAHF 8086
LAR reg16,mem 286,PROT,SW
LAR reg16,reg16 286,PROT
LAR reg16,reg32 386,PROT
LAR reg16,reg64 X64,PROT,ND
LAR reg32,mem 386,PROT,SW
LAR reg32,reg16 386,PROT
LAR reg32,reg32 386,PROT
LAR reg32,reg64 X64,PROT,ND
LAR reg64,mem X64,PROT,SW
LAR reg64,reg16 X64,PROT
LAR reg64,reg32 X64,PROT
LAR reg64,reg64 X64,PROT
LDS reg16,mem 8086,NOLONG
LDS reg32,mem 386,NOLONG
LEA reg16,mem 8086
LEA reg32,mem 386
LEA reg64,mem X64
LEAVE 186
LES reg16,mem 8086,NOLONG
LES reg32,mem 386,NOLONG
LFENCE X64,AMD
LFS reg16,mem 386
LFS reg32,mem 386
LFS reg64,mem X64
LGDT mem 286,PRIV

147

LGS reg16,mem 386
LGS reg32,mem 386
LGS reg64,mem X64
LIDT mem 286,PRIV
LLDT mem 286,PROT,PRIV
LLDT mem16 286,PROT,PRIV
LLDT reg16 286,PROT,PRIV
LMSW mem 286,PRIV
LMSW mem16 286,PRIV
LMSW reg16 286,PRIV
LOADALL 386,UNDOC
LOADALL286 286,UNDOC
LODSB 8086
LODSD 386
LODSQ X64
LODSW 8086
LOOP imm 8086
LOOP imm,reg_cx 8086,NOLONG
LOOP imm,reg_ecx 386
LOOP imm,reg_rcx X64
LOOPE imm 8086
LOOPE imm,reg_cx 8086,NOLONG
LOOPE imm,reg_ecx 386
LOOPE imm,reg_rcx X64
LOOPNE imm 8086
LOOPNE imm,reg_cx 8086,NOLONG
LOOPNE imm,reg_ecx 386
LOOPNE imm,reg_rcx X64
LOOPNZ imm 8086
LOOPNZ imm,reg_cx 8086,NOLONG
LOOPNZ imm,reg_ecx 386
LOOPNZ imm,reg_rcx X64
LOOPZ imm 8086
LOOPZ imm,reg_cx 8086,NOLONG
LOOPZ imm,reg_ecx 386
LOOPZ imm,reg_rcx X64
LSL reg16,mem 286,PROT,SW
LSL reg16,reg16 286,PROT
LSL reg16,reg32 386,PROT
LSL reg16,reg64 X64,PROT,ND
LSL reg32,mem 386,PROT,SW
LSL reg32,reg16 386,PROT
LSL reg32,reg32 386,PROT
LSL reg32,reg64 X64,PROT,ND
LSL reg64,mem X64,PROT,SW
LSL reg64,reg16 X64,PROT
LSL reg64,reg32 X64,PROT
LSL reg64,reg64 X64,PROT
LSS reg16,mem 386

148

LSS reg32,mem 386
LSS reg64,mem X64
LTR mem 286,PROT,PRIV
LTR mem16 286,PROT,PRIV
LTR reg16 286,PROT,PRIV
MFENCE X64,AMD
MONITOR PRESCOTT
MONITOR reg_eax,reg_ecx,reg_edx PRESCOTT,ND
MONITOR reg_rax,reg_ecx,reg_edx X64,ND
MOV mem,reg_sreg 8086,SW
MOV reg16,reg_sreg 8086
MOV reg32,reg_sreg 386
MOV reg64,reg_sreg X64,OPT,ND
MOV rm64,reg_sreg X64
MOV reg_sreg,mem 8086,SW
MOV reg_sreg,reg16 8086,OPT,ND
MOV reg_sreg,reg32 386,OPT,ND
MOV reg_sreg,reg64 X64,OPT,ND
MOV reg_sreg,reg16 8086
MOV reg_sreg,reg32 386
MOV reg_sreg,rm64 X64
MOV reg_al,mem_offs 8086
MOV reg_ax,mem_offs 8086
MOV reg_eax,mem_offs 386
MOV reg_rax,mem_offs X64
MOV mem_offs,reg_al 8086,NOHLE
MOV mem_offs,reg_ax 8086,NOHLE
MOV mem_offs,reg_eax 386,NOHLE
MOV mem_offs,reg_rax X64,NOHLE
MOV reg32,reg_creg 386,PRIV,NOLONG
MOV reg64,reg_creg X64,PRIV
MOV reg_creg,reg32 386,PRIV,NOLONG
MOV reg_creg,reg64 X64,PRIV
MOV reg32,reg_dreg 386,PRIV,NOLONG
MOV reg64,reg_dreg X64,PRIV
MOV reg_dreg,reg32 386,PRIV,NOLONG
MOV reg_dreg,reg64 X64,PRIV
MOV reg32,reg_treg 386,NOLONG,ND
MOV reg_treg,reg32 386,NOLONG,ND
MOV mem,reg8 8086
MOV reg8,reg8 8086
MOV mem,reg16 8086
MOV reg16,reg16 8086
MOV mem,reg32 386
MOV reg32,reg32 386
MOV mem,reg64 X64
MOV reg64,reg64 X64
MOV reg8,mem 8086
MOV reg8,reg8 8086

149

MOV reg16,mem 8086
MOV reg16,reg16 8086
MOV reg32,mem 386
MOV reg32,reg32 386
MOV reg64,mem X64
MOV reg64,reg64 X64
MOV reg8,imm 8086
MOV reg16,imm 8086
MOV reg32,imm 386
MOV reg64,udword64 X64,OPT,ND
MOV reg64,sdword64 X64,OPT,ND
MOV reg64,imm X64
MOV rm8,imm 8086
MOV rm16,imm 8086
MOV rm32,imm 386
MOV rm64,imm X64
MOV rm64,imm32 X64
MOV mem,imm8 8086
MOV mem,imm16 8086
MOV mem,imm32 386
MOVD mmxreg,rm32 PENT,MMX,SD
MOVD rm32,mmxreg PENT,MMX,SD
MOVD mmxreg,rm64 X64,MMX,SX,ND
MOVD rm64,mmxreg X64,MMX,SX,ND
MOVQ mmxreg,mmxrm PENT,MMX
MOVQ mmxrm,mmxreg PENT,MMX
MOVQ mmxreg,rm64 X64,MMX
MOVQ rm64,mmxreg X64,MMX
MOVSB 8086
MOVSD 386
MOVSQ X64
MOVSW 8086
MOVSX reg16,mem 386
MOVSX reg16,reg8 386
MOVSX reg32,rm8 386
MOVSX reg32,rm16 386
MOVSX reg64,rm8 X64
MOVSX reg64,rm16 X64
MOVSXD reg64,rm32 X64
MOVSX reg64,rm32 X64,ND
MOVZX reg16,mem 386
MOVZX reg16,reg8 386
MOVZX reg32,rm8 386
MOVZX reg32,rm16 386
MOVZX reg64,rm8 X64
MOVZX reg64,rm16 X64
MUL rm8 8086
MUL rm16 8086
MUL rm32 386

150

MUL rm64 X64
MWAIT PRESCOTT
MWAIT reg_eax,reg_ecx PRESCOTT,ND
NEG rm8 8086,LOCK
NEG rm16 8086,LOCK
NEG rm32 386,LOCK
NEG rm64 X64,LOCK
NOP 8086
NOP rm16 P6
NOP rm32 P6
NOP rm64 X64
NOT rm8 8086,LOCK
NOT rm16 8086,LOCK
NOT rm32 386,LOCK
NOT rm64 X64,LOCK
OR mem,reg8 8086,LOCK
OR reg8,reg8 8086
OR mem,reg16 8086,LOCK
OR reg16,reg16 8086
OR mem,reg32 386,LOCK
OR reg32,reg32 386
OR mem,reg64 X64,LOCK
OR reg64,reg64 X64
OR reg8,mem 8086
OR reg8,reg8 8086
OR reg16,mem 8086
OR reg16,reg16 8086
OR reg32,mem 386
OR reg32,reg32 386
OR reg64,mem X64
OR reg64,reg64 X64
OR rm16,imm8 8086,LOCK
OR rm32,imm8 386,LOCK
OR rm64,imm8 X64,LOCK
OR reg_al,imm 8086
OR reg_ax,sbyte16 8086
OR reg_ax,imm 8086
OR reg_eax,sbyte32 386
OR reg_eax,imm 386
OR reg_rax,sbyte64 X64
OR reg_rax,imm X64
OR rm8,imm 8086,LOCK
OR rm16,imm 8086,LOCK
OR rm32,imm 386,LOCK
OR rm64,imm X64,LOCK
OR mem,imm8 8086,LOCK
OR mem,imm16 8086,LOCK
OR mem,imm32 386,LOCK
OR rm8,imm 8086,LOCK,ND,NOLONG

151

OUT imm,reg_al 8086
OUT imm,reg_ax 8086
OUT imm,reg_eax 386
OUT reg_dx,reg_al 8086
OUT reg_dx,reg_ax 8086
OUT reg_dx,reg_eax 386
OUTSB 186
OUTSD 386
OUTSW 186
PACKSSDW mmxreg,mmxrm PENT,MMX
PACKSSWB mmxreg,mmxrm PENT,MMX
PACKUSWB mmxreg,mmxrm PENT,MMX
PADDB mmxreg,mmxrm PENT,MMX
PADDD mmxreg,mmxrm PENT,MMX
PADDSB mmxreg,mmxrm PENT,MMX
PADDSIW mmxreg,mmxrm PENT,MMX,CYRIX
PADDSW mmxreg,mmxrm PENT,MMX
PADDUSB mmxreg,mmxrm PENT,MMX
PADDUSW mmxreg,mmxrm PENT,MMX
PADDW mmxreg,mmxrm PENT,MMX
PAND mmxreg,mmxrm PENT,MMX
PANDN mmxreg,mmxrm PENT,MMX
PAUSE 8086
PAVEB mmxreg,mmxrm PENT,MMX,CYRIX
PAVGUSB mmxreg,mmxrm PENT,3DNOW
PCMPEQB mmxreg,mmxrm PENT,MMX
PCMPEQD mmxreg,mmxrm PENT,MMX
PCMPEQW mmxreg,mmxrm PENT,MMX
PCMPGTB mmxreg,mmxrm PENT,MMX
PCMPGTD mmxreg,mmxrm PENT,MMX
PCMPGTW mmxreg,mmxrm PENT,MMX
PDISTIB mmxreg,mem PENT,MMX,CYRIX
PF2ID mmxreg,mmxrm PENT,3DNOW
PFACC mmxreg,mmxrm PENT,3DNOW
PFADD mmxreg,mmxrm PENT,3DNOW
PFCMPEQ mmxreg,mmxrm PENT,3DNOW
PFCMPGE mmxreg,mmxrm PENT,3DNOW
PFCMPGT mmxreg,mmxrm PENT,3DNOW
PFMAX mmxreg,mmxrm PENT,3DNOW
PFMIN mmxreg,mmxrm PENT,3DNOW
PFMUL mmxreg,mmxrm PENT,3DNOW
PFRCP mmxreg,mmxrm PENT,3DNOW
PFRCPIT1 mmxreg,mmxrm PENT,3DNOW
PFRCPIT2 mmxreg,mmxrm PENT,3DNOW
PFRSQIT1 mmxreg,mmxrm PENT,3DNOW
PFRSQRT mmxreg,mmxrm PENT,3DNOW
PFSUB mmxreg,mmxrm PENT,3DNOW
PFSUBR mmxreg,mmxrm PENT,3DNOW
PI2FD mmxreg,mmxrm PENT,3DNOW

152

PMACHRIW mmxreg,mem PENT,MMX,CYRIX
PMADDWD mmxreg,mmxrm PENT,MMX
PMAGW mmxreg,mmxrm PENT,MMX,CYRIX
PMULHRIW mmxreg,mmxrm PENT,MMX,CYRIX
PMULHRWA mmxreg,mmxrm PENT,3DNOW
PMULHRWC mmxreg,mmxrm PENT,MMX,CYRIX
PMULHW mmxreg,mmxrm PENT,MMX
PMULLW mmxreg,mmxrm PENT,MMX
PMVGEZB mmxreg,mem PENT,MMX,CYRIX
PMVLZB mmxreg,mem PENT,MMX,CYRIX
PMVNZB mmxreg,mem PENT,MMX,CYRIX
PMVZB mmxreg,mem PENT,MMX,CYRIX
POP reg16 8086
POP reg32 386,NOLONG
POP reg64 X64
POP rm16 8086
POP rm32 386,NOLONG
POP rm64 X64
POP reg_cs 8086,UNDOC,ND
POP reg_dess 8086,NOLONG
POP reg_fsgs 386
POPA 186,NOLONG
POPAD 386,NOLONG
POPAW 186,NOLONG
POPF 8086
POPFD 386,NOLONG
POPFQ X64
POPFW 8086
POR mmxreg,mmxrm PENT,MMX
PREFETCH mem PENT,3DNOW
PREFETCHW mem PENT,3DNOW
PSLLD mmxreg,mmxrm PENT,MMX
PSLLD mmxreg,imm PENT,MMX
PSLLQ mmxreg,mmxrm PENT,MMX
PSLLQ mmxreg,imm PENT,MMX
PSLLW mmxreg,mmxrm PENT,MMX
PSLLW mmxreg,imm PENT,MMX
PSRAD mmxreg,mmxrm PENT,MMX
PSRAD mmxreg,imm PENT,MMX
PSRAW mmxreg,mmxrm PENT,MMX
PSRAW mmxreg,imm PENT,MMX
PSRLD mmxreg,mmxrm PENT,MMX
PSRLD mmxreg,imm PENT,MMX
PSRLQ mmxreg,mmxrm PENT,MMX
PSRLQ mmxreg,imm PENT,MMX
PSRLW mmxreg,mmxrm PENT,MMX
PSRLW mmxreg,imm PENT,MMX
PSUBB mmxreg,mmxrm PENT,MMX
PSUBD mmxreg,mmxrm PENT,MMX

153

PSUBSB mmxreg,mmxrm PENT,MMX
PSUBSIW mmxreg,mmxrm PENT,MMX,CYRIX
PSUBSW mmxreg,mmxrm PENT,MMX
PSUBUSB mmxreg,mmxrm PENT,MMX
PSUBUSW mmxreg,mmxrm PENT,MMX
PSUBW mmxreg,mmxrm PENT,MMX
PUNPCKHBW mmxreg,mmxrm PENT,MMX
PUNPCKHDQ mmxreg,mmxrm PENT,MMX
PUNPCKHWD mmxreg,mmxrm PENT,MMX
PUNPCKLBW mmxreg,mmxrm PENT,MMX
PUNPCKLDQ mmxreg,mmxrm PENT,MMX
PUNPCKLWD mmxreg,mmxrm PENT,MMX
PUSH reg16 8086
PUSH reg32 386,NOLONG
PUSH reg64 X64
PUSH rm16 8086
PUSH rm32 386,NOLONG
PUSH rm64 X64
PUSH reg_cs 8086,NOLONG
PUSH reg_dess 8086,NOLONG
PUSH reg_fsgs 386
PUSH imm8 186
PUSH imm16 186,AR0,SZ
PUSH imm32 386,NOLONG,AR0,SZ
PUSH imm32 386,NOLONG,SD
PUSH imm32 X64,AR0,SZ
PUSH imm64 X64,AR0,SZ
PUSHA 186,NOLONG
PUSHAD 386,NOLONG
PUSHAW 186,NOLONG
PUSHF 8086
PUSHFD 386,NOLONG
PUSHFQ X64
PUSHFW 8086
PXOR mmxreg,mmxrm PENT,MMX
RCL rm8,unity 8086
RCL rm8,reg_cl 8086
RCL rm8,imm 186
RCL rm16,unity 8086
RCL rm16,reg_cl 8086
RCL rm16,imm 186
RCL rm32,unity 386
RCL rm32,reg_cl 386
RCL rm32,imm 386
RCL rm64,unity X64
RCL rm64,reg_cl X64
RCL rm64,imm X64
RCR rm8,unity 8086
RCR rm8,reg_cl 8086

154

RCR rm8,imm 186
RCR rm16,unity 8086
RCR rm16,reg_cl 8086
RCR rm16,imm 186
RCR rm32,unity 386
RCR rm32,reg_cl 386
RCR rm32,imm 386
RCR rm64,unity X64
RCR rm64,reg_cl X64
RCR rm64,imm X64
RDSHR rm32 P6,CYRIXM
RDMSR PENT,PRIV
RDPMC P6
RDTSC PENT
RDTSCP X86_64
RET 8086
RET imm 8086,SW
RETF 8086
RETF imm 8086,SW
RETN 8086
RETN imm 8086,SW
ROL rm8,unity 8086
ROL rm8,reg_cl 8086
ROL rm8,imm 186
ROL rm16,unity 8086
ROL rm16,reg_cl 8086
ROL rm16,imm 186
ROL rm32,unity 386
ROL rm32,reg_cl 386
ROL rm32,imm 386
ROL rm64,unity X64
ROL rm64,reg_cl X64
ROL rm64,imm X64
ROR rm8,unity 8086
ROR rm8,reg_cl 8086
ROR rm8,imm 186
ROR rm16,unity 8086
ROR rm16,reg_cl 8086
ROR rm16,imm 186
ROR rm32,unity 386
ROR rm32,reg_cl 386
ROR rm32,imm 386
ROR rm64,unity X64
ROR rm64,reg_cl X64
ROR rm64,imm X64
RDM P6,CYRIX,ND
RSDC reg_sreg,mem80 486,CYRIXM
RSLDT mem80 486,CYRIXM
RSM PENTM

155

RSTS mem80 486,CYRIXM
SAHF 8086
SAL rm8,unity 8086,ND
SAL rm8,reg_cl 8086,ND
SAL rm8,imm 186,ND
SAL rm16,unity 8086,ND
SAL rm16,reg_cl 8086,ND
SAL rm16,imm 186,ND
SAL rm32,unity 386,ND
SAL rm32,reg_cl 386,ND
SAL rm32,imm 386,ND
SAL rm64,unity X64,ND
SAL rm64,reg_cl X64,ND
SAL rm64,imm X64,ND
SALC 8086,UNDOC
SAR rm8,unity 8086
SAR rm8,reg_cl 8086
SAR rm8,imm 186
SAR rm16,unity 8086
SAR rm16,reg_cl 8086
SAR rm16,imm 186
SAR rm32,unity 386
SAR rm32,reg_cl 386
SAR rm32,imm 386
SAR rm64,unity X64
SAR rm64,reg_cl X64
SAR rm64,imm X64
SBB mem,reg8 8086,LOCK
SBB reg8,reg8 8086
SBB mem,reg16 8086,LOCK
SBB reg16,reg16 8086
SBB mem,reg32 386,LOCK
SBB reg32,reg32 386
SBB mem,reg64 X64,LOCK
SBB reg64,reg64 X64
SBB reg8,mem 8086
SBB reg8,reg8 8086
SBB reg16,mem 8086
SBB reg16,reg16 8086
SBB reg32,mem 386
SBB reg32,reg32 386
SBB reg64,mem X64
SBB reg64,reg64 X64
SBB rm16,imm8 8086,LOCK
SBB rm32,imm8 386,LOCK
SBB rm64,imm8 X64,LOCK
SBB reg_al,imm 8086
SBB reg_ax,sbyte16 8086
SBB reg_ax,imm 8086

156

SBB reg_eax,sbyte32 386
SBB reg_eax,imm 386
SBB reg_rax,sbyte64 X64
SBB reg_rax,imm X64
SBB rm8,imm 8086,LOCK
SBB rm16,imm 8086,LOCK
SBB rm32,imm 386,LOCK
SBB rm64,imm X64,LOCK
SBB mem,imm8 8086,LOCK
SBB mem,imm16 8086,LOCK
SBB mem,imm32 386,LOCK
SBB rm8,imm 8086,LOCK,ND,NOLONG
SCASB 8086
SCASD 386
SCASQ X64
SCASW 8086
SFENCE X64,AMD
SGDT mem 286
SHL rm8,unity 8086
SHL rm8,reg_cl 8086
SHL rm8,imm 186
SHL rm16,unity 8086
SHL rm16,reg_cl 8086
SHL rm16,imm 186
SHL rm32,unity 386
SHL rm32,reg_cl 386
SHL rm32,imm 386
SHL rm64,unity X64
SHL rm64,reg_cl X64
SHL rm64,imm X64
SHLD mem,reg16,imm 3862
SHLD reg16,reg16,imm 3862
SHLD mem,reg32,imm 3862
SHLD reg32,reg32,imm 3862
SHLD mem,reg64,imm X642
SHLD reg64,reg64,imm X642
SHLD mem,reg16,reg_cl 386
SHLD reg16,reg16,reg_cl 386
SHLD mem,reg32,reg_cl 386
SHLD reg32,reg32,reg_cl 386
SHLD mem,reg64,reg_cl X64
SHLD reg64,reg64,reg_cl X64
SHR rm8,unity 8086
SHR rm8,reg_cl 8086
SHR rm8,imm 186
SHR rm16,unity 8086
SHR rm16,reg_cl 8086
SHR rm16,imm 186
SHR rm32,unity 386

157

SHR rm32,reg_cl 386
SHR rm32,imm 386
SHR rm64,unity X64
SHR rm64,reg_cl X64
SHR rm64,imm X64
SHRD mem,reg16,imm 3862
SHRD reg16,reg16,imm 3862
SHRD mem,reg32,imm 3862
SHRD reg32,reg32,imm 3862
SHRD mem,reg64,imm X642
SHRD reg64,reg64,imm X642
SHRD mem,reg16,reg_cl 386
SHRD reg16,reg16,reg_cl 386
SHRD mem,reg32,reg_cl 386
SHRD reg32,reg32,reg_cl 386
SHRD mem,reg64,reg_cl X64
SHRD reg64,reg64,reg_cl X64
SIDT mem 286
SLDT mem 286
SLDT mem16 286
SLDT reg16 286
SLDT reg32 386
SLDT reg64 X64,ND
SLDT reg64 X64
SKINIT X64
SMI 386,UNDOC
SMINT P6,CYRIX,ND
SMINTOLD 486,CYRIX,ND
SMSW mem 286
SMSW mem16 286
SMSW reg16 286
SMSW reg32 386
STC 8086
STD 8086
STGI X64
STI 8086
STOSB 8086
STOSD 386
STOSQ X64
STOSW 8086
STR mem 286,PROT
STR mem16 286,PROT
STR reg16 286,PROT
STR reg32 386,PROT
STR reg64 X64
SUB mem,reg8 8086,LOCK
SUB reg8,reg8 8086
SUB mem,reg16 8086,LOCK
SUB reg16,reg16 8086

158

SUB mem,reg32 386,LOCK
SUB reg32,reg32 386
SUB mem,reg64 X64,LOCK
SUB reg64,reg64 X64
SUB reg8,mem 8086
SUB reg8,reg8 8086
SUB reg16,mem 8086
SUB reg16,reg16 8086
SUB reg32,mem 386
SUB reg32,reg32 386
SUB reg64,mem X64
SUB reg64,reg64 X64
SUB rm16,imm8 8086,LOCK
SUB rm32,imm8 386,LOCK
SUB rm64,imm8 X64,LOCK
SUB reg_al,imm 8086
SUB reg_ax,sbyte16 8086
SUB reg_ax,imm 8086
SUB reg_eax,sbyte32 386
SUB reg_eax,imm 386
SUB reg_rax,sbyte64 X64
SUB reg_rax,imm X64
SUB rm8,imm 8086,LOCK
SUB rm16,imm 8086,LOCK
SUB rm32,imm 386,LOCK
SUB rm64,imm X64,LOCK
SUB mem,imm8 8086,LOCK
SUB mem,imm16 8086,LOCK
SUB mem,imm32 386,LOCK
SUB rm8,imm 8086,LOCK,ND,NOLONG
SVDC mem80,reg_sreg 486,CYRIXM
SVLDT mem80 486,CYRIXM,ND
SVTS mem80 486,CYRIXM
SWAPGS X64
SYSCALL P6,AMD
SYSENTER P6
SYSEXIT P6,PRIV
SYSRET P6,PRIV,AMD
TEST mem,reg8 8086
TEST reg8,reg8 8086
TEST mem,reg16 8086
TEST reg16,reg16 8086
TEST mem,reg32 386
TEST reg32,reg32 386
TEST mem,reg64 X64
TEST reg64,reg64 X64
TEST reg8,mem 8086
TEST reg16,mem 8086
TEST reg32,mem 386

159

TEST reg64,mem X64
TEST reg_al,imm 8086
TEST reg_ax,imm 8086
TEST reg_eax,imm 386
TEST reg_rax,imm X64
TEST rm8,imm 8086
TEST rm16,imm 8086
TEST rm32,imm 386
TEST rm64,imm X64
TEST mem,imm8 8086
TEST mem,imm16 8086
TEST mem,imm32 386
UD0 186,UNDOC
UD1 186,UNDOC
UD2B 186,UNDOC,ND
UD2 186
UD2A 186,ND
UMOV mem,reg8 386,UNDOC,ND
UMOV reg8,reg8 386,UNDOC,ND
UMOV mem,reg16 386,UNDOC,ND
UMOV reg16,reg16 386,UNDOC,ND
UMOV mem,reg32 386,UNDOC,ND
UMOV reg32,reg32 386,UNDOC,ND
UMOV reg8,mem 386,UNDOC,ND
UMOV reg8,reg8 386,UNDOC,ND
UMOV reg16,mem 386,UNDOC,ND
UMOV reg16,reg16 386,UNDOC,ND
UMOV reg32,mem 386,UNDOC,ND
UMOV reg32,reg32 386,UNDOC,ND
VERR mem 286,PROT
VERR mem16 286,PROT
VERR reg16 286,PROT
VERW mem 286,PROT
VERW mem16 286,PROT
VERW reg16 286,PROT
FWAIT 8086
WBINVD 486,PRIV
WRSHR rm32 P6,CYRIXM
WRMSR PENT,PRIV
XADD mem,reg8 486,LOCK
XADD reg8,reg8 486
XADD mem,reg16 486,LOCK
XADD reg16,reg16 486
XADD mem,reg32 486,LOCK
XADD reg32,reg32 486
XADD mem,reg64 X64,LOCK
XADD reg64,reg64 X64
XBTS reg16,mem 386,SW,UNDOC,ND
XBTS reg16,reg16 386,UNDOC,ND

160

XBTS reg32,mem 386,SD,UNDOC,ND
XBTS reg32,reg32 386,UNDOC,ND
XCHG reg_ax,reg16 8086
XCHG reg_eax,reg32na 386
XCHG reg_rax,reg64 X64
XCHG reg16,reg_ax 8086
XCHG reg32na,reg_eax 386
XCHG reg64,reg_rax X64
XCHG reg_eax,reg_eax 386,NOLONG
XCHG reg8,mem 8086,LOCK
XCHG reg8,reg8 8086
XCHG reg16,mem 8086,LOCK
XCHG reg16,reg16 8086
XCHG reg32,mem 386,LOCK
XCHG reg32,reg32 386
XCHG reg64,mem X64,LOCK
XCHG reg64,reg64 X64
XCHG mem,reg8 8086,LOCK
XCHG reg8,reg8 8086
XCHG mem,reg16 8086,LOCK
XCHG reg16,reg16 8086
XCHG mem,reg32 386,LOCK
XCHG reg32,reg32 386
XCHG mem,reg64 X64,LOCK
XCHG reg64,reg64 X64
XLATB 8086
XLAT 8086
XOR mem,reg8 8086,LOCK
XOR reg8,reg8 8086
XOR mem,reg16 8086,LOCK
XOR reg16,reg16 8086
XOR mem,reg32 386,LOCK
XOR reg32,reg32 386
XOR mem,reg64 X64,LOCK
XOR reg64,reg64 X64
XOR reg8,mem 8086
XOR reg8,reg8 8086
XOR reg16,mem 8086
XOR reg16,reg16 8086
XOR reg32,mem 386
XOR reg32,reg32 386
XOR reg64,mem X64
XOR reg64,reg64 X64
XOR rm16,imm8 8086,LOCK
XOR rm32,imm8 386,LOCK
XOR rm64,imm8 X64,LOCK
XOR reg_al,imm 8086
XOR reg_ax,sbyte16 8086
XOR reg_ax,imm 8086

161

XOR reg_eax,sbyte32 386
XOR reg_eax,imm 386
XOR reg_rax,sbyte64 X64
XOR reg_rax,imm X64
XOR rm8,imm 8086,LOCK
XOR rm16,imm 8086,LOCK
XOR rm32,imm 386,LOCK
XOR rm64,imm X64,LOCK
XOR mem,imm8 8086,LOCK
XOR mem,imm16 8086,LOCK
XOR mem,imm32 386,LOCK
XOR rm8,imm 8086,LOCK,ND,NOLONG
CMOVcc reg16,mem P6
CMOVcc reg16,reg16 P6
CMOVcc reg32,mem P6
CMOVcc reg32,reg32 P6
CMOVcc reg64,mem X64
CMOVcc reg64,reg64 X64
Jcc imm|near 386
Jcc imm16|near 386
Jcc imm32|near 386
Jcc imm|short 8086,ND
Jcc imm 8086,ND
Jcc imm 386,ND
Jcc imm 8086,ND
Jcc imm 8086
SETcc mem 386
SETcc reg8 386

B.1.3 Katmai Streaming SIMD instructions (SSE –– a.k.a. KNI, XMM, MMX2)

ADDPS xmmreg,xmmrm128 KATMAI,SSE
ADDSS xmmreg,xmmrm32 KATMAI,SSE
ANDNPS xmmreg,xmmrm128 KATMAI,SSE
ANDPS xmmreg,xmmrm128 KATMAI,SSE
CMPEQPS xmmreg,xmmrm128 KATMAI,SSE
CMPEQSS xmmreg,xmmrm32 KATMAI,SSE
CMPLEPS xmmreg,xmmrm128 KATMAI,SSE
CMPLESS xmmreg,xmmrm32 KATMAI,SSE
CMPLTPS xmmreg,xmmrm128 KATMAI,SSE
CMPLTSS xmmreg,xmmrm32 KATMAI,SSE
CMPNEQPS xmmreg,xmmrm128 KATMAI,SSE
CMPNEQSS xmmreg,xmmrm32 KATMAI,SSE
CMPNLEPS xmmreg,xmmrm128 KATMAI,SSE
CMPNLESS xmmreg,xmmrm32 KATMAI,SSE
CMPNLTPS xmmreg,xmmrm128 KATMAI,SSE
CMPNLTSS xmmreg,xmmrm32 KATMAI,SSE
CMPORDPS xmmreg,xmmrm128 KATMAI,SSE
CMPORDSS xmmreg,xmmrm32 KATMAI,SSE
CMPUNORDPS xmmreg,xmmrm128 KATMAI,SSE

162

CMPUNORDSS xmmreg,xmmrm32 KATMAI,SSE
CMPPS xmmreg,mem,imm KATMAI,SSE
CMPPS xmmreg,xmmreg,imm KATMAI,SSE
CMPSS xmmreg,mem,imm KATMAI,SSE
CMPSS xmmreg,xmmreg,imm KATMAI,SSE
COMISS xmmreg,xmmrm32 KATMAI,SSE
CVTPI2PS xmmreg,mmxrm64 KATMAI,SSE,MMX
CVTPS2PI mmxreg,xmmrm64 KATMAI,SSE,MMX
CVTSI2SS xmmreg,mem KATMAI,SSE,SD,AR1,ND
CVTSI2SS xmmreg,rm32 KATMAI,SSE,SD,AR1
CVTSI2SS xmmreg,rm64 X64,SSE,AR1
CVTSS2SI reg32,xmmreg KATMAI,SSE,SD,AR1
CVTSS2SI reg32,mem KATMAI,SSE,SD,AR1
CVTSS2SI reg64,xmmreg X64,SSE,SD,AR1
CVTSS2SI reg64,mem X64,SSE,SD,AR1
CVTTPS2PI mmxreg,xmmrm KATMAI,SSE,MMX
CVTTSS2SI reg32,xmmrm KATMAI,SSE,SD,AR1
CVTTSS2SI reg64,xmmrm X64,SSE,SD,AR1
DIVPS xmmreg,xmmrm128 KATMAI,SSE
DIVSS xmmreg,xmmrm32 KATMAI,SSE
LDMXCSR mem32 KATMAI,SSE
MAXPS xmmreg,xmmrm128 KATMAI,SSE
MAXSS xmmreg,xmmrm32 KATMAI,SSE
MINPS xmmreg,xmmrm128 KATMAI,SSE
MINSS xmmreg,xmmrm32 KATMAI,SSE
MOVAPS xmmreg,xmmrm128 KATMAI,SSE
MOVAPS xmmrm128,xmmreg KATMAI,SSE
MOVHPS xmmreg,mem64 KATMAI,SSE
MOVHPS mem64,xmmreg KATMAI,SSE
MOVLHPS xmmreg,xmmreg KATMAI,SSE
MOVLPS xmmreg,mem64 KATMAI,SSE
MOVLPS mem64,xmmreg KATMAI,SSE
MOVHLPS xmmreg,xmmreg KATMAI,SSE
MOVMSKPS reg32,xmmreg KATMAI,SSE
MOVMSKPS reg64,xmmreg X64,SSE
MOVNTPS mem128,xmmreg KATMAI,SSE
MOVSS xmmreg,xmmrm32 KATMAI,SSE
MOVSS mem32,xmmreg KATMAI,SSE
MOVSS xmmreg,xmmreg KATMAI,SSE
MOVUPS xmmreg,xmmrm128 KATMAI,SSE
MOVUPS xmmrm128,xmmreg KATMAI,SSE
MULPS xmmreg,xmmrm128 KATMAI,SSE
MULSS xmmreg,xmmrm32 KATMAI,SSE
ORPS xmmreg,xmmrm128 KATMAI,SSE
RCPPS xmmreg,xmmrm128 KATMAI,SSE
RCPSS xmmreg,xmmrm32 KATMAI,SSE
RSQRTPS xmmreg,xmmrm128 KATMAI,SSE
RSQRTSS xmmreg,xmmrm32 KATMAI,SSE
SHUFPS xmmreg,xmmrm128,imm8 KATMAI,SSE

163

SQRTPS xmmreg,xmmrm128 KATMAI,SSE
SQRTSS xmmreg,xmmrm32 KATMAI,SSE
STMXCSR mem32 KATMAI,SSE
SUBPS xmmreg,xmmrm128 KATMAI,SSE
SUBSS xmmreg,xmmrm32 KATMAI,SSE
UCOMISS xmmreg,xmmrm32 KATMAI,SSE
UNPCKHPS xmmreg,xmmrm128 KATMAI,SSE
UNPCKLPS xmmreg,xmmrm128 KATMAI,SSE
XORPS xmmreg,xmmrm128 KATMAI,SSE

B.1.4 Introduced in Deschutes but necessary for SSE support

FXRSTOR mem P6,SSE,FPU
FXRSTOR64 mem X64,SSE,FPU
FXSAVE mem P6,SSE,FPU
FXSAVE64 mem X64,SSE,FPU

B.1.5 XSAVE group (AVX and extended state)

XGETBV NEHALEM
XSETBV NEHALEM,PRIV
XSAVE mem NEHALEM
XSAVE64 mem LONG,NEHALEM
XSAVEOPT mem FUTURE
XSAVEOPT64 mem LONG,FUTURE
XRSTOR mem NEHALEM
XRSTOR64 mem LONG,NEHALEM

B.1.6 Generic memory operations

PREFETCHNTA mem KATMAI
PREFETCHT0 mem KATMAI
PREFETCHT1 mem KATMAI
PREFETCHT2 mem KATMAI
SFENCE KATMAI

B.1.7 New MMX instructions introduced in Katmai

MASKMOVQ mmxreg,mmxreg KATMAI,MMX
MOVNTQ mem,mmxreg KATMAI,MMX
PAVGB mmxreg,mmxrm KATMAI,MMX
PAVGW mmxreg,mmxrm KATMAI,MMX
PEXTRW reg32,mmxreg,imm KATMAI,MMX
PINSRW mmxreg,mem,imm KATMAI,MMX
PINSRW mmxreg,rm16,imm KATMAI,MMX
PINSRW mmxreg,reg32,imm KATMAI,MMX
PMAXSW mmxreg,mmxrm KATMAI,MMX
PMAXUB mmxreg,mmxrm KATMAI,MMX
PMINSW mmxreg,mmxrm KATMAI,MMX
PMINUB mmxreg,mmxrm KATMAI,MMX
PMOVMSKB reg32,mmxreg KATMAI,MMX
PMULHUW mmxreg,mmxrm KATMAI,MMX

164

PSADBW mmxreg,mmxrm KATMAI,MMX
PSHUFW mmxreg,mmxrm,imm KATMAI,MMX2

B.1.8 AMD Enhanced 3DNow! (Athlon) instructions

PF2IW mmxreg,mmxrm PENT,3DNOW
PFNACC mmxreg,mmxrm PENT,3DNOW
PFPNACC mmxreg,mmxrm PENT,3DNOW
PI2FW mmxreg,mmxrm PENT,3DNOW
PSWAPD mmxreg,mmxrm PENT,3DNOW

B.1.9 Willamette SSE2 Cacheability Instructions

MASKMOVDQU xmmreg,xmmreg WILLAMETTE,SSE2
CLFLUSH mem WILLAMETTE,SSE2
MOVNTDQ mem,xmmreg WILLAMETTE,SSE2,SO
MOVNTI mem,reg32 WILLAMETTE,SD
MOVNTI mem,reg64 X64
MOVNTPD mem,xmmreg WILLAMETTE,SSE2,SO
LFENCE WILLAMETTE,SSE2
MFENCE WILLAMETTE,SSE2

B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions)

MOVD mem,xmmreg WILLAMETTE,SSE2,SD
MOVD xmmreg,mem WILLAMETTE,SSE2,SD
MOVD xmmreg,rm32 WILLAMETTE,SSE2
MOVD rm32,xmmreg WILLAMETTE,SSE2
MOVDQA xmmreg,xmmreg WILLAMETTE,SSE2
MOVDQA mem,xmmreg WILLAMETTE,SSE2,SO
MOVDQA xmmreg,mem WILLAMETTE,SSE2,SO
MOVDQA xmmreg,xmmreg WILLAMETTE,SSE2
MOVDQU xmmreg,xmmreg WILLAMETTE,SSE2
MOVDQU mem,xmmreg WILLAMETTE,SSE2,SO
MOVDQU xmmreg,mem WILLAMETTE,SSE2,SO
MOVDQU xmmreg,xmmreg WILLAMETTE,SSE2
MOVDQ2Q mmxreg,xmmreg WILLAMETTE,SSE2
MOVQ xmmreg,xmmreg WILLAMETTE,SSE2
MOVQ xmmreg,xmmreg WILLAMETTE,SSE2
MOVQ mem,xmmreg WILLAMETTE,SSE2
MOVQ xmmreg,mem WILLAMETTE,SSE2
MOVQ xmmreg,rm64 X64,SSE2
MOVQ rm64,xmmreg X64,SSE2
MOVQ2DQ xmmreg,mmxreg WILLAMETTE,SSE2
PACKSSWB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PACKSSDW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PACKUSWB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDQ mmxreg,mmxrm WILLAMETTE,MMX

165

PADDQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDSB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDSW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDUSB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PADDUSW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PAND xmmreg,xmmrm WILLAMETTE,SSE2,SO
PANDN xmmreg,xmmrm WILLAMETTE,SSE2,SO
PAVGB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PAVGW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PCMPEQB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PCMPEQW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PCMPEQD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PCMPGTB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PCMPGTW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PCMPGTD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PEXTRW reg32,xmmreg,imm WILLAMETTE,SSE2
PINSRW xmmreg,reg16,imm WILLAMETTE,SSE2
PINSRW xmmreg,reg32,imm WILLAMETTE,SSE2,ND
PINSRW xmmreg,mem,imm WILLAMETTE,SSE2
PINSRW xmmreg,mem16,imm WILLAMETTE,SSE2
PMADDWD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMAXSW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMAXUB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMINSW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMINUB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMOVMSKB reg32,xmmreg WILLAMETTE,SSE2
PMULHUW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMULHW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMULLW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PMULUDQ mmxreg,mmxrm WILLAMETTE,SSE2,SO
PMULUDQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
POR xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSADBW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSHUFD xmmreg,xmmreg,imm WILLAMETTE,SSE2
PSHUFD xmmreg,mem,imm WILLAMETTE,SSE22
PSHUFHW xmmreg,xmmreg,imm WILLAMETTE,SSE2
PSHUFHW xmmreg,mem,imm WILLAMETTE,SSE22
PSHUFLW xmmreg,xmmreg,imm WILLAMETTE,SSE2
PSHUFLW xmmreg,mem,imm WILLAMETTE,SSE22
PSLLDQ xmmreg,imm WILLAMETTE,SSE2,AR1
PSLLW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSLLW xmmreg,imm WILLAMETTE,SSE2,AR1
PSLLD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSLLD xmmreg,imm WILLAMETTE,SSE2,AR1
PSLLQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSLLQ xmmreg,imm WILLAMETTE,SSE2,AR1
PSRAW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSRAW xmmreg,imm WILLAMETTE,SSE2,AR1
PSRAD xmmreg,xmmrm WILLAMETTE,SSE2,SO

166

PSRAD xmmreg,imm WILLAMETTE,SSE2,AR1
PSRLDQ xmmreg,imm WILLAMETTE,SSE2,AR1
PSRLW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSRLW xmmreg,imm WILLAMETTE,SSE2,AR1
PSRLD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSRLD xmmreg,imm WILLAMETTE,SSE2,AR1
PSRLQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSRLQ xmmreg,imm WILLAMETTE,SSE2,AR1
PSUBB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBQ mmxreg,mmxrm WILLAMETTE,SSE2,SO
PSUBQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBSB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBSW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBUSB xmmreg,xmmrm WILLAMETTE,SSE2,SO
PSUBUSW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKHBW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKHWD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKHDQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKHQDQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKLBW xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKLWD xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKLDQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PUNPCKLQDQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
PXOR xmmreg,xmmrm WILLAMETTE,SSE2,SO

B.1.11 Willamette Streaming SIMD instructions (SSE2)

ADDPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
ADDSD xmmreg,xmmrm WILLAMETTE,SSE2
ANDNPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
ANDPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPEQPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPEQSD xmmreg,xmmrm WILLAMETTE,SSE2
CMPLEPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPLESD xmmreg,xmmrm WILLAMETTE,SSE2
CMPLTPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPLTSD xmmreg,xmmrm WILLAMETTE,SSE2
CMPNEQPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPNEQSD xmmreg,xmmrm WILLAMETTE,SSE2
CMPNLEPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPNLESD xmmreg,xmmrm WILLAMETTE,SSE2
CMPNLTPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPNLTSD xmmreg,xmmrm WILLAMETTE,SSE2
CMPORDPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPORDSD xmmreg,xmmrm WILLAMETTE,SSE2
CMPUNORDPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
CMPUNORDSD xmmreg,xmmrm WILLAMETTE,SSE2
CMPPD xmmreg,xmmrm128,imm8 WILLAMETTE,SSE2

167

CMPSD xmmreg,xmmrm128,imm8 WILLAMETTE,SSE2
COMISD xmmreg,xmmrm WILLAMETTE,SSE2
CVTDQ2PD xmmreg,xmmrm WILLAMETTE,SSE2
CVTDQ2PS xmmreg,xmmrm WILLAMETTE,SSE2,SO
CVTPD2DQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
CVTPD2PI mmxreg,xmmrm WILLAMETTE,SSE2,SO
CVTPD2PS xmmreg,xmmrm WILLAMETTE,SSE2,SO
CVTPI2PD xmmreg,mmxrm WILLAMETTE,SSE2
CVTPS2DQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
CVTPS2PD xmmreg,xmmrm WILLAMETTE,SSE2
CVTSD2SI reg32,xmmreg WILLAMETTE,SSE2,AR1
CVTSD2SI reg32,mem WILLAMETTE,SSE2,AR1
CVTSD2SI reg64,xmmreg X64,SSE2,AR1
CVTSD2SI reg64,mem X64,SSE2,AR1
CVTSD2SS xmmreg,xmmrm WILLAMETTE,SSE2
CVTSI2SD xmmreg,mem WILLAMETTE,SSE2,SD,AR1,ND
CVTSI2SD xmmreg,rm32 WILLAMETTE,SSE2,SD,AR1
CVTSI2SD xmmreg,rm64 X64,SSE2,AR1
CVTSS2SD xmmreg,xmmrm WILLAMETTE,SSE2,SD
CVTTPD2PI mmxreg,xmmrm WILLAMETTE,SSE2,SO
CVTTPD2DQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
CVTTPS2DQ xmmreg,xmmrm WILLAMETTE,SSE2,SO
CVTTSD2SI reg32,xmmreg WILLAMETTE,SSE2,AR1
CVTTSD2SI reg32,mem WILLAMETTE,SSE2,AR1
CVTTSD2SI reg64,xmmreg X64,SSE2,AR1
CVTTSD2SI reg64,mem X64,SSE2,AR1
DIVPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
DIVSD xmmreg,xmmrm WILLAMETTE,SSE2
MAXPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
MAXSD xmmreg,xmmrm WILLAMETTE,SSE2
MINPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
MINSD xmmreg,xmmrm WILLAMETTE,SSE2
MOVAPD xmmreg,xmmreg WILLAMETTE,SSE2
MOVAPD xmmreg,xmmreg WILLAMETTE,SSE2
MOVAPD mem,xmmreg WILLAMETTE,SSE2,SO
MOVAPD xmmreg,mem WILLAMETTE,SSE2,SO
MOVHPD mem,xmmreg WILLAMETTE,SSE2
MOVHPD xmmreg,mem WILLAMETTE,SSE2
MOVLPD mem,xmmreg WILLAMETTE,SSE2
MOVLPD xmmreg,mem WILLAMETTE,SSE2
MOVMSKPD reg32,xmmreg WILLAMETTE,SSE2
MOVMSKPD reg64,xmmreg X64,SSE2
MOVSD xmmreg,xmmreg WILLAMETTE,SSE2
MOVSD xmmreg,xmmreg WILLAMETTE,SSE2
MOVSD mem64,xmmreg WILLAMETTE,SSE2
MOVSD xmmreg,mem64 WILLAMETTE,SSE2
MOVUPD xmmreg,xmmreg WILLAMETTE,SSE2
MOVUPD xmmreg,xmmreg WILLAMETTE,SSE2
MOVUPD mem,xmmreg WILLAMETTE,SSE2,SO

168

MOVUPD xmmreg,mem WILLAMETTE,SSE2,SO
MULPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
MULSD xmmreg,xmmrm WILLAMETTE,SSE2
ORPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
SHUFPD xmmreg,xmmreg,imm WILLAMETTE,SSE2
SHUFPD xmmreg,mem,imm WILLAMETTE,SSE2
SQRTPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
SQRTSD xmmreg,xmmrm WILLAMETTE,SSE2
SUBPD xmmreg,xmmrm WILLAMETTE,SSE2,SO
SUBSD xmmreg,xmmrm WILLAMETTE,SSE2
UCOMISD xmmreg,xmmrm WILLAMETTE,SSE2
UNPCKHPD xmmreg,xmmrm128 WILLAMETTE,SSE2
UNPCKLPD xmmreg,xmmrm128 WILLAMETTE,SSE2
XORPD xmmreg,xmmrm128 WILLAMETTE,SSE2

B.1.12 Prescott New Instructions (SSE3)

ADDSUBPD xmmreg,xmmrm PRESCOTT,SSE3,SO
ADDSUBPS xmmreg,xmmrm PRESCOTT,SSE3,SO
HADDPD xmmreg,xmmrm PRESCOTT,SSE3,SO
HADDPS xmmreg,xmmrm PRESCOTT,SSE3,SO
HSUBPD xmmreg,xmmrm PRESCOTT,SSE3,SO
HSUBPS xmmreg,xmmrm PRESCOTT,SSE3,SO
LDDQU xmmreg,mem PRESCOTT,SSE3,SO
MOVDDUP xmmreg,xmmrm PRESCOTT,SSE3
MOVSHDUP xmmreg,xmmrm PRESCOTT,SSE3
MOVSLDUP xmmreg,xmmrm PRESCOTT,SSE3

B.1.13 VMX Instructions

VMCALL VMX
VMCLEAR mem VMX
VMFUNC VMX
VMLAUNCH VMX
VMLOAD X64,VMX
VMMCALL X64,VMX
VMPTRLD mem VMX
VMPTRST mem VMX
VMREAD rm32,reg32 VMX,NOLONG,SD
VMREAD rm64,reg64 X64,VMX
VMRESUME VMX
VMRUN X64,VMX
VMSAVE X64,VMX
VMWRITE reg32,rm32 VMX,NOLONG,SD
VMWRITE reg64,rm64 X64,VMX
VMXOFF VMX
VMXON mem VMX

169

B.1.14 Extended Page Tables VMX instructions

INVEPT reg32,mem VMX,SO,NOLONG
INVEPT reg64,mem VMX,SO,LONG
INVVPID reg32,mem VMX,SO,NOLONG
INVVPID reg64,mem VMX,SO,LONG

B.1.15 Tejas New Instructions (SSSE3)

PABSB mmxreg,mmxrm SSSE3,MMX
PABSB xmmreg,xmmrm SSSE3
PABSW mmxreg,mmxrm SSSE3,MMX
PABSW xmmreg,xmmrm SSSE3
PABSD mmxreg,mmxrm SSSE3,MMX
PABSD xmmreg,xmmrm SSSE3
PALIGNR mmxreg,mmxrm,imm SSSE3,MMX
PALIGNR xmmreg,xmmrm,imm SSSE3
PHADDW mmxreg,mmxrm SSSE3,MMX
PHADDW xmmreg,xmmrm SSSE3
PHADDD mmxreg,mmxrm SSSE3,MMX
PHADDD xmmreg,xmmrm SSSE3
PHADDSW mmxreg,mmxrm SSSE3,MMX
PHADDSW xmmreg,xmmrm SSSE3
PHSUBW mmxreg,mmxrm SSSE3,MMX
PHSUBW xmmreg,xmmrm SSSE3
PHSUBD mmxreg,mmxrm SSSE3,MMX
PHSUBD xmmreg,xmmrm SSSE3
PHSUBSW mmxreg,mmxrm SSSE3,MMX
PHSUBSW xmmreg,xmmrm SSSE3
PMADDUBSW mmxreg,mmxrm SSSE3,MMX
PMADDUBSW xmmreg,xmmrm SSSE3
PMULHRSW mmxreg,mmxrm SSSE3,MMX
PMULHRSW xmmreg,xmmrm SSSE3
PSHUFB mmxreg,mmxrm SSSE3,MMX
PSHUFB xmmreg,xmmrm SSSE3
PSIGNB mmxreg,mmxrm SSSE3,MMX
PSIGNB xmmreg,xmmrm SSSE3
PSIGNW mmxreg,mmxrm SSSE3,MMX
PSIGNW xmmreg,xmmrm SSSE3
PSIGND mmxreg,mmxrm SSSE3,MMX
PSIGND xmmreg,xmmrm SSSE3

B.1.16 AMD SSE4A

EXTRQ xmmreg,imm,imm SSE4A,AMD
EXTRQ xmmreg,xmmreg SSE4A,AMD
INSERTQ xmmreg,xmmreg,imm,imm SSE4A,AMD
INSERTQ xmmreg,xmmreg SSE4A,AMD
MOVNTSD mem,xmmreg SSE4A,AMD
MOVNTSS mem,xmmreg SSE4A,AMD,SD

170

B.1.17 New instructions in Barcelona

LZCNT reg16,rm16 P6,AMD
LZCNT reg32,rm32 P6,AMD
LZCNT reg64,rm64 X64,AMD

B.1.18 Penryn New Instructions (SSE4.1)

BLENDPD xmmreg,xmmrm,imm SSE41
BLENDPS xmmreg,xmmrm,imm SSE41
BLENDVPD xmmreg,xmmrm,xmm0 SSE41
BLENDVPS xmmreg,xmmrm,xmm0 SSE41
DPPD xmmreg,xmmrm,imm SSE41
DPPS xmmreg,xmmrm,imm SSE41
EXTRACTPS rm32,xmmreg,imm SSE41
EXTRACTPS reg64,xmmreg,imm SSE41,X64
INSERTPS xmmreg,xmmrm,imm SSE41,SD
MOVNTDQA xmmreg,mem SSE41
MPSADBW xmmreg,xmmrm,imm SSE41
PACKUSDW xmmreg,xmmrm SSE41
PBLENDVB xmmreg,xmmrm,xmm0 SSE41
PBLENDW xmmreg,xmmrm,imm SSE41
PCMPEQQ xmmreg,xmmrm SSE41
PEXTRB reg32,xmmreg,imm SSE41
PEXTRB mem8,xmmreg,imm SSE41
PEXTRB reg64,xmmreg,imm SSE41,X64
PEXTRD rm32,xmmreg,imm SSE41
PEXTRQ rm64,xmmreg,imm SSE41,X64
PEXTRW reg32,xmmreg,imm SSE41
PEXTRW mem16,xmmreg,imm SSE41
PEXTRW reg64,xmmreg,imm SSE41,X64
PHMINPOSUW xmmreg,xmmrm SSE41
PINSRB xmmreg,mem,imm SSE41
PINSRB xmmreg,rm8,imm SSE41
PINSRB xmmreg,reg32,imm SSE41
PINSRD xmmreg,mem,imm SSE41
PINSRD xmmreg,rm32,imm SSE41
PINSRQ xmmreg,mem,imm SSE41,X64
PINSRQ xmmreg,rm64,imm SSE41,X64
PMAXSB xmmreg,xmmrm SSE41
PMAXSD xmmreg,xmmrm SSE41
PMAXUD xmmreg,xmmrm SSE41
PMAXUW xmmreg,xmmrm SSE41
PMINSB xmmreg,xmmrm SSE41
PMINSD xmmreg,xmmrm SSE41
PMINUD xmmreg,xmmrm SSE41
PMINUW xmmreg,xmmrm SSE41
PMOVSXBW xmmreg,xmmrm SSE41
PMOVSXBD xmmreg,xmmrm SSE41,SD
PMOVSXBQ xmmreg,xmmrm SSE41,SW

171

PMOVSXWD xmmreg,xmmrm SSE41
PMOVSXWQ xmmreg,xmmrm SSE41,SD
PMOVSXDQ xmmreg,xmmrm SSE41
PMOVZXBW xmmreg,xmmrm SSE41
PMOVZXBD xmmreg,xmmrm SSE41,SD
PMOVZXBQ xmmreg,xmmrm SSE41,SW
PMOVZXWD xmmreg,xmmrm SSE41
PMOVZXWQ xmmreg,xmmrm SSE41,SD
PMOVZXDQ xmmreg,xmmrm SSE41
PMULDQ xmmreg,xmmrm SSE41
PMULLD xmmreg,xmmrm SSE41
PTEST xmmreg,xmmrm SSE41
ROUNDPD xmmreg,xmmrm,imm SSE41
ROUNDPS xmmreg,xmmrm,imm SSE41
ROUNDSD xmmreg,xmmrm,imm SSE41
ROUNDSS xmmreg,xmmrm,imm SSE41

B.1.19 Nehalem New Instructions (SSE4.2)

CRC32 reg32,rm8 SSE42
CRC32 reg32,rm16 SSE42
CRC32 reg32,rm32 SSE42
CRC32 reg64,rm8 SSE42,X64
CRC32 reg64,rm64 SSE42,X64
PCMPESTRI xmmreg,xmmrm,imm SSE42
PCMPESTRM xmmreg,xmmrm,imm SSE42
PCMPISTRI xmmreg,xmmrm,imm SSE42
PCMPISTRM xmmreg,xmmrm,imm SSE42
PCMPGTQ xmmreg,xmmrm SSE42
POPCNT reg16,rm16 NEHALEM,SW
POPCNT reg32,rm32 NEHALEM,SD
POPCNT reg64,rm64 NEHALEM,X64

B.1.20 Intel SMX

GETSEC KATMAI

B.1.21 Geode (Cyrix) 3DNow! additions

PFRCPV mmxreg,mmxrm PENT,3DNOW,CYRIX
PFRSQRTV mmxreg,mmxrm PENT,3DNOW,CYRIX

B.1.22 Intel new instructions in ???

MOVBE reg16,mem16 NEHALEM
MOVBE reg32,mem32 NEHALEM
MOVBE reg64,mem64 NEHALEM
MOVBE mem16,reg16 NEHALEM
MOVBE mem32,reg32 NEHALEM
MOVBE mem64,reg64 NEHALEM

172

B.1.23 Intel AES instructions

AESENC xmmreg,xmmrm128 SSE,WESTMERE
AESENCLAST xmmreg,xmmrm128 SSE,WESTMERE
AESDEC xmmreg,xmmrm128 SSE,WESTMERE
AESDECLAST xmmreg,xmmrm128 SSE,WESTMERE
AESIMC xmmreg,xmmrm128 SSE,WESTMERE
AESKEYGENASSIST xmmreg,xmmrm128,imm8 SSE,WESTMERE

B.1.24 Intel AVX AES instructions

VAESENC xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VAESENCLAST xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VAESDEC xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VAESDECLAST xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VAESIMC xmmreg,xmmrm128 AVX,SANDYBRIDGE
VAESKEYGENASSIST xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE

B.1.25 Intel AVX instructions

VADDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VADDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VADDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VADDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VADDSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VADDSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VADDSUBPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VADDSUBPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VADDSUBPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VADDSUBPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VANDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VANDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VANDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VANDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VANDNPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VANDNPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VANDNPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VANDNPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VBLENDPD xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VBLENDPD ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VBLENDPS xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VBLENDPS ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VBLENDVPD xmmreg,xmmreg*,xmmrm128,xmmreg AVX,SANDYBRIDGE
VBLENDVPD ymmreg,ymmreg*,ymmrm256,ymmreg AVX,SANDYBRIDGE
VBLENDVPS xmmreg,xmmreg*,xmmrm128,xmmreg AVX,SANDYBRIDGE
VBLENDVPS ymmreg,ymmreg*,ymmrm256,ymmreg AVX,SANDYBRIDGE
VBROADCASTSS xmmreg,mem32 AVX,SANDYBRIDGE
VBROADCASTSS ymmreg,mem32 AVX,SANDYBRIDGE
VBROADCASTSD ymmreg,mem64 AVX,SANDYBRIDGE
VBROADCASTF128 ymmreg,mem128 AVX,SANDYBRIDGE
VCMPEQ_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE

173

VCMPEQ_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLT_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLT_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLTPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLTPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLE_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLE_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORD_QPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORD_QPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLT_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLT_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLTPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLTPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLE_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLE_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORD_QPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORD_QPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGE_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGE_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGT_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGT_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGTPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGTPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSE_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSE_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGE_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGE_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE

174

VCMPGEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGT_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGT_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGTPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGTPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUE_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUE_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUEPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUEPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLT_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLT_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLE_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLE_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORD_SPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORD_SPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLT_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLT_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLE_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLE_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORD_SPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORD_SPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGE_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGE_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGT_UQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGT_UQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSE_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSE_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_OSPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_OSPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGE_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGE_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGT_OQPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGT_OQPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUE_USPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUE_USPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPPD xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VCMPPD ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VCMPEQ_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLT_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE

175

VCMPLT_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLTPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLTPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLE_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLE_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORD_QPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORD_QPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLT_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLT_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLTPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLTPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLE_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLE_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORD_QPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORD_QPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGE_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGE_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGT_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGT_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGTPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGTPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSE_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSE_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGE_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGE_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGT_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGT_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE

176

VCMPGTPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGTPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUE_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUE_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUEPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUEPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLT_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLT_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPLE_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPLE_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPUNORD_SPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPUNORD_SPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLT_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLT_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNLE_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNLE_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPORD_SPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPORD_SPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPEQ_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPEQ_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGE_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGE_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNGT_UQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNGT_UQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPFALSE_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPFALSE_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPNEQ_OSPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPNEQ_OSPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGE_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGE_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPGT_OQPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPGT_OQPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPTRUE_USPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VCMPTRUE_USPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VCMPPS xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VCMPPS ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VCMPEQ_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLT_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLE_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORD_QSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORDSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE

177

VCMPNEQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLT_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLE_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORD_QSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORDSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGE_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGT_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSE_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGE_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGT_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUE_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUESD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLT_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLE_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORD_SSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLT_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLE_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORD_SSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGE_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGT_UQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSE_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_OSSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGE_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGT_OQSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUE_USSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPSD xmmreg,xmmreg*,xmmrm64,imm8 AVX,SANDYBRIDGE
VCMPEQ_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLT_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLTSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLE_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLESS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORD_QSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORDSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLT_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE

178

VCMPNLTSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLE_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLESS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORD_QSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORDSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGE_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGESS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGT_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGTSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSE_OQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSESS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_OQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGE_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGESS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGT_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGTSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUE_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUESS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLT_OQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPLE_OQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPUNORD_SSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLT_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNLE_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPORD_SSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPEQ_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGE_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNGT_UQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPFALSE_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPNEQ_OSSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGE_OQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPGT_OQSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPTRUE_USSS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCMPSS xmmreg,xmmreg*,xmmrm64,imm8 AVX,SANDYBRIDGE
VCOMISD xmmreg,xmmrm64 AVX,SANDYBRIDGE
VCOMISS xmmreg,xmmrm32 AVX,SANDYBRIDGE
VCVTDQ2PD xmmreg,xmmrm64 AVX,SANDYBRIDGE
VCVTDQ2PD ymmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTDQ2PS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTDQ2PS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VCVTPD2DQ xmmreg,xmmreg AVX,SANDYBRIDGE
VCVTPD2DQ xmmreg,mem128 AVX,SANDYBRIDGE,SO
VCVTPD2DQ xmmreg,ymmreg AVX,SANDYBRIDGE
VCVTPD2DQ xmmreg,mem256 AVX,SANDYBRIDGE,SY
VCVTPD2PS xmmreg,xmmreg AVX,SANDYBRIDGE
VCVTPD2PS xmmreg,mem128 AVX,SANDYBRIDGE,SO
VCVTPD2PS xmmreg,ymmreg AVX,SANDYBRIDGE

179

VCVTPD2PS xmmreg,mem256 AVX,SANDYBRIDGE,SY
VCVTPS2DQ xmmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTPS2DQ ymmreg,ymmrm256 AVX,SANDYBRIDGE
VCVTPS2PD xmmreg,xmmrm64 AVX,SANDYBRIDGE
VCVTPS2PD ymmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTSD2SI reg32,xmmrm64 AVX,SANDYBRIDGE
VCVTSD2SI reg64,xmmrm64 AVX,SANDYBRIDGE,LONG
VCVTSD2SS xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VCVTSI2SD xmmreg,xmmreg*,rm32 AVX,SANDYBRIDGE,SD
VCVTSI2SD xmmreg,xmmreg*,mem32 AVX,SANDYBRIDGE,ND,SD
VCVTSI2SD xmmreg,xmmreg*,rm64 AVX,SANDYBRIDGE,LONG
VCVTSI2SS xmmreg,xmmreg*,rm32 AVX,SANDYBRIDGE,SD
VCVTSI2SS xmmreg,xmmreg*,mem32 AVX,SANDYBRIDGE,ND,SD
VCVTSI2SS xmmreg,xmmreg*,rm64 AVX,SANDYBRIDGE,LONG
VCVTSS2SD xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VCVTSS2SI reg32,xmmrm32 AVX,SANDYBRIDGE
VCVTSS2SI reg64,xmmrm32 AVX,SANDYBRIDGE,LONG
VCVTTPD2DQ xmmreg,xmmreg AVX,SANDYBRIDGE
VCVTTPD2DQ xmmreg,mem128 AVX,SANDYBRIDGE,SO
VCVTTPD2DQ xmmreg,ymmreg AVX,SANDYBRIDGE
VCVTTPD2DQ xmmreg,mem256 AVX,SANDYBRIDGE,SY
VCVTTPS2DQ xmmreg,xmmrm128 AVX,SANDYBRIDGE
VCVTTPS2DQ ymmreg,ymmrm256 AVX,SANDYBRIDGE
VCVTTSD2SI reg32,xmmrm64 AVX,SANDYBRIDGE
VCVTTSD2SI reg64,xmmrm64 AVX,SANDYBRIDGE,LONG
VCVTTSS2SI reg32,xmmrm32 AVX,SANDYBRIDGE
VCVTTSS2SI reg64,xmmrm32 AVX,SANDYBRIDGE,LONG
VDIVPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VDIVPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VDIVPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VDIVPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VDIVSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VDIVSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VDPPD xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VDPPS xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VDPPS ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VEXTRACTF128 xmmrm128,ymmreg,imm8 AVX,SANDYBRIDGE
VEXTRACTPS rm32,xmmreg,imm8 AVX,SANDYBRIDGE
VHADDPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VHADDPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VHADDPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VHADDPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VHSUBPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VHSUBPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VHSUBPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VHSUBPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VINSERTF128 ymmreg,ymmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VINSERTPS xmmreg,xmmreg*,xmmrm32,imm8 AVX,SANDYBRIDGE
VLDDQU xmmreg,mem128 AVX,SANDYBRIDGE

180

VLDQQU ymmreg,mem256 AVX,SANDYBRIDGE
VLDDQU ymmreg,mem256 AVX,SANDYBRIDGE
VLDMXCSR mem32 AVX,SANDYBRIDGE
VMASKMOVDQU xmmreg,xmmreg AVX,SANDYBRIDGE
VMASKMOVPS xmmreg,xmmreg,mem128 AVX,SANDYBRIDGE
VMASKMOVPS ymmreg,ymmreg,mem256 AVX,SANDYBRIDGE
VMASKMOVPS mem128,xmmreg,xmmreg AVX,SANDYBRIDGE,SO
VMASKMOVPS mem256,ymmreg,ymmreg AVX,SANDYBRIDGE,SY
VMASKMOVPD xmmreg,xmmreg,mem128 AVX,SANDYBRIDGE
VMASKMOVPD ymmreg,ymmreg,mem256 AVX,SANDYBRIDGE
VMASKMOVPD mem128,xmmreg,xmmreg AVX,SANDYBRIDGE
VMASKMOVPD mem256,ymmreg,ymmreg AVX,SANDYBRIDGE
VMAXPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMAXPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMAXPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMAXPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMAXSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VMAXSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VMINPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMINPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMINPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMINPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMINSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VMINSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VMOVAPD xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVAPD xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVAPD ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVAPD ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVAPS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVAPS xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVAPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVAPS ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVD xmmreg,rm32 AVX,SANDYBRIDGE
VMOVD rm32,xmmreg AVX,SANDYBRIDGE
VMOVQ xmmreg,xmmrm64 AVX,SANDYBRIDGE
VMOVQ xmmrm64,xmmreg AVX,SANDYBRIDGE
VMOVQ xmmreg,rm64 AVX,SANDYBRIDGE,LONG
VMOVQ rm64,xmmreg AVX,SANDYBRIDGE,LONG
VMOVDDUP xmmreg,xmmrm64 AVX,SANDYBRIDGE
VMOVDDUP ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVDQA xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVDQA xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVQQA ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVQQA ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVDQA ymmreg,ymmrm AVX,SANDYBRIDGE
VMOVDQA ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVDQU xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVDQU xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVQQU ymmreg,ymmrm256 AVX,SANDYBRIDGE

181

VMOVQQU ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVDQU ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVDQU ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVHLPS xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
VMOVHPD xmmreg,xmmreg*,mem64 AVX,SANDYBRIDGE
VMOVHPD mem64,xmmreg AVX,SANDYBRIDGE
VMOVHPS xmmreg,xmmreg*,mem64 AVX,SANDYBRIDGE
VMOVHPS mem64,xmmreg AVX,SANDYBRIDGE
VMOVLHPS xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
VMOVLPD xmmreg,xmmreg*,mem64 AVX,SANDYBRIDGE
VMOVLPD mem64,xmmreg AVX,SANDYBRIDGE
VMOVLPS xmmreg,xmmreg*,mem64 AVX,SANDYBRIDGE
VMOVLPS mem64,xmmreg AVX,SANDYBRIDGE
VMOVMSKPD reg64,xmmreg AVX,SANDYBRIDGE,LONG
VMOVMSKPD reg32,xmmreg AVX,SANDYBRIDGE
VMOVMSKPD reg64,ymmreg AVX,SANDYBRIDGE,LONG
VMOVMSKPD reg32,ymmreg AVX,SANDYBRIDGE
VMOVMSKPS reg64,xmmreg AVX,SANDYBRIDGE,LONG
VMOVMSKPS reg32,xmmreg AVX,SANDYBRIDGE
VMOVMSKPS reg64,ymmreg AVX,SANDYBRIDGE,LONG
VMOVMSKPS reg32,ymmreg AVX,SANDYBRIDGE
VMOVNTDQ mem128,xmmreg AVX,SANDYBRIDGE
VMOVNTQQ mem256,ymmreg AVX,SANDYBRIDGE
VMOVNTDQ mem256,ymmreg AVX,SANDYBRIDGE
VMOVNTDQA xmmreg,mem128 AVX,SANDYBRIDGE
VMOVNTPD mem128,xmmreg AVX,SANDYBRIDGE
VMOVNTPD mem256,ymmreg AVX,SANDYBRIDGE
VMOVNTPS mem128,xmmreg AVX,SANDYBRIDGE
VMOVNTPS mem128,ymmreg AVX,SANDYBRIDGE
VMOVSD xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
VMOVSD xmmreg,mem64 AVX,SANDYBRIDGE
VMOVSD xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
VMOVSD mem64,xmmreg AVX,SANDYBRIDGE
VMOVSHDUP xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVSHDUP ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVSLDUP xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVSLDUP ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVSS xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
VMOVSS xmmreg,mem32 AVX,SANDYBRIDGE
VMOVSS xmmreg,xmmreg*,xmmreg AVX,SANDYBRIDGE
VMOVSS mem32,xmmreg AVX,SANDYBRIDGE
VMOVUPD xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVUPD xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVUPD ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVUPD ymmrm256,ymmreg AVX,SANDYBRIDGE
VMOVUPS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VMOVUPS xmmrm128,xmmreg AVX,SANDYBRIDGE
VMOVUPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VMOVUPS ymmrm256,ymmreg AVX,SANDYBRIDGE

182

VMPSADBW xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VMULPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMULPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMULPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VMULPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VMULSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VMULSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VORPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VORPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VORPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VORPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VPABSB xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPABSW xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPABSD xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPACKSSWB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPACKSSDW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPACKUSWB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPACKUSDW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDUSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPADDUSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPALIGNR xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VPAND xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPANDN xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPAVGB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPAVGW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPBLENDVB xmmreg,xmmreg*,xmmrm128,xmmreg AVX,SANDYBRIDGE
VPBLENDW xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VPCMPESTRI xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPCMPESTRM xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPCMPISTRI xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPCMPISTRM xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPCMPEQB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPEQW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPEQD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPEQQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPGTB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPGTW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPGTD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCMPGTQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPERMILPD xmmreg,xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPERMILPD ymmreg,ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPERMILPD xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPERMILPD ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE

183

VPERMILPS xmmreg,xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPERMILPS ymmreg,ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPERMILPS xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPERMILPS ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VPERM2F128 ymmreg,ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VPEXTRB reg64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPEXTRB reg32,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRB mem8,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRW reg64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPEXTRW reg32,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRW reg64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPEXTRW reg32,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRW mem16,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRD reg64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPEXTRD rm32,xmmreg,imm8 AVX,SANDYBRIDGE
VPEXTRQ rm64,xmmreg,imm8 AVX,SANDYBRIDGE,LONG
VPHADDW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHADDD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHADDSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHMINPOSUW xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPHSUBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHSUBD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPHSUBSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPINSRB xmmreg,xmmreg*,mem8,imm8 AVX,SANDYBRIDGE
VPINSRB xmmreg,xmmreg*,rm8,imm8 AVX,SANDYBRIDGE
VPINSRB xmmreg,xmmreg*,reg32,imm8 AVX,SANDYBRIDGE
VPINSRW xmmreg,xmmreg*,mem16,imm8 AVX,SANDYBRIDGE
VPINSRW xmmreg,xmmreg*,rm16,imm8 AVX,SANDYBRIDGE
VPINSRW xmmreg,xmmreg*,reg32,imm8 AVX,SANDYBRIDGE
VPINSRD xmmreg,xmmreg*,mem32,imm8 AVX,SANDYBRIDGE
VPINSRD xmmreg,xmmreg*,rm32,imm8 AVX,SANDYBRIDGE
VPINSRQ xmmreg,xmmreg*,mem64,imm8 AVX,SANDYBRIDGE,LONG
VPINSRQ xmmreg,xmmreg*,rm64,imm8 AVX,SANDYBRIDGE,LONG
VPMADDWD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMADDUBSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXSD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXUB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXUW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMAXUD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINSD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINUB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINUW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMINUD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMOVMSKB reg64,xmmreg AVX,SANDYBRIDGE,LONG
VPMOVMSKB reg32,xmmreg AVX,SANDYBRIDGE

184

VPMOVSXBW xmmreg,xmmrm64 AVX,SANDYBRIDGE
VPMOVSXBD xmmreg,xmmrm32 AVX,SANDYBRIDGE
VPMOVSXBQ xmmreg,xmmrm16 AVX,SANDYBRIDGE
VPMOVSXWD xmmreg,xmmrm64 AVX,SANDYBRIDGE
VPMOVSXWQ xmmreg,xmmrm32 AVX,SANDYBRIDGE
VPMOVSXDQ xmmreg,xmmrm64 AVX,SANDYBRIDGE
VPMOVZXBW xmmreg,xmmrm64 AVX,SANDYBRIDGE
VPMOVZXBD xmmreg,xmmrm32 AVX,SANDYBRIDGE
VPMOVZXBQ xmmreg,xmmrm16 AVX,SANDYBRIDGE
VPMOVZXWD xmmreg,xmmrm64 AVX,SANDYBRIDGE
VPMOVZXWQ xmmreg,xmmrm32 AVX,SANDYBRIDGE
VPMOVZXDQ xmmreg,xmmrm64 AVX,SANDYBRIDGE
VPMULHUW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMULHRSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMULHW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMULLW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMULLD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMULUDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPMULDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPOR xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSADBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSHUFB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSHUFD xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPSHUFHW xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPSHUFLW xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VPSIGNB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSIGNW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSIGND xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSLLDQ xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRLDQ xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSLLW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSLLW xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSLLD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSLLD xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSLLQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSLLQ xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRAW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRAW xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRAD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRAD xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRLW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRLW xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRLD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRLD xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPSRLQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSRLQ xmmreg,xmmreg*,imm8 AVX,SANDYBRIDGE
VPTEST xmmreg,xmmrm128 AVX,SANDYBRIDGE
VPTEST ymmreg,ymmrm256 AVX,SANDYBRIDGE
VPSUBB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE

185

VPSUBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBUSB xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPSUBUSW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKHBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKHWD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKHDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKHQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKLBW xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKLWD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKLDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPUNPCKLQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPXOR xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VRCPPS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VRCPPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VRCPSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VRSQRTPS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VRSQRTPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VRSQRTSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VROUNDPD xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VROUNDPD ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VROUNDPS xmmreg,xmmrm128,imm8 AVX,SANDYBRIDGE
VROUNDPS ymmreg,ymmrm256,imm8 AVX,SANDYBRIDGE
VROUNDSD xmmreg,xmmreg*,xmmrm64,imm8 AVX,SANDYBRIDGE
VROUNDSS xmmreg,xmmreg*,xmmrm32,imm8 AVX,SANDYBRIDGE
VSHUFPD xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VSHUFPD ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VSHUFPS xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE
VSHUFPS ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE
VSQRTPD xmmreg,xmmrm128 AVX,SANDYBRIDGE
VSQRTPD ymmreg,ymmrm256 AVX,SANDYBRIDGE
VSQRTPS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VSQRTPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VSQRTSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VSQRTSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VSTMXCSR mem32 AVX,SANDYBRIDGE
VSUBPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VSUBPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VSUBPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VSUBPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VSUBSD xmmreg,xmmreg*,xmmrm64 AVX,SANDYBRIDGE
VSUBSS xmmreg,xmmreg*,xmmrm32 AVX,SANDYBRIDGE
VTESTPS xmmreg,xmmrm128 AVX,SANDYBRIDGE
VTESTPS ymmreg,ymmrm256 AVX,SANDYBRIDGE
VTESTPD xmmreg,xmmrm128 AVX,SANDYBRIDGE
VTESTPD ymmreg,ymmrm256 AVX,SANDYBRIDGE

186

VUCOMISD xmmreg,xmmrm64 AVX,SANDYBRIDGE
VUCOMISS xmmreg,xmmrm32 AVX,SANDYBRIDGE
VUNPCKHPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VUNPCKHPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VUNPCKHPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VUNPCKHPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VUNPCKLPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VUNPCKLPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VUNPCKLPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VUNPCKLPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VXORPD xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VXORPD ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VXORPS xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VXORPS ymmreg,ymmreg*,ymmrm256 AVX,SANDYBRIDGE
VZEROALL AVX,SANDYBRIDGE
VZEROUPPER AVX,SANDYBRIDGE

B.1.26 Intel Carry−Less Multiplication instructions (CLMUL)

PCLMULLQLQDQ xmmreg,xmmrm128 SSE,WESTMERE
PCLMULHQLQDQ xmmreg,xmmrm128 SSE,WESTMERE
PCLMULLQHQDQ xmmreg,xmmrm128 SSE,WESTMERE
PCLMULHQHQDQ xmmreg,xmmrm128 SSE,WESTMERE
PCLMULQDQ xmmreg,xmmrm128,imm8 SSE,WESTMERE

B.1.27 Intel AVX Carry−Less Multiplication instructions (CLMUL)

VPCLMULLQLQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCLMULHQLQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCLMULLQHQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCLMULHQHQDQ xmmreg,xmmreg*,xmmrm128 AVX,SANDYBRIDGE
VPCLMULQDQ xmmreg,xmmreg*,xmmrm128,imm8 AVX,SANDYBRIDGE

B.1.28 Intel Fused Multiply−Add instructions (FMA)

VFMADD132PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD132PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD132PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD132PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD312PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD312PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD312PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD312PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD213PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD213PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD213PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD213PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD123PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD123PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD123PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD123PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE

187

VFMADD231PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD231PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD231PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD231PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD321PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD321PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD321PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADD321PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB132PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB132PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB132PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB132PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB312PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB312PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB312PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB312PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB213PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB213PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB213PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB213PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB123PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB123PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB123PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB123PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB231PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB231PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB231PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB231PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB321PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB321PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADDSUB321PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMADDSUB321PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB132PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB132PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB132PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB132PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB312PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB312PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB312PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB312PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB213PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB213PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB213PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB213PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB123PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB123PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB123PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB123PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB231PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE

188

VFMSUB231PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB231PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB231PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB321PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB321PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUB321PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUB321PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD132PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD132PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD132PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD132PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD312PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD312PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD312PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD312PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD213PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD213PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD213PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD213PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD123PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD123PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD123PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD123PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD231PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD231PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD231PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD231PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD321PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD321PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMSUBADD321PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFMSUBADD321PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD132PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD132PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD132PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD132PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD312PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD312PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD312PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD312PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD213PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD213PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD213PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD213PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD123PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD123PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD123PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD123PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD231PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD231PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE

189

VFNMADD231PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD231PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD321PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD321PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMADD321PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMADD321PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB132PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB132PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB132PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB132PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB312PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB312PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB312PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB312PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB213PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB213PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB213PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB213PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB123PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB123PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB123PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB123PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB231PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB231PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB231PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB231PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB321PS xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB321PS ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFNMSUB321PD xmmreg,xmmreg,xmmrm128 FMA,FUTURE
VFNMSUB321PD ymmreg,ymmreg,ymmrm256 FMA,FUTURE
VFMADD132SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMADD132SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMADD312SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMADD312SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMADD213SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMADD213SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMADD123SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMADD123SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMADD231SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMADD231SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMADD321SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMADD321SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMSUB132SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMSUB132SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMSUB312SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMSUB312SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMSUB213SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMSUB213SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMSUB123SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE

190

VFMSUB123SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMSUB231SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMSUB231SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFMSUB321SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFMSUB321SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMADD132SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMADD132SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMADD312SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMADD312SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMADD213SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMADD213SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMADD123SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMADD123SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMADD231SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMADD231SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMADD321SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMADD321SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMSUB132SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMSUB132SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMSUB312SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMSUB312SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMSUB213SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMSUB213SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMSUB123SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMSUB123SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMSUB231SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMSUB231SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE
VFNMSUB321SS xmmreg,xmmreg,xmmrm32 FMA,FUTURE
VFNMSUB321SD xmmreg,xmmreg,xmmrm64 FMA,FUTURE

B.1.29 Intel post−32 nm processor instructions

RDFSBASE reg32 LONG,FUTURE
RDFSBASE reg64 LONG,FUTURE
RDGSBASE reg32 LONG,FUTURE
RDGSBASE reg64 LONG,FUTURE
RDRAND reg16 FUTURE
RDRAND reg32 FUTURE
RDRAND reg64 LONG,FUTURE
WRFSBASE reg32 LONG,FUTURE
WRFSBASE reg64 LONG,FUTURE
WRGSBASE reg32 LONG,FUTURE
WRGSBASE reg64 LONG,FUTURE
VCVTPH2PS ymmreg,xmmrm128 AVX,FUTURE
VCVTPH2PS xmmreg,xmmrm64 AVX,FUTURE
VCVTPS2PH xmmrm128,ymmreg,imm8 AVX,FUTURE
VCVTPS2PH xmmrm64,xmmreg,imm8 AVX,FUTURE
ADCX reg32,rm32 FUTURE
ADCX reg64,rm64 LONG,FUTURE
ADOX reg32,rm32 FUTURE

191

ADOX reg64,rm64 LONG,FUTURE
RDSEED reg16 FUTURE
RDSEED reg32 FUTURE
RDSEED reg64 LONG,FUTURE

B.1.30 VIA (Centaur) security instructions

XSTORE PENT,CYRIX
XCRYPTECB PENT,CYRIX
XCRYPTCBC PENT,CYRIX
XCRYPTCTR PENT,CYRIX
XCRYPTCFB PENT,CYRIX
XCRYPTOFB PENT,CYRIX
MONTMUL PENT,CYRIX
XSHA1 PENT,CYRIX
XSHA256 PENT,CYRIX

B.1.31 AMD Lightweight Profiling (LWP) instructions

LLWPCB reg32 AMD,386
LLWPCB reg64 AMD,X64
SLWPCB reg32 AMD,386
SLWPCB reg64 AMD,X64
LWPVAL reg32,rm32,imm32 AMD,386
LWPVAL reg64,rm32,imm32 AMD,X64
LWPINS reg32,rm32,imm32 AMD,386
LWPINS reg64,rm32,imm32 AMD,X64

B.1.32 AMD XOP and FMA4 instructions (SSE5)

VFMADDPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMADDPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMADDPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMADDPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMADDPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMADDPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMADDPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMADDPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMADDSD xmmreg,xmmreg*,xmmrm64,xmmreg AMD,SSE5
VFMADDSD xmmreg,xmmreg*,xmmreg,xmmrm64 AMD,SSE5
VFMADDSS xmmreg,xmmreg*,xmmrm32,xmmreg AMD,SSE5
VFMADDSS xmmreg,xmmreg*,xmmreg,xmmrm32 AMD,SSE5
VFMADDSUBPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMADDSUBPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMADDSUBPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMADDSUBPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMADDSUBPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMADDSUBPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMADDSUBPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMADDSUBPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMSUBADDPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5

192

VFMSUBADDPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMSUBADDPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMSUBADDPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMSUBADDPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMSUBADDPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMSUBADDPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMSUBADDPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMSUBPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMSUBPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMSUBPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMSUBPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMSUBPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFMSUBPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFMSUBPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFMSUBPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFMSUBSD xmmreg,xmmreg*,xmmrm64,xmmreg AMD,SSE5
VFMSUBSD xmmreg,xmmreg*,xmmreg,xmmrm64 AMD,SSE5
VFMSUBSS xmmreg,xmmreg*,xmmrm32,xmmreg AMD,SSE5
VFMSUBSS xmmreg,xmmreg*,xmmreg,xmmrm32 AMD,SSE5
VFNMADDPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFNMADDPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFNMADDPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFNMADDPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFNMADDPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFNMADDPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFNMADDPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFNMADDPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFNMADDSD xmmreg,xmmreg*,xmmrm64,xmmreg AMD,SSE5
VFNMADDSD xmmreg,xmmreg*,xmmreg,xmmrm64 AMD,SSE5
VFNMADDSS xmmreg,xmmreg*,xmmrm32,xmmreg AMD,SSE5
VFNMADDSS xmmreg,xmmreg*,xmmreg,xmmrm32 AMD,SSE5
VFNMSUBPD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFNMSUBPD ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFNMSUBPD xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFNMSUBPD ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFNMSUBPS xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VFNMSUBPS ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VFNMSUBPS xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VFNMSUBPS ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VFNMSUBSD xmmreg,xmmreg*,xmmrm64,xmmreg AMD,SSE5
VFNMSUBSD xmmreg,xmmreg*,xmmreg,xmmrm64 AMD,SSE5
VFNMSUBSS xmmreg,xmmreg*,xmmrm32,xmmreg AMD,SSE5
VFNMSUBSS xmmreg,xmmreg*,xmmreg,xmmrm32 AMD,SSE5
VFRCZPD xmmreg,xmmrm128* AMD,SSE5
VFRCZPD ymmreg,ymmrm256* AMD,SSE5
VFRCZPS xmmreg,xmmrm128* AMD,SSE5
VFRCZPS ymmreg,ymmrm256* AMD,SSE5
VFRCZSD xmmreg,xmmrm64* AMD,SSE5
VFRCZSS xmmreg,xmmrm32* AMD,SSE5

193

VPCMOV xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPCMOV ymmreg,ymmreg*,ymmrm256,ymmreg AMD,SSE5
VPCMOV xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VPCMOV ymmreg,ymmreg*,ymmreg,ymmrm256 AMD,SSE5
VPCOMB xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMD xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMQ xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMUB xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMUD xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMUQ xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMUW xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPCOMW xmmreg,xmmreg*,xmmrm128,imm8 AMD,SSE5
VPHADDBD xmmreg,xmmrm128* AMD,SSE5
VPHADDBQ xmmreg,xmmrm128* AMD,SSE5
VPHADDBW xmmreg,xmmrm128* AMD,SSE5
VPHADDDQ xmmreg,xmmrm128* AMD,SSE5
VPHADDUBD xmmreg,xmmrm128* AMD,SSE5
VPHADDUBQ xmmreg,xmmrm128* AMD,SSE5
VPHADDUBW xmmreg,xmmrm128* AMD,SSE5
VPHADDUDQ xmmreg,xmmrm128* AMD,SSE5
VPHADDUWD xmmreg,xmmrm128* AMD,SSE5
VPHADDUWQ xmmreg,xmmrm128* AMD,SSE5
VPHADDWD xmmreg,xmmrm128* AMD,SSE5
VPHADDWQ xmmreg,xmmrm128* AMD,SSE5
VPHSUBBW xmmreg,xmmrm128* AMD,SSE5
VPHSUBDQ xmmreg,xmmrm128* AMD,SSE5
VPHSUBWD xmmreg,xmmrm128* AMD,SSE5
VPMACSDD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSDQH xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSDQL xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSDD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSDQH xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSDQL xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSWD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSSWW xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSWD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMACSWW xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMADCSSWD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPMADCSWD xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPPERM xmmreg,xmmreg*,xmmreg,xmmrm128 AMD,SSE5
VPPERM xmmreg,xmmreg*,xmmrm128,xmmreg AMD,SSE5
VPROTB xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPROTB xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPROTB xmmreg,xmmrm128*,imm8 AMD,SSE5
VPROTD xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPROTD xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPROTD xmmreg,xmmrm128*,imm8 AMD,SSE5
VPROTQ xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPROTQ xmmreg,xmmreg*,xmmrm128 AMD,SSE5

194

VPROTQ xmmreg,xmmrm128*,imm8 AMD,SSE5
VPROTW xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPROTW xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPROTW xmmreg,xmmrm128*,imm8 AMD,SSE5
VPSHAB xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHAB xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHAD xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHAD xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHAQ xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHAQ xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHAW xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHAW xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHLB xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHLB xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHLD xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHLD xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHLQ xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHLQ xmmreg,xmmreg*,xmmrm128 AMD,SSE5
VPSHLW xmmreg,xmmrm128*,xmmreg AMD,SSE5
VPSHLW xmmreg,xmmreg*,xmmrm128 AMD,SSE5

B.1.33 Intel AVX2 instructions

VMPSADBW ymmreg,ymmreg*,ymmrm256,imm8 FUTURE,AVX2
VPABSB ymmreg,ymmrm256 FUTURE,AVX2
VPABSW ymmreg,ymmrm256 FUTURE,AVX2
VPABSD ymmreg,ymmrm256 FUTURE,AVX2
VPACKSSWB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPACKSSDW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPACKUSDW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPACKUSWB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDSB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDUSB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPADDUSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPALIGNR ymmreg,ymmreg*,ymmrm256,imm8 FUTURE,AVX2
VPAND ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPANDN ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPAVGB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPAVGW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPBLENDVB ymmreg,ymmreg*,ymmrm256,ymmreg FUTURE,AVX2
VPBLENDW ymmreg,ymmreg*,ymmrm256,imm8 FUTURE,AVX2
VPCMPEQB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPCMPEQW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPCMPEQD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPCMPEQQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2

195

VPCMPGTB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPCMPGTW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPCMPGTD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPCMPGTQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPHADDW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPHADDD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPHADDSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPHSUBW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPHSUBD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPHSUBSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMADDUBSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMADDWD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMAXSB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMAXSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMAXSD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMAXUB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMAXUW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMAXUD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMINSB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMINSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMINSD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMINUB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMINUW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMINUD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMOVMSKB reg32,ymmreg FUTURE,AVX2
VPMOVMSKB reg64,ymmreg FUTURE,AVX2
VPMOVSXBW ymmreg,xmmrm128 FUTURE,AVX2
VPMOVSXBD ymmreg,mem64 FUTURE,AVX2
VPMOVSXBD ymmreg,xmmreg FUTURE,AVX2
VPMOVSXBQ ymmreg,mem32 FUTURE,AVX2
VPMOVSXBD ymmreg,xmmreg FUTURE,AVX2
VPMOVSXWD ymmreg,xmmrm128 FUTURE,AVX2
VPMOVSXWQ ymmreg,mem64 FUTURE,AVX2
VPMOVSXWQ ymmreg,xmmreg FUTURE,AVX2
VPMOVSXDQ ymmreg,xmmrm128 FUTURE,AVX2
VPMOVZXBW ymmreg,xmmrm128 FUTURE,AVX2
VPMOVZXBD ymmreg,mem64 FUTURE,AVX2
VPMOVZXBD ymmreg,xmmreg FUTURE,AVX2
VPMOVZXBQ ymmreg,mem32 FUTURE,AVX2
VPMOVZXBQ ymmreg,xmmreg FUTURE,AVX2
VPMOVZXWD ymmreg,xmmrm128 FUTURE,AVX2
VPMOVZXWQ ymmreg,mem64 FUTURE,AVX2
VPMOVZXWQ ymmreg,xmmreg FUTURE,AVX2
VPMOVZXDQ ymmreg,xmmrm128 FUTURE,AVX2
VPMULDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMULHRSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMULHUW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMULHW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMULLW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2

196

VPMULLD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPMULUDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPOR ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSADBW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSHUFB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSHUFD ymmreg,ymmrm256,imm8 FUTURE,AVX2
VPSHUFHW ymmreg,ymmrm256,imm8 FUTURE,AVX2
VPSHUFLW ymmreg,ymmrm256,imm8 FUTURE,AVX2
VPSIGNB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSIGNW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSIGND ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSLLDQ ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSLLW ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSLLW ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSLLD ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSLLD ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSLLQ ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSLLQ ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSRAW ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSRAW ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSRAD ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSRAD ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSRLDQ ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSRLW ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSRLW ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSRLD ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSRLD ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSRLQ ymmreg,ymmreg*,xmmrm128 FUTURE,AVX2
VPSRLQ ymmreg,ymmreg*,imm8 FUTURE,AVX2
VPSUBB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSUBW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSUBD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSUBQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSUBSB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSUBSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSUBUSB ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSUBUSW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKHBW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKHWD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKHDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKHQDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKLBW ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKLWD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKLDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPUNPCKLQDQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPXOR ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VMOVNTDQA ymmreg,mem128 FUTURE,AVX2
VBROADCASTSS xmmreg,xmmreg FUTURE,AVX2
VBROADCASTSS ymmreg,xmmreg FUTURE,AVX2

197

VBROADCASTSD ymmreg,xmmreg FUTURE,AVX2
VBROADCASTI128 ymmreg,mem128 FUTURE,AVX2
VPBLENDD xmmreg,xmmreg*,xmmrm128,imm8 FUTURE,AVX2
VPBLENDD ymmreg,ymmreg*,ymmrm256,imm8 FUTURE,AVX2
VPBROADCASTB xmmreg,mem8 FUTURE,AVX2
VPBROADCASTB xmmreg,xmmreg FUTURE,AVX2
VPBROADCASTB ymmreg,mem8 FUTURE,AVX2
VPBROADCASTB ymmreg,xmmreg FUTURE,AVX2
VPBROADCASTW xmmreg,mem16 FUTURE,AVX2
VPBROADCASTW xmmreg,xmmreg FUTURE,AVX2
VPBROADCASTW ymmreg,mem16 FUTURE,AVX2
VPBROADCASTW ymmreg,xmmreg FUTURE,AVX2
VPBROADCASTD xmmreg,mem32 FUTURE,AVX2
VPBROADCASTD xmmreg,xmmreg FUTURE,AVX2
VPBROADCASTD ymmreg,mem32 FUTURE,AVX2
VPBROADCASTD ymmreg,xmmreg FUTURE,AVX2
VPBROADCASTQ xmmreg,mem64 FUTURE,AVX2
VPBROADCASTQ xmmreg,xmmreg FUTURE,AVX2
VPBROADCASTQ ymmreg,mem64 FUTURE,AVX2
VPBROADCASTQ ymmreg,xmmreg FUTURE,AVX2
VPERMD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPERMPD ymmreg,ymmrm256,imm8 FUTURE,AVX2
VPERMPS ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPERMQ ymmreg,ymmrm256,imm8 FUTURE,AVX2
VPERM2I128 ymmreg,ymmreg,ymmrm256,imm8 FUTURE,AVX2
VEXTRACTI128 xmmrm128,ymmreg,imm8 FUTURE,AVX2
VINSERTI128 ymmreg,ymmreg*,xmmrm128,imm8 FUTURE,AVX2
VPMASKMOVD xmmreg,xmmreg*,mem128 FUTURE,AVX2
VPMASKMOVD ymmreg,ymmreg*,mem256 FUTURE,AVX2
VPMASKMOVQ xmmreg,xmmreg*,mem128 FUTURE,AVX2
VPMASKMOVQ ymmreg,ymmreg*,mem256 FUTURE,AVX2
VPMASKMOVD mem128,xmmreg*,xmmreg FUTURE,AVX2
VPMASKMOVD mem256,ymmreg*,ymmreg FUTURE,AVX2
VPMASKMOVQ mem128,xmmreg*,xmmreg FUTURE,AVX2
VPMASKMOVQ mem256,ymmreg*,ymmreg FUTURE,AVX2
VPSLLVD xmmreg,xmmreg*,xmmrm128 FUTURE,AVX2
VPSLLVQ xmmreg,xmmreg*,xmmrm128 FUTURE,AVX2
VPSLLVD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSLLVQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSRAVD xmmreg,xmmreg*,xmmrm128 FUTURE,AVX2
VPSRAVD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSRLVD xmmreg,xmmreg*,xmmrm128 FUTURE,AVX2
VPSRLVQ xmmreg,xmmreg*,xmmrm128 FUTURE,AVX2
VPSRLVD ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VPSRLVQ ymmreg,ymmreg*,ymmrm256 FUTURE,AVX2
VGATHERDPD xmmreg,mem64,xmmreg FUTURE,AVX2
VGATHERQPD xmmreg,mem64,xmmreg FUTURE,AVX2
VGATHERDPD ymmreg,mem64,ymmreg FUTURE,AVX2
VGATHERQPD ymmreg,mem64,ymmreg FUTURE,AVX2

198

VGATHERDPS xmmreg,mem32,xmmreg FUTURE,AVX2
VGATHERQPS xmmreg,mem32,xmmreg FUTURE,AVX2
VGATHERDPS ymmreg,mem32,ymmreg FUTURE,AVX2
VGATHERQPS xmmreg,mem32,xmmreg FUTURE,AVX2
VPGATHERDD xmmreg,mem32,xmmreg FUTURE,AVX2
VPGATHERQD xmmreg,mem32,xmmreg FUTURE,AVX2
VPGATHERDD ymmreg,mem32,ymmreg FUTURE,AVX2
VPGATHERQD xmmreg,mem32,xmmreg FUTURE,AVX2
VPGATHERDQ xmmreg,mem64,xmmreg FUTURE,AVX2
VPGATHERQQ xmmreg,mem64,xmmreg FUTURE,AVX2
VPGATHERDQ ymmreg,mem64,ymmreg FUTURE,AVX2
VPGATHERQQ ymmreg,mem64,ymmreg FUTURE,AVX2

B.1.34 Transactional Synchronization Extensions (TSX)

XABORT imm FUTURE,RTM
XABORT imm8 FUTURE,RTM
XBEGIN imm FUTURE,RTM
XBEGIN imm|near FUTURE,RTM
XBEGIN imm16 FUTURE,RTM
XBEGIN imm16|near FUTURE,RTM
XBEGIN imm32 FUTURE,RTM
XBEGIN imm32|near FUTURE,RTM
XEND FUTURE,RTM
XTEST FUTURE,HLE,RTM

B.1.35 Intel BMI1 and BMI2 instructions

TZCNT reg16,rm16 FUTURE,BMI1
TZCNT reg32,rm32 FUTURE,BMI1
TZCNT reg64,rm64 LONG,FUTURE,BMI1
ANDN reg32,reg32,rm32 FUTURE,BMI1
ANDN reg64,reg64,rm64 LONG,FUTURE,BMI1
BEXTR reg32,rm32,reg32 FUTURE,BMI1
BEXTR reg64,rm64,reg64 LONG,FUTURE,BMI1
BLSI reg32,rm32 FUTURE,BMI1
BLSI reg64,rm64 LONG,FUTURE,BMI1
BLSMSK reg32,rm32 FUTURE,BMI1
BLSMSK reg64,rm64 LONG,FUTURE,BMI1
BLSR reg32,rm32 FUTURE,BMI1
BLSR reg64,rm64 LONG,FUTURE,BMI1
BZHI reg32,rm32,reg32 FUTURE,BMI2
BZHI reg64,rm64,reg64 LONG,FUTURE,BMI2
MULX reg32,reg32,rm32 FUTURE,BMI2
MULX reg64,reg64,rm64 LONG,FUTURE,BMI2
PDEP reg32,reg32,rm32 FUTURE,BMI2
PDEP reg64,reg64,rm64 LONG,FUTURE,BMI2
PEXT reg32,reg32,rm32 FUTURE,BMI2
PEXT reg64,reg64,rm64 LONG,FUTURE,BMI2
RORX reg32,rm32,imm8 FUTURE,BMI2

199

RORX reg64,rm64,imm8 LONG,FUTURE,BMI2
SARX reg32,rm32,reg32 FUTURE,BMI2
SARX reg64,rm64,reg64 LONG,FUTURE,BMI2
SHLX reg32,rm32,reg32 FUTURE,BMI2
SHLX reg64,rm64,reg64 LONG,FUTURE,BMI2
SHRX reg32,rm32,reg32 FUTURE,BMI2
SHRX reg64,rm64,reg64 LONG,FUTURE,BMI2

B.1.36 Systematic names for the hinting nop instructions

HINT_NOP0 rm16 P6,UNDOC
HINT_NOP0 rm32 P6,UNDOC
HINT_NOP0 rm64 X64,UNDOC
HINT_NOP1 rm16 P6,UNDOC
HINT_NOP1 rm32 P6,UNDOC
HINT_NOP1 rm64 X64,UNDOC
HINT_NOP2 rm16 P6,UNDOC
HINT_NOP2 rm32 P6,UNDOC
HINT_NOP2 rm64 X64,UNDOC
HINT_NOP3 rm16 P6,UNDOC
HINT_NOP3 rm32 P6,UNDOC
HINT_NOP3 rm64 X64,UNDOC
HINT_NOP4 rm16 P6,UNDOC
HINT_NOP4 rm32 P6,UNDOC
HINT_NOP4 rm64 X64,UNDOC
HINT_NOP5 rm16 P6,UNDOC
HINT_NOP5 rm32 P6,UNDOC
HINT_NOP5 rm64 X64,UNDOC
HINT_NOP6 rm16 P6,UNDOC
HINT_NOP6 rm32 P6,UNDOC
HINT_NOP6 rm64 X64,UNDOC
HINT_NOP7 rm16 P6,UNDOC
HINT_NOP7 rm32 P6,UNDOC
HINT_NOP7 rm64 X64,UNDOC
HINT_NOP8 rm16 P6,UNDOC
HINT_NOP8 rm32 P6,UNDOC
HINT_NOP8 rm64 X64,UNDOC
HINT_NOP9 rm16 P6,UNDOC
HINT_NOP9 rm32 P6,UNDOC
HINT_NOP9 rm64 X64,UNDOC
HINT_NOP10 rm16 P6,UNDOC
HINT_NOP10 rm32 P6,UNDOC
HINT_NOP10 rm64 X64,UNDOC
HINT_NOP11 rm16 P6,UNDOC
HINT_NOP11 rm32 P6,UNDOC
HINT_NOP11 rm64 X64,UNDOC
HINT_NOP12 rm16 P6,UNDOC
HINT_NOP12 rm32 P6,UNDOC
HINT_NOP12 rm64 X64,UNDOC
HINT_NOP13 rm16 P6,UNDOC

200

HINT_NOP13 rm32 P6,UNDOC
HINT_NOP13 rm64 X64,UNDOC
HINT_NOP14 rm16 P6,UNDOC
HINT_NOP14 rm32 P6,UNDOC
HINT_NOP14 rm64 X64,UNDOC
HINT_NOP15 rm16 P6,UNDOC
HINT_NOP15 rm32 P6,UNDOC
HINT_NOP15 rm64 X64,UNDOC
HINT_NOP16 rm16 P6,UNDOC
HINT_NOP16 rm32 P6,UNDOC
HINT_NOP16 rm64 X64,UNDOC
HINT_NOP17 rm16 P6,UNDOC
HINT_NOP17 rm32 P6,UNDOC
HINT_NOP17 rm64 X64,UNDOC
HINT_NOP18 rm16 P6,UNDOC
HINT_NOP18 rm32 P6,UNDOC
HINT_NOP18 rm64 X64,UNDOC
HINT_NOP19 rm16 P6,UNDOC
HINT_NOP19 rm32 P6,UNDOC
HINT_NOP19 rm64 X64,UNDOC
HINT_NOP20 rm16 P6,UNDOC
HINT_NOP20 rm32 P6,UNDOC
HINT_NOP20 rm64 X64,UNDOC
HINT_NOP21 rm16 P6,UNDOC
HINT_NOP21 rm32 P6,UNDOC
HINT_NOP21 rm64 X64,UNDOC
HINT_NOP22 rm16 P6,UNDOC
HINT_NOP22 rm32 P6,UNDOC
HINT_NOP22 rm64 X64,UNDOC
HINT_NOP23 rm16 P6,UNDOC
HINT_NOP23 rm32 P6,UNDOC
HINT_NOP23 rm64 X64,UNDOC
HINT_NOP24 rm16 P6,UNDOC
HINT_NOP24 rm32 P6,UNDOC
HINT_NOP24 rm64 X64,UNDOC
HINT_NOP25 rm16 P6,UNDOC
HINT_NOP25 rm32 P6,UNDOC
HINT_NOP25 rm64 X64,UNDOC
HINT_NOP26 rm16 P6,UNDOC
HINT_NOP26 rm32 P6,UNDOC
HINT_NOP26 rm64 X64,UNDOC
HINT_NOP27 rm16 P6,UNDOC
HINT_NOP27 rm32 P6,UNDOC
HINT_NOP27 rm64 X64,UNDOC
HINT_NOP28 rm16 P6,UNDOC
HINT_NOP28 rm32 P6,UNDOC
HINT_NOP28 rm64 X64,UNDOC
HINT_NOP29 rm16 P6,UNDOC
HINT_NOP29 rm32 P6,UNDOC

201

HINT_NOP29 rm64 X64,UNDOC
HINT_NOP30 rm16 P6,UNDOC
HINT_NOP30 rm32 P6,UNDOC
HINT_NOP30 rm64 X64,UNDOC
HINT_NOP31 rm16 P6,UNDOC
HINT_NOP31 rm32 P6,UNDOC
HINT_NOP31 rm64 X64,UNDOC
HINT_NOP32 rm16 P6,UNDOC
HINT_NOP32 rm32 P6,UNDOC
HINT_NOP32 rm64 X64,UNDOC
HINT_NOP33 rm16 P6,UNDOC
HINT_NOP33 rm32 P6,UNDOC
HINT_NOP33 rm64 X64,UNDOC
HINT_NOP34 rm16 P6,UNDOC
HINT_NOP34 rm32 P6,UNDOC
HINT_NOP34 rm64 X64,UNDOC
HINT_NOP35 rm16 P6,UNDOC
HINT_NOP35 rm32 P6,UNDOC
HINT_NOP35 rm64 X64,UNDOC
HINT_NOP36 rm16 P6,UNDOC
HINT_NOP36 rm32 P6,UNDOC
HINT_NOP36 rm64 X64,UNDOC
HINT_NOP37 rm16 P6,UNDOC
HINT_NOP37 rm32 P6,UNDOC
HINT_NOP37 rm64 X64,UNDOC
HINT_NOP38 rm16 P6,UNDOC
HINT_NOP38 rm32 P6,UNDOC
HINT_NOP38 rm64 X64,UNDOC
HINT_NOP39 rm16 P6,UNDOC
HINT_NOP39 rm32 P6,UNDOC
HINT_NOP39 rm64 X64,UNDOC
HINT_NOP40 rm16 P6,UNDOC
HINT_NOP40 rm32 P6,UNDOC
HINT_NOP40 rm64 X64,UNDOC
HINT_NOP41 rm16 P6,UNDOC
HINT_NOP41 rm32 P6,UNDOC
HINT_NOP41 rm64 X64,UNDOC
HINT_NOP42 rm16 P6,UNDOC
HINT_NOP42 rm32 P6,UNDOC
HINT_NOP42 rm64 X64,UNDOC
HINT_NOP43 rm16 P6,UNDOC
HINT_NOP43 rm32 P6,UNDOC
HINT_NOP43 rm64 X64,UNDOC
HINT_NOP44 rm16 P6,UNDOC
HINT_NOP44 rm32 P6,UNDOC
HINT_NOP44 rm64 X64,UNDOC
HINT_NOP45 rm16 P6,UNDOC
HINT_NOP45 rm32 P6,UNDOC
HINT_NOP45 rm64 X64,UNDOC

202

HINT_NOP46 rm16 P6,UNDOC
HINT_NOP46 rm32 P6,UNDOC
HINT_NOP46 rm64 X64,UNDOC
HINT_NOP47 rm16 P6,UNDOC
HINT_NOP47 rm32 P6,UNDOC
HINT_NOP47 rm64 X64,UNDOC
HINT_NOP48 rm16 P6,UNDOC
HINT_NOP48 rm32 P6,UNDOC
HINT_NOP48 rm64 X64,UNDOC
HINT_NOP49 rm16 P6,UNDOC
HINT_NOP49 rm32 P6,UNDOC
HINT_NOP49 rm64 X64,UNDOC
HINT_NOP50 rm16 P6,UNDOC
HINT_NOP50 rm32 P6,UNDOC
HINT_NOP50 rm64 X64,UNDOC
HINT_NOP51 rm16 P6,UNDOC
HINT_NOP51 rm32 P6,UNDOC
HINT_NOP51 rm64 X64,UNDOC
HINT_NOP52 rm16 P6,UNDOC
HINT_NOP52 rm32 P6,UNDOC
HINT_NOP52 rm64 X64,UNDOC
HINT_NOP53 rm16 P6,UNDOC
HINT_NOP53 rm32 P6,UNDOC
HINT_NOP53 rm64 X64,UNDOC
HINT_NOP54 rm16 P6,UNDOC
HINT_NOP54 rm32 P6,UNDOC
HINT_NOP54 rm64 X64,UNDOC
HINT_NOP55 rm16 P6,UNDOC
HINT_NOP55 rm32 P6,UNDOC
HINT_NOP55 rm64 X64,UNDOC
HINT_NOP56 rm16 P6,UNDOC
HINT_NOP56 rm32 P6,UNDOC
HINT_NOP56 rm64 X64,UNDOC
HINT_NOP57 rm16 P6,UNDOC
HINT_NOP57 rm32 P6,UNDOC
HINT_NOP57 rm64 X64,UNDOC
HINT_NOP58 rm16 P6,UNDOC
HINT_NOP58 rm32 P6,UNDOC
HINT_NOP58 rm64 X64,UNDOC
HINT_NOP59 rm16 P6,UNDOC
HINT_NOP59 rm32 P6,UNDOC
HINT_NOP59 rm64 X64,UNDOC
HINT_NOP60 rm16 P6,UNDOC
HINT_NOP60 rm32 P6,UNDOC
HINT_NOP60 rm64 X64,UNDOC
HINT_NOP61 rm16 P6,UNDOC
HINT_NOP61 rm32 P6,UNDOC
HINT_NOP61 rm64 X64,UNDOC
HINT_NOP62 rm16 P6,UNDOC

203

HINT_NOP62 rm32 P6,UNDOC
HINT_NOP62 rm64 X64,UNDOC
HINT_NOP63 rm16 P6,UNDOC
HINT_NOP63 rm32 P6,UNDOC
HINT_NOP63 rm64 X64,UNDOC

204

Appendix C: NASM Version History

C.1 NASM 2 Series
The NASM 2 series support x86−64, and is the production version of NASM since 2007.

C.1.1 Version 2.10.04

• Add back the inadvertently deleted 256−bit version of the VORPD instruction.

• Correct disassembly of instructions starting with byte 82 hex.

• Fix corner cases in token pasting, for example:

 %define N 1e%++%+ 5
 dd N, 1e+5

C.1.2 Version 2.10.03

• Correct the assembly of the instruction:

XRELEASE MOV [absolute],AL

Previous versions would incorrectly generate F3 A2 for this instruction and issue a warning; correct behavior
is to emit F3 88 05 .

C.1.3 Version 2.10.02

• Add the ifunc macro package with integer functions, currently only integer logarithms. See section 5.4.

• Add the RDSEED, ADCX and ADOX instructions.

C.1.4 Version 2.10.01

• Add missing VPMOVMSKB instruction with reg32, ymmreg operands.

C.1.5 Version 2.10

• When optimization is enabled, mov r64,imm now optimizes to the shortest form possible between:

 mov r32,imm32 ; 5 bytes
 mov r64,imm32 ; 7 bytes
 mov r64,imm64 ; 10 bytes

To force a specific form, use the STRICT keyword, see section 3.7.

• Add support for the Intel AVX2 instruction set.

• Add support for Bit Manipulation Instructions 1 and 2.

• Add support for Intel Transactional Synchronization Extensions (TSX).

• Add support for x32 ELF (32−bit ELF with the CPU in 64−bit mode.) See section 7.9.

• Add support for bigendian UTF−16 and UTF−32. See section 3.4.5.

205

C.1.6 Version 2.09.10

• Fix up NSIS script to protect uninstaller against registry keys absence or corruption. It brings in a few
additional questions to a user during deinstallation procedure but still it is better than unpredictable file
removal.

C.1.7 Version 2.09.09

• Fix initialization of section attributes of bin output format.

• Fix mach64 output format bug that crashes NASM due to NULL symbols.

C.1.8 Version 2.09.08

• Fix __OUTPUT_FORMAT__ assignment when output driver alias is used. For example when −f elf is
used __OUTPUT_FORMAT__ must be set to elf , if −f elf32 is used __OUTPUT_FORMAT__ must
be assigned accordingly, i.e. to elf32 . The rule applies to all output driver aliases. See section 4.12.6.

C.1.9 Version 2.09.07

• Fix attempts to close same file several times when −a option is used.

• Fixes for VEXTRACTF128, VMASKMOVPS encoding.

C.1.10 Version 2.09.06

• Fix missed section attribute initialization in bin output target.

C.1.11 Version 2.09.05

• Fix arguments encoding for VPEXTRW instruction.

• Remove invalid form of VPEXTRW instruction.

• Add VLDDQU as alias for VLDQQU to match specification.

C.1.12 Version 2.09.04

• Fix incorrect labels offset for VEX intructions.

• Eliminate bogus warning on implicit operand size override.

• %if term could not handle 64 bit numbers.

• The COFF backend was limiting relocations number to 16 bits even if in real there were a way more
relocations.

C.1.13 Version 2.09.03

• Print %macro name inside %rep blocks on error.

• Fix preprocessor expansion behaviour. It happened sometime too early and sometime simply wrong. Move
behaviour back to the origins (down to NASM 2.05.01).

• Fix unitialized data dereference on OMF output format.

• Issue warning on unterminated %{ construct.

• Fix for documentation typo.

206

C.1.14 Version 2.09.02

• Fix reversed tokens when %deftok produces more than one output token.

• Fix segmentation fault on disassembling some VEX instructions.

• Missing %endif did not always cause error.

• Fix typo in documentation.

• Compound context local preprocessor single line macro identifiers were not expanded early enough and as
result lead to unresolved symbols.

C.1.15 Version 2.09.01

• Fix NULL dereference on missed %deftok second parameter.

• Fix NULL dereference on invalid %substr parameters.

C.1.16 Version 2.09

• Fixed assignment the magnitude of %rep counter. It is limited to 62 bits now.

• Fixed NULL dereference if argument of %strlen resolves to whitespace. For example if nonexistent
macro parameter is used.

• %ifenv , %elifenv , %ifnenv , and %elifnenv directives introduced. See section 4.4.9.

• Fixed NULL dereference if environment variable is missed.

• Updates of new AVX v7 Intel instructions.

• PUSH imm32 is now officially documented.

• Fix for encoding the LFS, LGS and LSS in 64−bit mode.

• Fixes for compatibility with OpenWatcom compiler and DOS 8.3 file format limitation.

• Macros parameters range expansion introduced. See section 4.3.4.

• Backward compatibility on expanging of local sigle macros restored.

• 8 bit relocations for elf and bin output formats are introduced.

• Short intersegment jumps are permitted now.

• An alignment more than 64 bytes are allowed for win32 , win64 output formats.

• SECTALIGN directive introduced. See section 4.12.13.

• nojmp option introduced in smartalign package. See section 5.2.

• Short aliases win , elf and macho for output formats are introduced. Each stands for win32 , elf32 and
macho32 accordingly.

• Faster handling of missing directives implemented.

• Various small improvements in documentation.

• No hang anymore if unable to open malloc.log file.

• The environments without vsnprintf function are able to build nasm again.

207

• AMD LWP instructions updated.

• Tighten EA checks. We warn a user if there overflow in EA addressing.

• Make −Ox the default optimization level. For the legacy behavior, specify −O0 explicitly. See section
2.1.22.

• Environment variables read with %! or tested with %ifenv can now contain non−identifier characters if
surrounded by quotes. See section 4.10.2.

• Add a new standard macro package %use fp for floating−point convenience macros. See section 5.3.

C.1.17 Version 2.08.02

• Fix crash under certain circumstances when using the %+ operator.

C.1.18 Version 2.08.01

• Fix the %use statement, which was broken in 2.08.

C.1.19 Version 2.08

• A number of enhancements/fixes in macros area.

• Support for converting strings to tokens. See section 4.1.9.

• Fuzzy operand size logic introduced.

• Fix COFF stack overrun on too long export identifiers.

• Fix Macho−O alignment bug.

• Fix crashes with –fwin32 on file with many exports.

• Fix stack overrun for too long [DEBUG id].

• Fix incorrect sbyte usage in IMUL (hit only if optimization flag passed).

• Append ending token for .stabs records in the ELF output format.

• New NSIS script which uses ModernUI and MultiUser approach.

• Visual Studio 2008 NASM integration (rules file).

• Warn a user if a constant is too long (and as result will be stripped).

• The obsoleted pre−XOP AMD SSE5 instruction set which was never actualized was removed.

• Fix stack overrun on too long error file name passed from the command line.

• Bind symbols to the .text section by default (ie in case if SECTION directive was omitted) in the ELF
output format.

• Fix sync points array index wrapping.

• A few fixes for FMA4 and XOP instruction templates.

• Add AMD Lightweight Profiling (LWP) instructions.

• Fix the offset for %arg in 64−bit mode.

• An undefined local macro (%$) no longer matches a global macro with the same name.

208

• Fix NULL dereference on too long local labels.

C.1.20 Version 2.07

• NASM is now under the 2−clause BSD license. See section 1.1.2.

• Fix the section type for the .strtab section in the elf64 output format.

• Fix the handling of COMMON directives in the obj output format.

• New ith and srec output formats; these are variants of the bin output format which output Intel hex
and Motorola S−records, respectively. See section 7.2 and section 7.3.

• rdf2ihx replaced with an enhanced rdf2bin , which can output binary, COM, Intel hex or Motorola
S−records.

• The Windows installer now puts the NASM directory first in the PATH of the "NASM Shell".

• Revert the early expansion behavior of %+ to pre−2.06 behavior: %+ is only expanded late.

• Yet another Mach−O alignment fix.

• Don’t delete the list file on errors. Also, include error and warning information in the list file.

• Support for 64−bit Mach−O output, see section 7.8.

• Fix assert failure on certain operations that involve strings with high−bit bytes.

C.1.21 Version 2.06

• This release is dedicated to the memory of Charles A. Crayne, long time NASM developer as well as
moderator of comp.lang.asm.x86 and author of the book Serious Assembler. We miss you, Chuck.

• Support for indirect macro expansion (%[...]). See section 4.1.3.

• %pop can now take an argument, see section 4.7.1.

• The argument to %use is no longer macro−expanded. Use %[...] if macro expansion is desired.

• Support for thread−local storage in ELF32 and ELF64. See section 7.9.4.

• Fix crash on %ifmacro without an argument.

• Correct the arguments to the POPCNT instruction.

• Fix section alignment in the Mach−O format.

• Update AVX support to version 5 of the Intel specification.

• Fix the handling of accesses to context−local macros from higher levels in the context stack.

• Treat WAIT as a prefix rather than as an instruction, thereby allowing constructs like O16 FSAVE to work
correctly.

• Support for structures with a non−zero base offset. See section 4.12.10.

• Correctly handle preprocessor token concatenation (see section 4.3.9) involving floating−point numbers.

• The PINSR series of instructions have been corrected and rationalized.

• Removed AMD SSE5, replaced with the new XOP/FMA4/CVT16 (rev 3.03) spec.

• The ELF backends no longer automatically generate a .comment section.

209

• Add additional "well−known" ELF sections with default attributes. See section 7.9.2.

C.1.22 Version 2.05.01

• Fix the −w/−W option parsing, which was broken in NASM 2.05.

C.1.23 Version 2.05

• Fix redundant REX.W prefix on JMP reg64 .

• Make the behaviour of −O0 match NASM 0.98 legacy behavior. See section 2.1.22.

• −w−user can be used to suppress the output of %warning directives. See section 2.1.24.

• Fix bug where ALIGN would issue a full alignment datum instead of zero bytes.

• Fix offsets in list files.

• Fix %include inside multi−line macros or loops.

• Fix error where NASM would generate a spurious warning on valid optimizations of immediate values.

• Fix arguments to a number of the CVT SSE instructions.

• Fix RIP−relative offsets when the instruction carries an immediate.

• Massive overhaul of the ELF64 backend for spec compliance.

• Fix the Geode PFRCPV and PFRSQRTV instruction.

• Fix the SSE 4.2 CRC32 instruction.

C.1.24 Version 2.04

• Sanitize macro handing in the %error directive.

• New %warning directive to issue user−controlled warnings.

• %error directives are now deferred to the final assembly phase.

• New %fatal directive to immediately terminate assembly.

• New %strcat directive to join quoted strings together.

• New %use macro directive to support standard macro directives. See section 4.6.4.

• Excess default parameters to %macro now issues a warning by default. See section 4.3.

• Fix %ifn and %elifn .

• Fix nested %else clauses.

• Correct the handling of nested %reps.

• New %unmacro directive to undeclare a multi−line macro. See section 4.3.12.

• Builtin macro __PASS__ which expands to the current assembly pass. See section 4.12.9.

• __utf16__ and __utf32__ operators to generate UTF−16 and UTF−32 strings. See section 3.4.5.

• Fix bug in case−insensitive matching when compiled on platforms that don’t use the configure script.
Of the official release binaries, that only affected the OS/2 binary.

• Support for x87 packed BCD constants. See section 3.4.7.

210

• Correct the LTR and SLDT instructions in 64−bit mode.

• Fix unnecessary REX.W prefix on indirect jumps in 64−bit mode.

• Add AVX versions of the AES instructions (VAES...).

• Fix the 256−bit FMA instructions.

• Add 256−bit AVX stores per the latest AVX spec.

• VIA XCRYPT instructions can now be written either with or without REP, apparently different versions of
the VIA spec wrote them differently.

• Add missing 64−bit MOVNTI instruction.

• Fix the operand size of VMREAD and VMWRITE.

• Numerous bug fixes, especially to the AES, AVX and VTX instructions.

• The optimizer now always runs until it converges. It also runs even when disabled, but doesn’t optimize.
This allows most forward references to be resolved properly.

• %push no longer needs a context identifier; omitting the context identifier results in an anonymous context.

C.1.25 Version 2.03.01

• Fix buffer overflow in the listing module.

• Fix the handling of hexadecimal escape codes in ‘...‘ strings.

• The Postscript/PDF documentation has been reformatted.

• The −F option now implies −g.

C.1.26 Version 2.03

• Add support for Intel AVX, CLMUL and FMA instructions, including YMM registers.

• dy , resy and yword for 32−byte operands.

• Fix some SSE5 instructions.

• Intel INVEPT, INVVPID and MOVBE instructions.

• Fix checking for critical expressions when the optimizer is enabled.

• Support the DWARF debugging format for ELF targets.

• Fix optimizations of signed bytes.

• Fix operation on bigendian machines.

• Fix buffer overflow in the preprocessor.

• SAFESEH support for Win32, IMAGEREL for Win64 (SEH).

• %? and %?? to refer to the name of a macro itself. In particular, %idefine keyword $%? can be used
to make a keyword "disappear".

• New options for dependency generation: −MD, −MF, −MP, −MT, −MQ.

• New preprocessor directives %pathsearch and %depend; INCBIN reimplemented as a macro.

211

• %include now resolves macros in a sane manner.

• %substr can now be used to get other than one−character substrings.

• New type of character/string constants, using backquotes (‘...‘), which support C−style escape
sequences.

• %defstr and %idefstr to stringize macro definitions before creation.

• Fix forward references used in EQU statements.

C.1.27 Version 2.02

• Additional fixes for MMX operands with explicit qword , as well as (hopefully) SSE operands with
oword .

• Fix handling of truncated strings with DO.

• Fix segfaults due to memory overwrites when floating−point constants were used.

• Fix segfaults due to missing include files.

• Fix OpenWatcom Makefiles for DOS and OS/2.

• Add autogenerated instruction list back into the documentation.

• ELF: Fix segfault when generating stabs, and no symbols have been defined.

• ELF: Experimental support for DWARF debugging information.

• New compile date and time standard macros.

• %ifnum now returns true for negative numbers.

• New %iftoken test for a single token.

• New %ifempty test for empty expansion.

• Add support for the XSAVE instruction group.

• Makefile for Netware/gcc.

• Fix issue with some warnings getting emitted way too many times.

• Autogenerated instruction list added to the documentation.

C.1.28 Version 2.01

• Fix the handling of MMX registers with explicit qword tags on memory (broken in 2.00 due to 64−bit
changes.)

• Fix the PREFETCH instructions.

• Fix the documentation.

• Fix debugging info when using −f elf (backwards compatibility alias for −f elf32).

• Man pages for rdoff tools (from the Debian project.)

• ELF: handle large numbers of sections.

• Fix corrupt output when the optimizer runs out of passes.

212

C.1.29 Version 2.00

• Added c99 data−type compliance.

• Added general x86−64 support.

• Added win64 (x86−64 COFF) output format.

• Added __BITS__ standard macro.

• Renamed the elf output format to elf32 for clarity.

• Added elf64 and macho (MacOS X) output formats.

• Added Numeric constants in dq directive.

• Added oword , do and reso pseudo operands.

• Allow underscores in numbers.

• Added 8−, 16− and 128−bit floating−point formats.

• Added binary, octal and hexadecimal floating−point.

• Correct the generation of floating−point constants.

• Added floating−point option control.

• Added Infinity and NaN floating point support.

• Added ELF Symbol Visibility support.

• Added setting OSABI value in ELF header directive.

• Added Generate Makefile Dependencies option.

• Added Unlimited Optimization Passes option.

• Added %IFN and %ELIFN support.

• Added Logical Negation Operator.

• Enhanced Stack Relative Preprocessor Directives.

• Enhanced ELF Debug Formats.

• Enhanced Send Errors to a File option.

• Added SSSE3, SSE4.1, SSE4.2, SSE5 support.

• Added a large number of additional instructions.

• Significant performance improvements.

• −w+warning and −w−warning can now be written as –Wwarning and –Wno−warning, respectively.
See section 2.1.24.

• Add −w+error to treat warnings as errors. See section 2.1.24.

• Add −w+all and −w−all to enable or disable all suppressible warnings. See section 2.1.24.

C.2 NASM 0.98 Series
The 0.98 series was the production versions of NASM from 1999 to 2007.

213

C.2.1 Version 0.98.39

• fix buffer overflow

• fix outas86’s .bss handling

• "make spotless" no longer deletes config.h.in.

• %(el)if(n)idn insensitivity to string quotes difference (#809300).

• (nasm.c)__OUTPUT_FORMAT__ changed to string value instead of symbol.

C.2.2 Version 0.98.38

• Add Makefile for 16−bit DOS binaries under OpenWatcom, and modify mkdep.pl to be able to generate
completely pathless dependencies, as required by OpenWatcom wmake (it supports path searches, but not
explicit paths.)

• Fix the STR instruction.

• Fix the ELF output format, which was broken under certain circumstances due to the addition of stabs
support.

• Quick−fix Borland format debug−info for −f obj

• Fix for %rep with no arguments (#560568)

• Fix concatenation of preprocessor function call (#794686)

• Fix long label causes coredump (#677841)

• Use autoheader as well as autoconf to keep configure from generating ridiculously long command lines.

• Make sure that all of the formats which support debugging output actually will suppress debugging output
when −g not specified.

C.2.3 Version 0.98.37

• Paths given in −I switch searched for incbin –ed as well as %include –ed files.

• Added stabs debugging for the ELF output format, patch from Martin Wawro.

• Fix output/outbin.c to allow origin > 80000000h.

• Make −U switch work.

• Fix the use of relative offsets with explicit prefixes, e.g. a32 loop foo .

• Remove backslash() .

• Fix the SMSW and SLDT instructions.

• −O2 and −O3 are no longer aliases for −O10 and −O15. If you mean the latter, please say so! :)

C.2.4 Version 0.98.36

• Update rdoff – librarian/archiver – common rec – docs!

• Fix signed/unsigned problems.

• Fix JMP FAR label and CALL FAR label .

• Add new multisection support – map files – fix align bug

214

• Fix sysexit, movhps/movlps reg,reg bugs in insns.dat

• Q or O suffixes indicate octal

• Support Prescott new instructions (PNI).

• Cyrix XSTORE instruction.

C.2.5 Version 0.98.35

• Fix build failure on 16−bit DOS (Makefile.bc3 workaround for compiler bug.)

• Fix dependencies and compiler warnings.

• Add "const" in a number of places.

• Add –X option to specify error reporting format (use –Xvc to integrate with Microsoft Visual Studio.)

• Minor changes for code legibility.

• Drop use of tmpnam() in rdoff (security fix.)

C.2.6 Version 0.98.34

• Correct additional address−size vs. operand−size confusions.

• Generate dependencies for all Makefiles automatically.

• Add support for unimplemented (but theoretically available) registers such as tr0 and cr5. Segment
registers 6 and 7 are called segr6 and segr7 for the operations which they can be represented.

• Correct some disassembler bugs related to redundant address−size prefixes. Some work still remains in this
area.

• Correctly generate an error for things like "SEG eax".

• Add the JMPE instruction, enabled by "CPU IA64".

• Correct compilation on newer gcc/glibc platforms.

• Issue an error on things like "jmp far eax".

C.2.7 Version 0.98.33

• New __NASM_PATCHLEVEL__ and __NASM_VERSION_ID__ standard macros to round out the
version−query macros. version.pl now understands X.YYplWW or X.YY.ZZplWW as a version number,
equivalent to X.YY.ZZ.WW (or X.YY.0.WW, as appropriate).

• New keyword "strict" to disable the optimization of specific operands.

• Fix the handing of size overrides with JMP instructions (instructions such as "jmp dword foo".)

• Fix the handling of "ABSOLUTE label", where "label" points into a relocatable segment.

• Fix OBJ output format with lots of externs.

• More documentation updates.

• Add –Ov option to get verbose information about optimizations.

• Undo a braindead change which broke %elif directives.

• Makefile updates.

215

C.2.8 Version 0.98.32

• Fix NASM crashing when %macro directives were left unterminated.

• Lots of documentation updates.

• Complete rewrite of the PostScript/PDF documentation generator.

• The MS Visual C++ Makefile was updated and corrected.

• Recognize .rodata as a standard section name in ELF.

• Fix some obsolete Perl4−isms in Perl scripts.

• Fix configure.in to work with autoconf 2.5x.

• Fix a couple of "make cleaner" misses.

• Make the normal "./configure && make" work with Cygwin.

C.2.9 Version 0.98.31

• Correctly build in a separate object directory again.

• Derive all references to the version number from the version file.

• New standard macros __NASM_SUBMINOR__ and __NASM_VER__ macros.

• Lots of Makefile updates and bug fixes.

• New %ifmacro directive to test for multiline macros.

• Documentation updates.

• Fixes for 16−bit OBJ format output.

• Changed the NASM environment variable to NASMENV.

C.2.10 Version 0.98.30

• Changed doc files a lot: completely removed old READMExx and Wishlist files, incorporating all
information in CHANGES and TODO.

• I waited a long time to rename zoutieee.c to (original) outieee.c

• moved all output modules to output/ subdirectory.

• Added ’make strip’ target to strip debug info from nasm & ndisasm.

• Added INSTALL file with installation instructions.

• Added –v option description to nasm man.

• Added dist makefile target to produce source distributions.

• 16−bit support for ELF output format (GNU extension, but useful.)

C.2.11 Version 0.98.28

• Fastcooked this for Debian’s Woody release: Frank applied the INCBIN bug patch to 0.98.25alt and called
it 0.98.28 to not confuse poor little apt−get.

216

C.2.12 Version 0.98.26

• Reorganised files even better from 0.98.25alt

C.2.13 Version 0.98.25alt

• Prettified the source tree. Moved files to more reasonable places.

• Added findleak.pl script to misc/ directory.

• Attempted to fix doc.

C.2.14 Version 0.98.25

• Line continuation character \ .

• Docs inadvertantly reverted – "dos packaging".

C.2.15 Version 0.98.24p1

• FIXME: Someone, document this please.

C.2.16 Version 0.98.24

• Documentation – Ndisasm doc added to Nasm.doc.

C.2.17 Version 0.98.23

• Attempted to remove rdoff version1

• Lino Mastrodomenico’s patches to preproc.c (%$$ bug?).

C.2.18 Version 0.98.22

• Update rdoff2 – attempt to remove v1.

C.2.19 Version 0.98.21

• Optimization fixes.

C.2.20 Version 0.98.20

• Optimization fixes.

C.2.21 Version 0.98.19

• H. J. Lu’s patch back out.

C.2.22 Version 0.98.18

• Added ".rdata" to "−f win32".

C.2.23 Version 0.98.17

• H. J. Lu’s "bogus elf" patch. (Red Hat problem?)

C.2.24 Version 0.98.16

• Fix whitespace before "[section ..." bug.

217

C.2.25 Version 0.98.15

• Rdoff changes (?).

• Fix fixes to memory leaks.

C.2.26 Version 0.98.14

• Fix memory leaks.

C.2.27 Version 0.98.13

• There was no 0.98.13

C.2.28 Version 0.98.12

• Update optimization (new function of "−O1")

• Changes to test/bintest.asm (?).

C.2.29 Version 0.98.11

• Optimization changes.

• Ndisasm fixed.

C.2.30 Version 0.98.10

• There was no 0.98.10

C.2.31 Version 0.98.09

• Add multiple sections support to "−f bin".

• Changed GLOBAL_TEMP_BASE in outelf.c from 6 to 15.

• Add "−v" as an alias to the "−r" switch.

• Remove "#ifdef" from Tasm compatibility options.

• Remove redundant size−overrides on "mov ds, ex", etc.

• Fixes to SSE2, other insns.dat (?).

• Enable uppercase "I" and "P" switches.

• Case insinsitive "seg" and "wrt".

• Update install.sh (?).

• Allocate tokens in blocks.

• Improve "invalid effective address" messages.

C.2.32 Version 0.98.08

• Add "%strlen " and "%substr " macro operators

• Fixed broken c16.mac.

• Unterminated string error reported.

• Fixed bugs as per 0.98bf

218

C.2.33 Version 0.98.09b with John Coffman patches released 28−Oct−2001

Changes from 0.98.07 release to 98.09b as of 28−Oct−2001

• More closely compatible with 0.98 when –O0 is implied or specified. Not strictly identical, since backward
branches in range of short offsets are recognized, and signed byte values with no explicit size specification
will be assembled as a single byte.

• More forgiving with the PUSH instruction. 0.98 requires a size to be specified always. 0.98.09b will imply
the size from the current BITS setting (16 or 32).

• Changed definition of the optimization flag:

–O0 strict two−pass assembly, JMP and Jcc are handled more like 0.98, except that back− ward JMPs are
short, if possible.

–O1 strict two−pass assembly, but forward branches are assembled with code guaranteed to reach; may
produce larger code than –O0, but will produce successful assembly more often if branch offset sizes are not
specified.

–O2 multi−pass optimization, minimize branch offsets; also will minimize signed immed− iate bytes,
overriding size specification.

–O3 like –O2, but more passes taken, if needed

C.2.34 Version 0.98.07 released 01/28/01

• Added Stepane Denis’ SSE2 instructions to a *working* version of the code – some earlier versions were
based on broken code – sorry ’bout that. version "0.98.07"

01/28/01

• Cosmetic modifications to nasm.c, nasm.h, AUTHORS, MODIFIED

C.2.35 Version 0.98.06f released 01/18/01

• – Add "metalbrain"s jecxz bug fix in insns.dat – alter nasmdoc.src to match – version "0.98.06f"

C.2.36 Version 0.98.06e released 01/09/01

• Removed the "outforms.h" file – it appears to be someone’s old backup of "outform.h". version "0.98.06e"

01/09/01

• fbk – finally added the fix for the "multiple %includes bug", known since 7/27/99 – reported originally (?)
and sent to us by Austin Lunnen – he reports that John Fine had a fix within the day. Here it is...

• Nelson Rush resigns from the group. Big thanks to Nelson for his leadership and enthusiasm in getting
these changes incorporated into Nasm!

• fbk – [list +], [list –] directives – ineptly implemented, should be re−written or removed, perhaps.

• Brian Raiter / fbk – "elfso bug" fix – applied to aoutb format as well – testing might be desirable...

08/07/00

• James Seter – –postfix, –prefix command line switches.

• Yuri Zaporogets – rdoff utility changes.

219

C.2.37 Version 0.98p1

• GAS−like palign (Panos Minos)

• FIXME: Someone, fill this in with details

C.2.38 Version 0.98bf (bug−fixed)

• Fixed – elf and aoutb bug – shared libraries – multiple "%include" bug in "−f obj" – jcxz, jecxz bug –
unrecognized option bug in ndisasm

C.2.39 Version 0.98.03 with John Coffman’s changes released 27−Jul−2000

• Added signed byte optimizations for the 0x81/0x83 class of instructions: ADC, ADD, AND, CMP, OR,
SBB, SUB, XOR: when used as ’ADD reg16,imm’ or ’ADD reg32,imm.’ Also optimization of signed byte
form of ’PUSH imm’ and ’IMUL reg,imm’/’IMUL reg,reg,imm.’ No size specification is needed.

• Added multi−pass JMP and Jcc offset optimization. Offsets on forward references will preferentially use
the short form, without the need to code a specific size (short or near) for the branch. Added instructions
for ’Jcc label’ to use the form ’Jnotcc $+3/JMP label’, in cases where a short offset is out of bounds. If
compiling for a 386 or higher CPU, then the 386 form of Jcc will be used instead.

This feature is controlled by a new command−line switch: "O", (upper case letter O). "−O0" reverts the
assembler to no extra optimization passes, "−O1" allows up to 5 extra passes, and "−O2"(default), allows up
to 10 extra optimization passes.

• Added a new directive: ’cpu XXX’, where XXX is any of: 8086, 186, 286, 386, 486, 586, pentium, 686,
PPro, P2, P3 or Katmai. All are case insensitive. All instructions will be selected only if they apply to the
selected cpu or lower. Corrected a couple of bugs in cpu−dependence in ’insns.dat’.

• Added to ’standard.mac’, the "use16" and "use32" forms of the "bits 16/32" directive. This is nothing new,
just conforms to a lot of other assemblers. (minor)

• Changed label allocation from 320/32 (10000 labels @ 200K+) to 32/37 (1000 labels); makes running
under DOS much easier. Since additional label space is allocated dynamically, this should have no effect
on large programs with lots of labels. The 37 is a prime, believed to be better for hashing. (minor)

C.2.40 Version 0.98.03

"Integrated patchfile 0.98−0.98.01. I call this version 0.98.03 for historical reasons: 0.98.02 was trashed."
––John Coffman <johninsd@san.rr.com>, 27−Jul−2000

• Kendall Bennett’s SciTech MGL changes

• Note that you must define "TASM_COMPAT" at compile−time to get the Tasm Ideal Mode compatibility.

• All changes can be compiled in and out using the TASM_COMPAT macros, and when compiled without
TASM_COMPAT defined we get the exact same binary as the unmodified 0.98 sources.

• standard.mac, macros.c: Added macros to ignore TASM directives before first include

• nasm.h: Added extern declaration for tasm_compatible_mode

• nasm.c: Added global variable tasm_compatible_mode

• Added command line switch for TASM compatible mode (−t)

• Changed version command line to reflect when compiled with TASM additions

220

• Added response file processing to allow all arguments on a single line (response file is @resp rather than
–@resp for NASM format).

• labels.c: Changes islocal() macro to support TASM style @@local labels.

• Added islocalchar() macro to support TASM style @@local labels.

• parser.c: Added support for TASM style memory references (ie: mov [DWORD eax],10 rather than the
NASM style mov DWORD [eax],10).

• preproc.c: Added new directives, %arg, %local , %stacksize to directives table

• Added support for TASM style directives without a leading % symbol.

• Integrated a block of changes from Andrew Zabolotny <bit@eltech.ru>:

• A new keyword %xdefine and its case−insensitive counterpart %ixdefine . They work almost the
same way as %define and %idefine but expand the definition immediately, not on the invocation.
Something like a cross between %define and %assign . The "x" suffix stands for "eXpand", so
"xdefine" can be deciphered as "expand−and−define". Thus you can do things like this:

 %assign ofs 0

 %macro arg 1
 %xdefine %1 dword [esp+ofs]
 %assign ofs ofs+4
 %endmacro

• Changed the place where the expansion of %$name macros are expanded. Now they are converted into
..@ctxnum.name form when detokenizing, so there are no quirks as before when using %$name arguments
to macros, in macros etc. For example:

 %macro abc 1
 %define %1 hello
 %endm

 abc %$here
 %$here

Now last line will be expanded into "hello" as expected. This also allows for lots of goodies, a good example
are extended "proc" macros included in this archive.

• Added a check for "cstk" in smacro_defined() before calling get_ctx() – this allows for things like:

 %ifdef %$abc
 %endif

to work without warnings even in no context.

• Added a check for "cstk" in %if*ctx and %elif*ctx directives – this allows to use %ifctx without
excessive warnings. If there is no active context, %ifctx goes through "false" branch.

• Removed "user error: " prefix with %error directive: it just clobbers the output and has absolutely no
functionality. Besides, this allows to write macros that does not differ from built−in functions in any way.

• Added expansion of string that is output by %error directive. Now you can do things like:

221

 %define hello(x) Hello, x!

 %define %$name andy
 %error "hello(%$name)"

Same happened with %include directive.

• Now all directives that expect an identifier will try to expand and concatenate everything without
whitespaces in between before usage. For example, with "unfixed" nasm the commands

 %define %$abc hello
 %define __%$abc goodbye
 __%$abc

would produce "incorrect" output: last line will expand to

 hello goodbyehello

Not quite what you expected, eh? :−) The answer is that preprocessor treats the %define construct as if it
would be

 %define __ %$abc goodbye

(note the white space between __ and %$abc). After my "fix" it will "correctly" expand into

 goodbye

as expected. Note that I use quotes around words "correct", "incorrect" etc because this is rather a feature not
a bug; however current behaviour is more logical (and allows more advanced macro usage :−).

Same change was applied to: %push,%macro,%imacro ,%define ,%idefine ,%xdefine ,%ixdefine ,
%assign ,%iassign ,%undef

• A new directive [WARNING {+|−}warning−id] have been added. It works only if the assembly phase is
enabled (i.e. it doesn’t work with nasm –e).

• A new warning type: macro−selfref. By default this warning is disabled; when enabled NASM warns when
a macro self−references itself; for example the following source:

 [WARNING macro−selfref]

 %macro push 1−*
 %rep %0
 push %1
 %rotate 1
 %endrep
 %endmacro

 push eax,ebx,ecx

will produce a warning, but if we remove the first line we won’t see it anymore (which is The Right Thing To
Do {tm} IMHO since C preprocessor eats such constructs without warnings at all).

• Added a "error" routine to preprocessor which always will set ERR_PASS1 bit in severity_code. This
removes annoying repeated errors on first and second passes from preprocessor.

• Added the %+ operator in single−line macros for concatenating two identifiers. Usage example:

222

 %define _myfunc _otherfunc
 %define cextern(x) _ %+ x
 cextern (myfunc)

After first expansion, third line will become "_myfunc". After this expansion is performed again so it
becomes "_otherunc".

• Now if preprocessor is in a non−emitting state, no warning or error will be emitted. Example:

 %if 1
 mov eax,ebx
 %else
 put anything you want between these two brackets,
 even macro−parameter references %1 or local
 labels %$zz or macro−local labels %%zz − no
 warning will be emitted.
 %endif

• Context−local variables on expansion as a last resort are looked up in outer contexts. For example, the
following piece:

 %push outer
 %define %$a [esp]

 %push inner
 %$a
 %pop
 %pop

will expand correctly the fourth line to [esp]; if we’ll define another %$a inside the "inner" context, it will
take precedence over outer definition. However, this modification has been applied only to expand_smacro
and not to smacro_define: as a consequence expansion looks in outer contexts, but %ifdef won’t look in
outer contexts.

This behaviour is needed because we don’t want nested contexts to act on already defined local macros.
Example:

 %define %$arg1 [esp+4]
 test eax,eax
 if nz
 mov eax,%$arg1
 endif

In this example the "if" mmacro enters into the "if" context, so %$arg1 is not valid anymore inside "if". Of
course it could be worked around by using explicitely %$$arg1 but this is ugly IMHO.

• Fixed memory leak in %undef . The origline wasn’t freed before exiting on success.

• Fixed trap in preprocessor when line expanded to empty set of tokens. This happens, for example, in the
following case:

 #define SOMETHING
 SOMETHING

223

C.2.41 Version 0.98

All changes since NASM 0.98p3 have been produced by H. Peter Anvin <hpa@zytor.com>.

• The documentation comment delimiter is

• Allow EQU definitions to refer to external labels; reported by Pedro Gimeno.

• Re−enable support for RDOFF v1; reported by Pedro Gimeno.

• Updated License file per OK from Simon and Julian.

C.2.42 Version 0.98p9

• Update documentation (although the instruction set reference will have to wait; I don’t want to hold up the
0.98 release for it.)

• Verified that the NASM implementation of the PEXTRW and PMOVMSKB instructions is correct. The
encoding differs from what the Intel manuals document, but the Pentium III behaviour matches NASM, not
the Intel manuals.

• Fix handling of implicit sizes in PSHUFW and PINSRW, reported by Stefan Hoffmeister.

• Resurrect the –s option, which was removed when changing the diagnostic output to stdout.

C.2.43 Version 0.98p8

• Fix for "DB" when NASM is running on a bigendian machine.

• Invoke insns.pl once for each output script, making Makefile.in legal for "make –j".

• Improve the Unix configure−based makefiles to make package creation easier.

• Included an RPM .spec file for building RPM (RedHat Package Manager) packages on Linux or Unix
systems.

• Fix Makefile dependency problems.

• Change src/rdsrc.pl to include sectioning information in info output; required for install−info to work.

• Updated the RDOFF distribution to version 2 from Jules; minor massaging to make it compile in my
environment.

• Split doc files that can be built by anyone with a Perl interpreter off into a separate archive.

• "Dress rehearsal" release!

C.2.44 Version 0.98p7

• Fixed opcodes with a third byte−sized immediate argument to not complain if given "byte" on the
immediate.

• Allow %undef to remove single−line macros with arguments. This matches the behaviour of #undef in the
C preprocessor.

• Allow –d, –u, –i and –p to be specified as –D, –U, –I and –P for compatibility with most C compilers and
preprocessors. This allows Makefile options to be shared between cc and nasm, for example.

• Minor cleanups.

• Went through the list of Katmai instructions and hopefully fixed the (rather few) mistakes in it.

224

• (Hopefully) fixed a number of disassembler bugs related to ambiguous instructions (disambiguated by –p)
and SSE instructions with REP.

• Fix for bug reported by Mark Junger: "call dword 0x12345678" should work and may add an OSP
(affected CALL, JMP, Jcc).

• Fix for environments when "stderr" isn’t a compile−time constant.

C.2.45 Version 0.98p6

• Took officially over coordination of the 0.98 release; so drop the p3.x notation. Skipped p4 and p5 to avoid
confusion with John Fine’s J4 and J5 releases.

• Update the documentation; however, it still doesn’t include documentation for the various new
instructions. I somehow wonder if it makes sense to have an instruction set reference in the assembler
manual when Intel et al have PDF versions of their manuals online.

• Recognize "idt" or "centaur" for the –p option to ndisasm.

• Changed error messages back to stderr where they belong, but add an –E option to redirect them elsewhere
(the DOS shell cannot redirect stderr.)

• –M option to generate Makefile dependencies (based on code from Alex Verstak.)

• %undef preprocessor directive, and –u option, that undefines a single−line macro.

• OS/2 Makefile (Mkfiles/Makefile.os2) for Borland under OS/2; from Chuck Crayne.

• Various minor bugfixes (reported by): – Dangling %s in preproc.c (Martin Junker)

• THERE ARE KNOWN BUGS IN SSE AND THE OTHER KATMAI INSTRUCTIONS. I am on a trip
and didn’t bring the Katmai instruction reference, so I can’t work on them right now.

• Updated the License file per agreement with Simon and Jules to include a GPL distribution clause.

C.2.46 Version 0.98p3.7

• (Hopefully) fixed the canned Makefiles to include the outrdf2 and zoutieee modules.

• Renamed changes.asm to changed.asm.

C.2.47 Version 0.98p3.6

• Fixed a bunch of instructions that were added in 0.98p3.5 which had memory operands, and the
address−size prefix was missing from the instruction pattern.

C.2.48 Version 0.98p3.5

• Merged in changes from John S. Fine’s 0.98−J5 release. John’s based 0.98−J5 on my 0.98p3.3 release; this
merges the changes.

• Expanded the instructions flag field to a long so we can fit more flags; mark SSE (KNI) and AMD or
Katmai−specific instructions as such.

• Fix the "PRIV" flag on a bunch of instructions, and create new "PROT" flag for protected−mode−only
instructions (orthogonal to if the instruction is privileged!) and new "SMM" flag for SMM−only
instructions.

• Added AMD−only SYSCALL and SYSRET instructions.

225

• Make SSE actually work, and add new Katmai MMX instructions.

• Added a –p (preferred vendor) option to ndisasm so that it can distinguish e.g. Cyrix opcodes also used in
SSE. For example:

 ndisasm −p cyrix aliased.bin
 00000000 670F514310 paddsiw mm0,[ebx+0x10]
 00000005 670F514320 paddsiw mm0,[ebx+0x20]
 ndisasm −p intel aliased.bin
 00000000 670F514310 sqrtps xmm0,[ebx+0x10]
 00000005 670F514320 sqrtps xmm0,[ebx+0x20]

• Added a bunch of Cyrix−specific instructions.

C.2.49 Version 0.98p3.4

• Made at least an attempt to modify all the additional Makefiles (in the Mkfiles directory). I can’t test it, but
this was the best I could do.

• DOS DJGPP+"Opus Make" Makefile from John S. Fine.

• changes.asm changes from John S. Fine.

C.2.50 Version 0.98p3.3

• Patch from Conan Brink to allow nesting of %rep directives.

• If we’re going to allow INT01 as an alias for INT1/ICEBP (one of Jules 0.98p3 changes), then we should
allow INT03 as an alias for INT3 as well.

• Updated changes.asm to include the latest changes.

• Tried to clean up the <CR>s that had snuck in from a DOS/Windows environment into my Unix
environment, and try to make sure than DOS/Windows users get them back.

• We would silently generate broken tools if insns.dat wasn’t sorted properly. Change insns.pl so that the
order doesn’t matter.

• Fix bug in insns.pl (introduced by me) which would cause conditional instructions to have an extra "cc" in
disassembly, e.g. "jnz" disassembled as "jccnz".

C.2.51 Version 0.98p3.2

• Merged in John S. Fine’s changes from his 0.98−J4 prerelease; see http://www.csoft.net/cz/johnfine/

• Changed previous "spotless" Makefile target (appropriate for distribution) to "distclean", and added
"cleaner" target which is same as "clean" except deletes files generated by Perl scripts; "spotless" is union.

• Removed BASIC programs from distribution. Get a Perl interpreter instead (see below.)

• Calling this "pre−release 3.2" rather than "p3−hpa2" because of John’s contributions.

• Actually link in the IEEE output format (zoutieee.c); fix a bunch of compiler warnings in that file. Note I
don’t know what IEEE output is supposed to look like, so these changes were made "blind".

C.2.52 Version 0.98p3−hpa

• Merged nasm098p3.zip with nasm−0.97.tar.gz to create a fully buildable version for Unix systems
(Makefile.in updates, etc.)

226

• Changed insns.pl to create the instruction tables in nasm.h and names.c, so that a new instruction can be
added by adding it *only* to insns.dat.

• Added the following new instructions: SYSENTER, SYSEXIT, FXSAVE, FXRSTOR, UD1, UD2 (the
latter two are two opcodes that Intel guarantee will never be used; one of them is documented as UD2 in
Intel documentation, the other one just as "Undefined Opcode" –– calling it UD1 seemed to make sense.)

• MAX_SYMBOL was defined to be 9, but LOADALL286 and LOADALL386 are 10 characters long. Now
MAX_SYMBOL is derived from insns.dat.

• A note on the BASIC programs included: forget them. insns.bas is already out of date. Get yourself a Perl
interpreter for your platform of choice at http://www.cpan.org/ports/index.html.

C.2.53 Version 0.98 pre−release 3

• added response file support, improved command line handling, new layout help screen

• fixed limit checking bug, ’OUT byte nn, reg’ bug, and a couple of rdoff related bugs, updated Wishlist;
0.98 Prerelease 3.

C.2.54 Version 0.98 pre−release 2

• fixed bug in outcoff.c to do with truncating section names longer than 8 characters, referencing beyond end
of string; 0.98 pre−release 2

C.2.55 Version 0.98 pre−release 1

• Fixed a bug whereby STRUC didn’t work at all in RDF.

• Fixed a problem with group specification in PUBDEFs in OBJ.

• Improved ease of adding new output formats. Contribution due to Fox Cutter.

• Fixed a bug in relocations in the ‘bin’ format: was showing up when a relocatable reference crossed an
8192−byte boundary in any output section.

• Fixed a bug in local labels: local−label lookups were inconsistent between passes one and two if an EQU
occurred between the definition of a global label and the subsequent use of a local label local to that global.

• Fixed a seg−fault in the preprocessor (again) which happened when you use a blank line as the first line of
a multi−line macro definition and then defined a label on the same line as a call to that macro.

• Fixed a stale−pointer bug in the handling of the NASM environment variable. Thanks to Thomas
McWilliams.

• ELF had a hard limit on the number of sections which caused segfaults when transgressed. Fixed.

• Added ability for ndisasm to read from stdin by using ‘−’ as the filename.

• ndisasm wasn’t outputting the TO keyword. Fixed.

• Fixed error cascade on bogus expression in %if – an error in evaluation was causing the entire %if to be
discarded, thus creating trouble later when the %else or %endif was encountered.

• Forward reference tracking was instruction−granular not operand− granular, which was causing
286−specific code to be generated needlessly on code of the form ‘shr word [forwardref],1’. Thanks to Jim
Hague for sending a patch.

227

http://www.cpan.org/ports/index.html

• All messages now appear on stdout, as sending them to stderr serves no useful purpose other than to make
redirection difficult.

• Fixed the problem with EQUs pointing to an external symbol – this now generates an error message.

• Allowed multiple size prefixes to an operand, of which only the first is taken into account.

• Incorporated John Fine’s changes, including fixes of a large number of preprocessor bugs, some small
problems in OBJ, and a reworking of label handling to define labels before their line is assembled, rather
than after.

• Reformatted a lot of the source code to be more readable. Included ’coding.txt’ as a guideline for how to
format code for contributors.

• Stopped nested %reps causing a panic – they now cause a slightly more friendly error message instead.

• Fixed floating point constant problems (patch by Pedro Gimeno)

• Fixed the return value of insn_size() not being checked for –1, indicating an error.

• Incorporated 3Dnow! instructions.

• Fixed the ’mov eax, eax + ebx’ bug.

• Fixed the GLOBAL EQU bug in ELF. Released developers release 3.

• Incorporated John Fine’s command line parsing changes

• Incorporated David Lindauer’s OMF debug support

• Made changes for LCC 4.0 support (__NASM_CDecl__, removed register size specification warning
when sizes agree).

C.3 NASM 0.9 Series
Revisions before 0.98.

C.3.1 Version 0.97 released December 1997

• This was entirely a bug−fix release to 0.96, which seems to have got cursed. Silly me.

• Fixed stupid mistake in OBJ which caused ‘MOV EAX,<constant>’ to fail. Caused by an error in the
‘MOV EAX,<segment>’ support.

• ndisasm hung at EOF when compiled with lcc on Linux because lcc on Linux somehow breaks feof().
ndisasm now does not rely on feof().

• A heading in the documentation was missing due to a markup error in the indexing. Fixed.

• Fixed failure to update all pointers on realloc() within extended− operand code in parser.c. Was causing
wrong behaviour and seg faults on lines such as ‘dd 0.0,0.0,0.0,0.0,...’

• Fixed a subtle preprocessor bug whereby invoking one multi−line macro on the first line of the expansion
of another, when the second had been invoked with a label defined before it, didn’t expand the inner macro.

• Added internal.doc back in to the distribution archives – it was missing in 0.96 *blush*

• Fixed bug causing 0.96 to be unable to assemble its own test files, specifically objtest.asm. *blush again*

• Fixed seg−faults and bogus error messages caused by mismatching %rep and %endrep within multi−line
macro definitions.

228

• Fixed a problem with buffer overrun in OBJ, which was causing corruption at ends of long PUBDEF
records.

• Separated DOS archives into main−program and documentation to reduce download size.

C.3.2 Version 0.96 released November 1997

• Fixed a bug whereby, if ‘nasm sourcefile’ would cause a filename collision warning and put output into
‘nasm.out’, then ‘nasm sourcefile –o outputfile’ still gave the warning even though the ‘−o’ was honoured.
Fixed name pollution under Digital UNIX: one of its header files defined R_SP, which broke the enum in
nasm.h.

• Fixed minor instruction table problems: FUCOM and FUCOMP didn’t have two−operand forms;
NDISASM didn’t recognise the longer register forms of PUSH and POP (eg FF F3 for PUSH BX); TEST
mem,imm32 was flagged as undocumented; the 32−bit forms of CMOV had 16−bit operand size prefixes;
‘AAD imm’ and ‘AAM imm’ are no longer flagged as undocumented because the Intel Architecture
reference documents them.

• Fixed a problem with the local−label mechanism, whereby strange types of symbol (EQUs, auto−defined
OBJ segment base symbols) interfered with the ‘previous global label’ value and screwed up local labels.

• Fixed a bug whereby the stub preprocessor didn’t communicate with the listing file generator, so that the
–a and –l options in conjunction would produce a useless listing file.

• Merged ‘os2’ object file format back into ‘obj’, after discovering that ‘obj’ _also_ shouldn’t have a link
pass separator in a module containing a non−trivial MODEND. Flat segments are now declared using the
FLAT attribute. ‘os2’ is no longer a valid object format name: use ‘obj’.

• Removed the fixed−size temporary storage in the evaluator. Very very long expressions (like ‘mov
ax,1+1+1+1+...’ for two hundred 1s or so) should now no longer crash NASM.

• Fixed a bug involving segfaults on disassembly of MMX instructions, by changing the meaning of one of
the operand−type flags in nasm.h. This may cause other apparently unrelated MMX problems; it needs to
be tested thoroughly.

• Fixed some buffer overrun problems with large OBJ output files. Thanks to DJ Delorie for the bug report
and fix.

• Made preprocess−only mode actually listen to the %line markers as it prints them, so that it can report
errors more sanely.

• Re−designed the evaluator to keep more sensible track of expressions involving forward references: can
now cope with previously−nightmare situations such as:

 mov ax,foo | bar
 foo equ 1
 bar equ 2

• Added the ALIGN and ALIGNB standard macros.

• Added PIC support in ELF: use of WRT to obtain the four extra relocation types needed.

• Added the ability for output file formats to define their own extensions to the GLOBAL, COMMON and
EXTERN directives.

• Implemented common−variable alignment, and global−symbol type and size declarations, in ELF.

229

• Implemented NEAR and FAR keywords for common variables, plus far−common element size
specification, in OBJ.

• Added a feature whereby EXTERNs and COMMONs in OBJ can be given a default WRT specification
(either a segment or a group).

• Transformed the Unix NASM archive into an auto−configuring package.

• Added a sanity−check for people applying SEG to things which are already segment bases: this previously
went unnoticed by the SEG processing and caused OBJ−driver panics later.

• Added the ability, in OBJ format, to deal with ‘MOV EAX,<segment>’ type references: OBJ doesn’t
directly support dword−size segment base fixups, but as long as the low two bytes of the constant term are
zero, a word−size fixup can be generated instead and it will work.

• Added the ability to specify sections’ alignment requirements in Win32 object files and pure binary files.

• Added preprocess−time expression evaluation: the %assign (and %iassign) directive and the bare %if
(and %elif) conditional. Added relational operators to the evaluator, for use only in %if constructs: the
standard relationals = < > <= >= <> (and C−like synonyms == and !=) plus low−precedence logical
operators &&, ^^ and ||.

• Added a preprocessor repeat construct: %rep / %exitrep / %endrep .

• Added the __FILE__ and __LINE__ standard macros.

• Added a sanity check for number constants being greater than 0xFFFFFFFF. The warning can be disabled.

• Added the %0 token whereby a variadic multi−line macro can tell how many parameters it’s been given in
a specific invocation.

• Added %rotate , allowing multi−line macro parameters to be cycled.

• Added the ‘*’ option for the maximum parameter count on multi−line macros, allowing them to take
arbitrarily many parameters.

• Added the ability for the user−level forms of EXTERN, GLOBAL and COMMON to take more than one
argument.

• Added the IMPORT and EXPORT directives in OBJ format, to deal with Windows DLLs.

• Added some more preprocessor %if constructs: %ifidn / %ifidni (exact textual identity), and %ifid
/ %ifnum / %ifstr (token type testing).

• Added the ability to distinguish SHL AX,1 (the 8086 version) from SHL AX,BYTE 1 (the
286−and−upwards version whose constant happens to be 1).

• Added NetBSD/FreeBSD/OpenBSD’s variant of a.out format, complete with PIC shared library features.

• Changed NASM’s idiosyncratic handling of FCLEX, FDISI, FENI, FINIT, FSAVE, FSTCW, FSTENV,
and FSTSW to bring it into line with the otherwise accepted standard. The previous behaviour, though it
was a deliberate feature, was a deliberate feature based on a misunderstanding. Apologies for the
inconvenience.

• Improved the flexibility of ABSOLUTE: you can now give it an expression rather than being restricted to a
constant, and it can take relocatable arguments as well.

• Added the ability for a variable to be declared as EXTERN multiple times, and the subsequent definitions
are just ignored.

230

• We now allow instruction prefixes (CS, DS, LOCK, REPZ etc) to be alone on a line (without a following
instruction).

• Improved sanity checks on whether the arguments to EXTERN, GLOBAL and COMMON are valid
identifiers.

• Added misc/exebin.mac to allow direct generation of .EXE files by hacking up an EXE header using DB
and DW; also added test/binexe.asm to demonstrate the use of this. Thanks to Yann Guidon for
contributing the EXE header code.

• ndisasm forgot to check whether the input file had been successfully opened. Now it does. Doh!

• Added the Cyrix extensions to the MMX instruction set.

• Added a hinting mechanism to allow [EAX+EBX] and [EBX+EAX] to be assembled differently. This is
important since [ESI+EBP] and [EBP+ESI] have different default base segment registers.

• Added support for the PharLap OMF extension for 4096−byte segment alignment.

C.3.3 Version 0.95 released July 1997

• Fixed yet another ELF bug. This one manifested if the user relied on the default segment, and attempted to
define global symbols without first explicitly declaring the target segment.

• Added makefiles (for NASM and the RDF tools) to build Win32 console apps under Symantec C++.
Donated by Mark Junker.

• Added ‘macros.bas’ and ‘insns.bas’, QBasic versions of the Perl scripts that convert ‘standard.mac’ to
‘macros.c’ and convert ‘insns.dat’ to ‘insnsa.c’ and ‘insnsd.c’. Also thanks to Mark Junker.

• Changed the diassembled forms of the conditional instructions so that JB is now emitted as JC, and other
similar changes. Suggested list by Ulrich Doewich.

• Added ‘@’ to the list of valid characters to begin an identifier with.

• Documentary changes, notably the addition of the ‘Common Problems’ section in nasm.doc.

• Fixed a bug relating to 32−bit PC−relative fixups in OBJ.

• Fixed a bug in perm_copy() in labels.c which was causing exceptions in cleanup_labels() on some systems.

• Positivity sanity check in TIMES argument changed from a warning to an error following a further
complaint.

• Changed the acceptable limits on byte and word operands to allow things like ‘~10111001b’ to work.

• Fixed a major problem in the preprocessor which caused seg−faults if macro definitions contained blank
lines or comment−only lines.

• Fixed inadequate error checking on the commas separating the arguments to ‘db’, ‘dw’ etc.

• Fixed a crippling bug in the handling of macros with operand counts defined with a ‘+’ modifier.

• Fixed a bug whereby object file formats which stored the input file name in the output file (such as OBJ
and COFF) weren’t doing so correctly when the output file name was specified on the command line.

• Removed [INC] and [INCLUDE] support for good, since they were obsolete anyway.

• Fixed a bug in OBJ which caused all fixups to be output in 16−bit (old−format) FIXUPP records, rather
than putting the 32−bit ones in FIXUPP32 (new−format) records.

231

• Added, tentatively, OS/2 object file support (as a minor variant on OBJ).

• Updates to Fox Cutter’s Borland C makefile, Makefile.bc2.

• Removed a spurious second fclose() on the output file.

• Added the ‘−s’ command line option to redirect all messages which would go to stderr (errors, help text) to
stdout instead.

• Added the ‘−w’ command line option to selectively suppress some classes of assembly warning messages.

• Added the ‘−p’ pre−include and ‘−d’ pre−define command−line options.

• Added an include file search path: the ‘−i’ command line option.

• Fixed a silly little preprocessor bug whereby starting a line with a ‘%!’ environment−variable reference
caused an ‘unknown directive’ error.

• Added the long−awaited listing file support: the ‘−l’ command line option.

• Fixed a problem with OBJ format whereby, in the absence of any explicit segment definition, non−global
symbols declared in the implicit default segment generated spurious EXTDEF records in the output.

• Added the NASM environment variable.

• From this version forward, Win32 console−mode binaries will be included in the DOS distribution in
addition to the 16−bit binaries. Added Makefile.vc for this purpose.

• Added ‘return 0;’ to test/objlink.c to prevent compiler warnings.

• Added the __NASM_MAJOR__ and __NASM_MINOR__ standard defines.

• Added an alternative memory−reference syntax in which prefixing an operand with ‘&’ is equivalent to
enclosing it in square brackets, at the request of Fox Cutter.

• Errors in pass two now cause the program to return a non−zero error code, which they didn’t before.

• Fixed the single−line macro cycle detection, which didn’t work at all on macros with no parameters
(caused an infinite loop). Also changed the behaviour of single−line macro cycle detection to work like
cpp, so that macros like ‘extrn’ as given in the documentation can be implemented.

• Fixed the implementation of WRT, which was too restrictive in that you couldn’t do ‘mov ax,[di+abc wrt
dgroup]’ because (di+abc) wasn’t a relocatable reference.

C.3.4 Version 0.94 released April 1997

• Major item: added the macro processor.

• Added undocumented instructions SMI, IBTS, XBTS and LOADALL286. Also reorganised CMPXCHG
instruction into early−486 and Pentium forms. Thanks to Thobias Jones for the information.

• Fixed two more stupid bugs in ELF, which were causing ‘ld’ to continue to seg−fault in a lot of non−trivial
cases.

• Fixed a seg−fault in the label manager.

• Stopped FBLD and FBSTP from _requiring_ the TWORD keyword, which is the only option for BCD
loads/stores in any case.

• Ensured FLDCW, FSTCW and FSTSW can cope with the WORD keyword, if anyone bothers to provide
it. Previously they complained unless no keyword at all was present.

232

• Some forms of FDIV/FDIVR and FSUB/FSUBR were still inverted: a vestige of a bug that I thought had
been fixed in 0.92. This was fixed, hopefully for good this time...

• Another minor phase error (insofar as a phase error can _ever_ be minor) fixed, this one occurring in code
of the form

 rol ax,forward_reference
 forward_reference equ 1

• The number supplied to TIMES is now sanity−checked for positivity, and also may be greater than 64K
(which previously didn’t work on 16−bit systems).

• Added Watcom C makefiles, and misc/pmw.bat, donated by Dominik Behr.

• Added the INCBIN pseudo−opcode.

• Due to the advent of the preprocessor, the [INCLUDE] and [INC] directives have become obsolete. They
are still supported in this version, with a warning, but won’t be in the next.

• Fixed a bug in OBJ format, which caused incorrect object records to be output when absolute labels were
made global.

• Updates to RDOFF subdirectory, and changes to outrdf.c.

C.3.5 Version 0.93 released January 1997

This release went out in a great hurry after semi−crippling bugs were found in 0.92.

• Really did fix the stack overflows this time. *blush*

• Had problems with EA instruction sizes changing between passes, when an offset contained a forward
reference and so 4 bytes were allocated for the offset in pass one; by pass two the symbol had been defined
and happened to be a small absolute value, so only 1 byte got allocated, causing instruction size mismatch
between passes and hence incorrect address calculations. Fixed.

• Stupid bug in the revised ELF section generation fixed (associated string−table section for .symtab was
hard−coded as 7, even when this didn’t fit with the real section table). Was causing ‘ld’ to seg−fault under
Linux.

• Included a new Borland C makefile, Makefile.bc2, donated by Fox Cutter <lmb@comtch.iea.com>.

C.3.6 Version 0.92 released January 1997

• The FDIVP/FDIVRP and FSUBP/FSUBRP pairs had been inverted: this was fixed. This also affected the
LCC driver.

• Fixed a bug regarding 32−bit effective addresses of the form [other_register+ESP] .

• Documentary changes, notably documentation of the fact that Borland Win32 compilers use ‘obj’ rather
than ‘win32’ object format.

• Fixed the COMENT record in OBJ files, which was formatted incorrectly.

• Fixed a bug causing segfaults in large RDF files.

• OBJ format now strips initial periods from segment and group definitions, in order to avoid complications
with the local label syntax.

• Fixed a bug in disassembling far calls and jumps in NDISASM.

233

• Added support for user−defined sections in COFF and ELF files.

• Compiled the DOS binaries with a sensible amount of stack, to prevent stack overflows on any arithmetic
expression containing parentheses.

• Fixed a bug in handling of files that do not terminate in a newline.

C.3.7 Version 0.91 released November 1996

• Loads of bug fixes.

• Support for RDF added.

• Support for DBG debugging format added.

• Support for 32−bit extensions to Microsoft OBJ format added.

• Revised for Borland C: some variable names changed, makefile added.

• LCC support revised to actually work.

• JMP/CALL NEAR/FAR notation added.

• ‘a16’, ‘o16’, ‘a32’ and ‘o32’ prefixes added.

• Range checking on short jumps implemented.

• MMX instruction support added.

• Negative floating point constant support added.

• Memory handling improved to bypass 64K barrier under DOS.

• $ prefix to force treatment of reserved words as identifiers added.

• Default−size mechanism for object formats added.

• Compile−time configurability added.

• #, @, ~ and c{?} are now valid characters in labels.

• −e and −k options in NDISASM added.

C.3.8 Version 0.90 released October 1996

First release version. First support for object file output. Other changes from previous version (0.3x) too
numerous to document.

234

Index

! operator, unary 37
!= operator 55
$$ token 36, 96
$

Here token 36
prefix 29, 33, 99

% operator 37
%! 67
%$ and %$$ prefixes 60, 61
%% operator 37, 48
%+ 43
%? 44
%?? 44
%[43
& operator 37
&& operator 55
* operator 37
+ modifier 49
+ operator

binary 37
unary 37

− operator
binary 37
unary 37

..@ symbol prefix 40, 48
/ operator 37
// operator 37
< operator 55
<< operator 37
<= operator 55
<> operator 55
= operator 55
== operator 55
> operator 55
>= operator 55
>> operator 37
? MASM syntax 30
^ operator 37
^^ operator 55
| operator 37
|| operator 55
~ operator 37
%0 parameter count 50, 51

%00 51
%+1 and %−1 syntax 53
16−bit mode, versus 32−bit mode 76
64−bit displacement 126
64−bit immediate 125
−a option 24, 132
A16 29
a16 123
A32 29
a32 123
A64 29
a64 123
a86 16, 26, 27
ABS 33
ABSOLUTE 78, 85
addition 37
addressing, mixed−size 122
address−size prefixes 29
algebra 32
ALIGN 72, 74, 83, 85

smart 74
ALIGNB 72
alignment

in bin sections 83
in elf sections 96
in obj sections 85
in win32 sections 89
of elf common variables 98

ALIGNMODE 74
__ALIGNMODE__ 75
ALINK 102
alink.sourceforge.net 102
all 25
alloc 95
alternate register names 74
alt.lang.asm 16
altreg 74
ambiguity 27
a.out

BSD version 98
Linux version 98

aout 98
aoutb 98, 117

235

%arg 64
arg 110, 117
as86 16, 99
assembler directives 76
assembly−time options 23
%assign 44
ASSUME 27
AT 71
Autoconf 18
autoexec.bat 17
auto−sync 132
−b 131
bin 20, 82

multisection 83
binary 33
binary files 31
bit shift 37
BITS 76, 82
__BITS__ 68
bitwise AND 37
bitwise OR 37
bitwise XOR 37
block IFs 62
boot loader 82
boot sector 128
Borland

Pascal 111
Win32 compilers 84

braces
after % sign 52
around macro parameters 47

BSD 117
.bss 96, 98, 99
bugs 129
bugtracker 129
BYTE 128
C calling convention 107, 114
C symbol names 105
c16.mac 110, 113
c32.mac 117
CALL FAR 38
case sensitivity 26, 41, 42, 44, 47, 56, 86
changing sections 77
character constant 30, 34
character strings 33
circular references 41
CLASS 85
%clear 67
coff 95

colon 29
.COM 82, 104
comma 50
command−line 19, 82
commas in macro parameters 49
%comment 67
.comment 96
COMMON 80, 85

elf extensions to 98
obj extensions to 88

Common Object File Format 95
common variables 80

alignment in elf 98
element size 88

comp.lang.asm.x86 16, 17
comp.os.msdos.programmer 105
concatenating macro parameters 52
concatenating strings 45
condition codes as macro parameters 53
conditional assembly 54
conditional jumps 128
conditional−return macro 53
configure 18
constants 33
context fall−through lookup 61
context stack 60, 62
context−local labels 60
context−local single−line macros 61
counting macro parameters 51
CPU 80
CPUID 34
creating contexts 60
critical expression 30, 38, 45, 78
−D option 23
−d option 23
daily development snapshots 17
.data 96, 98, 99
_DATA 107
data 97, 100
data structure 109, 116
__DATE__ 69
__DATE_NUM__ 69
DB 30, 34, 35
dbg 100
DD 30, 34, 35
debug information 21
debug information format 21
decimal 33
declaring structures 70

236

DEFAULT 77
default 97
default macro parameters 50
default name 82
default−WRT mechanism 88
%define 23, 41
defining sections 77
%defstr 45
%deftok 45
%depend 59
design goals 26
DevPac 31, 39
disabling listing expansion 53
division 37
DJGPP 95, 114
djlink 102
DLL symbols

exporting 87
importing 86

DO 30, 34, 35
DOS 17, 22
DOS archive
DOS source archive 17
DQ 30, 34, 35
.drectve 89
DT 30, 34, 35
DUP 28, 31
DW 30, 34, 35
DWORD 30
DY 30, 34
−E option 23
−e option 23, 133
effective addresses 29, 32
element size, in common variables 88
ELF 95

shared libraries 96
16−bit code and 98

elf, debug formats and 98
elf32 95
elf64 95
elfx32 95
%elif 54, 55, 56
%elifctx 55
%elifdef 54
%elifempty 57
%elifenv 57
%elifid 57
%elifidn 56
%elifidni 56

%elifmacro 55
%elifn 54, 56
%elifnctx 55
%elifndef 54
%elifnempty 57
%elifnenv 57
%elifnid 57
%elifnidn 56
%elifnidni 56
%elifnmacro 55
%elifnnum 57
%elifnstr 57
%elifntoken 57
%elifnum 57
%elifstr 57
%eliftoken 57
%else 54
endproc 110, 117
%endrep 58
ENDSTRUC 70, 78
environment 26
EQU 30, 31
%error 65
error 25
error messages 22
error reporting format 21
escape sequences 33
EVEN 72
exact matches 53
.EXE 84, 102
EXE2BIN 105
EXE_begin 103
exebin.mac 103
exec 96
Executable and Linkable Format 95
EXE_end 103
EXE_stack 103
%exitrep 58
EXPORT 87
export 100
exporting symbols 79
expressions 23, 36
extension 19, 82
EXTERN 79

obj extensions to 87
rdf extensions to 100

extracting substrings 46
−F option 21
−f option 20, 82

237

far call 27
far common variables 88
far pointer 38
FARCODE 110, 113
%fatal 65
__FILE__ 68
FLAT 85
flat memory model 114
flat−form binary 82
FLOAT 81
__FLOAT__ 81
__float128h__ 35
__float128l__ 35
__float16__ 35
__float32__ 35
__float64__ 35
__float8__ 35
__float80e__ 35
__float80m__ 35
__FLOAT_DAZ__ 81
float−denorm 25
floating−point

constants 35, 81
packed BCD constants 36

floating−point 27, 30, 35
float−overflow 25
__FLOAT_ROUND__ 81
float−toolong 25
float−underflow 25
follows= 83
format−specific directives 76
fp 75
frame pointer 107, 111, 114
FreeBSD 98, 117
FreeLink 102
ftp.simtel.net 102
function 97, 100
functions

C calling convention 107, 114
Pascal calling convention 111

−g option 21
gas 16
gcc 16
GLOBAL 79

aoutb extensions to 97
elf extensions to 97
rdf extensions to 100

global offset table 117
_GLOBAL_OFFSET_TABLE_ 96

gnu−elf−extensions 25
..got 96
GOT relocations 119
GOT 96, 117
..gotoff 96
GOTOFF relocations 119
..gotpc 96
GOTPC relocations 118
..gottpoff 97
graphics 31
greedy macro parameters 48
GROUP 86
groups 38
−h 131
hexadecimal 33
hidden 97
hle 25
hybrid syntaxes 27
−I option 22
−i option 22, 132
%iassign 44
%idefine 41
%idefstr 45
%ideftok 45
IEND 71
%if 54, 55
%ifctx 55, 62
%ifdef 54
%ifempty 57
%ifenv 57
%ifid 56
%ifidn 56
%ifidni 56
%ifmacro 55
%ifn 54, 56
%ifnctx 55
%ifndef 54
%ifnempty 57
%ifnenv 57
%ifnid 57
%ifnidn 56
%ifnidni 56
%ifnmacro 55
%ifnnum 57
%ifnstr 57
%ifntoken 57
%ifnum 56
%ifstr 56
%iftoken 57

238

ifunc 75
ilog2() 75
ilog2c() 75
ilog2e() 75
ilog2f() 75
ilog2w() 75
%imacro 46
IMPORT 86
import library 86
importing symbols 79
INCBIN 30, 31, 34
%include 22, 23, 59
include search path 22
including other files 59
inefficient code 128
infinite loop 37
__Infinity__ 36
infinity 36
informational section 89
INSTALL 18
installing 17
instances of structures 71
instruction list 134
integer functions 37, 75
integer logarithms 75
intel hex 84
Intel number formats 36
internal 97
ISTRUC 71
iterating over macro parameters 51
ith 84
%ixdefine 42
Jcc NEAR 128
JMP DWORD 122
jumps, mixed−size 122
−k 133
−l option 20
label preceeding macro 51
label prefix 40
last 50
.lbss 96
ld86 99
.ldata 96
LIBRARY 99
license 16
%line 66
__LINE__ 68
linker, free 102

Linux
a.out 98
as86 99
ELF 95

listing file 20
little−endian 34
%local 65
local labels 39
lock 25
logical AND 55
logical negation 37
logical OR 55
logical XOR 55
.lrodata 96
−M option 20
Mach, object file format 95
Mach−O 95
macho 95
macho32 95
macho64 95
MacOS X 95
%macro 46
macro indirection 43
macro library 22
macro parameters range 49
macro processor 41
macro−defaults 25
macro−local labels 48
macro−params 25
macros 31
macro−selfref 25
make 18
makefile dependencies 20
makefiles 17, 18
man pages 18
map files 83
MASM 16
MASM 26, 31, 84
−MD option 21
memory models 27, 106
memory operand 30
memory references 26, 32
−MF option 20
−MG option 20
Microsoft OMF 84
minifloat 36
Minix 99
misc subdirectory 103, 110, 117
mixed−language program 105

239

mixed−size addressing 122
mixed−size instruction 122
MMX registers
ModR/M byte
MODULE 99
modulo operators 37
motorola s−records 84
−MP option 21
−MQ option 21
MS−DOS 82
MS−DOS device drivers 105
−MT option 21
multi−line macros 25, 46
multipass optimization 24
multiple section names 82
multiplication 37
multipush macro 51
multisection 83
__NaN__ 36
NaN 36
NASM version 67
nasm version history 205
nasm version id 68
nasm version string 68
nasm.1 18
__NASMDEFSEG 84
nasm−devel 17
NASMENV 26
nasm.exe 17
nasm −hf 20
__NASM_MAJOR__ 67
__NASM_MINOR__ 67
nasm.out 20
___NASM_PATCHLEVEL__ 67
__NASM_SNAPSHOT__ 67
__NASM_SUBMINOR__ 67
__NASM_VER__ 68
__NASM_VERSION_ID__ 68
nasm−XXX−dos.zip 17
nasm−XXX.tar.gz 18
nasm−XXX−win32.zip 17
nasm−XXX.zip 17
ndisasm 131
ndisasm.1 18
ndisasm.exe 17
near call 27
near common variables 88
NetBSD 98, 117
new releases 17

noalloc 95
nobits 83, 96
noexec 96
.nolist 53
‘nowait’ 28
nowrite 96
number−overflow 25
numeric constants 30, 33
−O option 24
−o option 19, 131
O16 29
o16 124
O32 29
o32 124
O64 29
.OBJ 102
obj 84
object 97, 100
octal 33
OF_DBG 100
OF_DEFAULT 20
OFFSET 27
OMF 84
omitted parameters 50
one’s complement 37
OpenBSD 98, 117
operands 29
operand−size prefixes 29
operating system 82

writing 122
operators 37
ORG 82, 104, 105, 128
orphan−labels 25, 29
OS/2 84, 85
osabi 95
other preprocessor directives 66
out of range, jumps 128
output file format 20
output formats 82
__OUTPUT_FORMAT__ 69
overlapping segments 38
OVERLAY 85
overloading

multi−line macros 47
single−line macros 42

−P option 23
−p option 23, 59
paradox 39
PASCAL 113

240

Pascal calling convention 111
__PASS__ 70
passes, assembly
PATH 17
%pathsearch 22, 59
period 39
Perl 18
perverse 22
PharLap 85
PIC 96, 98, 117
..plt 96
PLT relocations 97, 119, 120
plt relocations 120
%pop 60
position−independent code 96, 98, 117
−−postfix 26
precedence 37
pre−defining macros 23, 42
preferred 37
−−prefix 26
pre−including files 23
preprocess−only mode 23
preprocessor 23, 24, 31, 37, 41
preprocessor expressions 23
preprocessor loops 58
preprocessor variables 44
primitive directives 76
PRIVATE 85
proc 100, 110, 117
procedure linkage table 97, 119, 120
processor mode 76
progbits 83, 96
program entry point 87, 102
program origin 82
protected 97
pseudo−instructions 30
PUBLIC 79, 85
pure binary 82
%push 60
__QNaN__ 36
quick start 26
QWORD 30
−r 131
rdf 99
rdoff subdirectory 18, 99
redirecting errors 22
REL 33, 77
relational operators 55
release candidates 17

Relocatable Dynamic Object File Format 99
relocations, PIC−specific 96
removing contexts 60
renaming contexts 62
%rep 31, 58
repeating 31, 58
%repl 62
reporting bugs 129
RESB 28, 30
RESD 30
RESO 30
RESQ 30
REST 30
RESW 30
RESY 30
.rodata 96
%rotate 51
rotating macro parameters 51
−s option 22, 132
searching for include files 59
__SECT__ 77, 78
SECTALIGN 73
SECTION 77

elf extensions to 95
win32 extensions to 89

section alignment
in bin 83
in elf 96
in obj 85
in win32 89

section, bin extensions to 83
SEG 37, 84
SEGMENT 77

elf extensions to 85
segment address 37
segment alignment

in bin 83
in obj 85

segment names, Borland Pascal 113
segment override 27, 29
segments 37

groups of 86
separator character 26
shared libraries 98, 117
shared library 97
shift command 51
SIB byte
signed division 37
signed modulo 37

241

single−line macros 41
size, of symbols 97
smartalign 74
__SNaN__ 36
snapshots, daily development 17
Solaris x86 95
−soname 121
sound 31
source code 17
source−listing file 20
square brackets 26, 32
srec 84
STACK 85
stack relative preprocessor directives 64
%stacksize 64
standard macro packages 74
standard macros 67
standardized section names 77, 89, 95, 98, 99
..start 87, 102
start= 83
stderr 22
stdout 22
%strcat 45
STRICT 38
string constant 30
string constants 34
string length 46
string manipulation in macros 45
strings 33
%strlen 46
STRUC 70, 78, 109, 116
stub preprocessor 24
%substr 46
subtraction 37
suppressible warning 24
suppressing preprocessing 24
switching between sections 77
..sym 96
symbol sizes, specifying 97
symbol types, specifying 97
symbols

exporting from DLLs 87
importing from DLLs 86

synchronisation 132
.SYS 82, 105
−t 24
TASM 16, 24
tasm 26, 84
.tbss 96

TBYTE 28
.tdata 96
test subdirectory 102
testing

arbitrary numeric expressions 55
context stack 55
exact text identity 56
multi−line macro existence 55
single−line macro existence 54
token types 56

.text 96, 98, 99
_TEXT 107
thread local storage 97
__TIME__ 69
__TIME_NUM__ 69
TIMES 30, 31, 39, 128, 129
TLINK 105
tls 96, 97
..tlsie 97
trailing colon 29
TWORD 28, 30
type, of symbols 97
−U option 23
−u option 23, 131
unary operators 37
%undef 23, 44
undefining macros 23
underscore, in C symbols 105
Unicode 34, 35
uninitialized 30
uninitialized storage 28
Unix 18

SCO 95
source archive 18
System V 95

UnixWare 95
%unmacro 53
unrolled loops 31
unsigned division 37
unsigned modulo 37
UPPERCASE 26, 86
%use 60, 74
__USE_*__ 69
USE16 77, 85
USE32 77, 85
user 25
user−defined errors 65
user−level assembler directives 67
user−level directives 76

242

__UTC_DATE__ 69
__UTC_DATE_NUM__ 69
__UTC_TIME__ 69
__UTC_TIME_NUM__ 69
UTF−16 35
UTF−32 35
UTF−8 34
__utf16__ 35
__utf16be__ 35
__utf16le__ 35
__utf32__ 35
__utf32be__ 35
__utf32le__ 35
−v option 25
VAL 102
valid characters 29
variable types 27
version 25
version number of NASM 67
vfollows= 83
Visual C++ 88
vstart= 83
−W option 24
−w option 24
%warning 65
warnings 24
[warning *warning−name] 25
[warning +warning−name] 25
[warning −warning−name] 25
website 17
win64 91, 125
Win64 84, 88, 114
Windows 102
Windows 95
Windows NT
write 96
writing operating systems 122
WRT 37, 84, 96, 97, 99
WRT ..got 119
WRT ..gotoff 119
WRT ..gotpc 118
WRT ..plt 120
WRT ..sym 120
WWW page
www.cpan.org 18
www.delorie.com 102
www.pcorner.com 102
−X option 21
x2ftp.oulu.fi 102

x32 95
%xdefine 42
−y option 25
−Z option 22

243

	Title
	Contents
	Introduction
	What Is NASM?
	Why Yet Another Assembler?
	License Conditions

	Contact Information
	Installation
	Installing NASM under MS-DOS or Windows
	Installing NASM under Unix

	Running NASM
	NASM Command-Line Syntax
	The -o Option: Specifying the Output File Name
	The -f Option: Specifying the Output File Format
	The -l Option: Generating a Listing File
	The -M Option: Generate Makefile Dependencies
	The -MG Option: Generate Makefile Dependencies
	The -MF Option: Set Makefile Dependency File
	The -MD Option: Assemble and Generate Dependencies
	The -MT Option: Dependency Target Name
	The -MQ Option: Dependency Target Name (Quoted)
	The -MP Option: Emit phony targets
	The -F Option: Selecting a Debug Information Format
	The -g Option: Enabling Debug Information.
	The -X Option: Selecting an Error Reporting Format
	The -Z Option: Send Errors to a File
	The -s Option: Send Errors to stdout
	The -i Option: Include File Search Directories
	The -p Option: Pre-Include a File
	The -d Option: Pre-Define a Macro
	The -u Option: Undefine a Macro
	The -E Option: Preprocess Only
	The -a Option: Don't Preprocess At All
	The -O Option: Specifying Multipass Optimization
	The -t Option: Enable TASM Compatibility Mode
	The -w and -W Options: Enable or Disable Assembly Warnings
	The -v Option: Display Version Info
	The -y Option: Display Available Debug Info Formats
	The --prefix and --postfix Options.
	The NASMENV Environment Variable

	Quick Start for MASM Users
	NASM Is Case-Sensitive
	NASM Requires Square Brackets For Memory References
	NASM Doesn't Store Variable Types
	NASM Doesn't ASSUME
	NASM Doesn't Support Memory Models
	Floating-Point Differences
	Other Differences

	The NASM Language
	Layout of a NASM Source Line
	Pseudo-Instructions
	DB and Friends: Declaring Initialized Data
	RESB and Friends: Declaring Uninitialized Data
	INCBIN: Including External Binary Files
	EQU: Defining Constants
	TIMES: Repeating Instructions or Data

	Effective Addresses
	Constants
	Numeric Constants
	Character Strings
	Character Constants
	String Constants
	Unicode Strings
	Floating-Point Constants
	Packed BCD Constants

	Expressions
	|: Bitwise OR Operator
	^: Bitwise XOR Operator
	&: Bitwise AND Operator
	<< and >>: Bit Shift Operators
	+ and -: Addition and Subtraction Operators
	*, /, //, % and %%: Multiplication and Division
	Unary Operators

	SEG and WRT
	STRICT: Inhibiting Optimization
	Critical Expressions
	Local Labels

	The NASM Preprocessor
	Single-Line Macros
	The Normal Way: %define
	Resolving %define: %xdefine
	Macro Indirection: %[...]
	Concatenating Single Line Macro Tokens: %+
	The Macro Name Itself: %? and %??
	Undefining Single-Line Macros: %undef
	Preprocessor Variables: %assign
	Defining Strings: %defstr
	Defining Tokens: %deftok

	String Manipulation in Macros
	Concatenating Strings: %strcat
	String Length: %strlen
	Extracting Substrings: %substr

	Multi-Line Macros: %macro
	Overloading Multi-Line Macros
	Macro-Local Labels
	Greedy Macro Parameters
	Macro Parameters Range
	Default Macro Parameters
	%0: Macro Parameter Counter
	%00: Label Preceeding Macro
	%rotate: Rotating Macro Parameters
	Concatenating Macro Parameters
	Condition Codes as Macro Parameters
	Disabling Listing Expansion
	Undefining Multi-Line Macros: %unmacro

	Conditional Assembly
	%ifdef: Testing Single-Line Macro Existence
	%ifmacro: Testing Multi-Line Macro Existence
	%ifctx: Testing the Context Stack
	%if: Testing Arbitrary Numeric Expressions
	%ifidn and %ifidni: Testing Exact Text Identity
	%ifid, %ifnum, %ifstr: Testing Token Types
	%iftoken: Test for a Single Token
	%ifempty: Test for Empty Expansion
	%ifenv: Test If Environment Variable Exists

	Preprocessor Loops: %rep
	Source Files and Dependencies
	%include: Including Other Files
	%pathsearch: Search the Include Path
	%depend: Add Dependent Files
	%use: Include Standard Macro Package

	The Context Stack
	%push and %pop: Creating and Removing Contexts
	Context-Local Labels
	Context-Local Single-Line Macros
	Context Fall-Through Lookup
	%repl: Renaming a Context
	Example Use of the Context Stack: Block IFs

	Stack Relative Preprocessor Directives
	%arg Directive
	%stacksize Directive
	%local Directive

	Reporting User-Defined Errors: %error, %warning, %fatal
	Other Preprocessor Directives
	%line Directive
	%!<env>: Read an environment variable.

	Comment Blocks: %comment
	Standard Macros
	NASM Version Macros
	__NASM_VERSION_ID__: NASM Version ID
	__NASM_VER__: NASM Version string
	__FILE__ and __LINE__: File Name and Line Number
	__BITS__: Current BITS Mode
	__OUTPUT_FORMAT__: Current Output Format
	Assembly Date and Time Macros
	__USE_package__: Package Include Test
	__PASS__: Assembly Pass
	STRUC and ENDSTRUC: Declaring Structure Data Types
	ISTRUC, AT and IEND: Declaring Instances of Structures
	ALIGN and ALIGNB: Data Alignment
	SECTALIGN: Section Alignment

	Standard Macro Packages
	altreg: Alternate Register Names
	smartalign: Smart ALIGN Macro
	fp: Floating-point macros
	ifunc: Integer functions
	Integer logarithms

	Assembler Directives
	BITS: Specifying Target Processor Mode
	USE16 & USE32: Aliases for BITS

	DEFAULT: Change the assembler defaults
	SECTION or SEGMENT: Changing and Defining Sections
	The __SECT__ Macro

	ABSOLUTE: Defining Absolute Labels
	EXTERN: Importing Symbols from Other Modules
	GLOBAL: Exporting Symbols to Other Modules
	COMMON: Defining Common Data Areas
	CPU: Defining CPU Dependencies
	FLOAT: Handling of floating-point constants

	Output Formats
	bin: Flat-Form Binary Output
	ORG: Binary File Program Origin
	bin Extensions to the SECTION Directive
	Multisection Support for the bin Format
	Map Files

	ith: Intel Hex Output
	srec: Motorola S-Records Output
	obj: Microsoft OMF Object Files
	obj Extensions to the SEGMENT Directive
	GROUP: Defining Groups of Segments
	UPPERCASE: Disabling Case Sensitivity in Output
	IMPORT: Importing DLL Symbols
	EXPORT: Exporting DLL Symbols
	..start: Defining the Program Entry Point
	obj Extensions to the EXTERN Directive
	obj Extensions to the COMMON Directive

	win32: Microsoft Win32 Object Files
	win32 Extensions to the SECTION Directive
	win32: Safe Structured Exception Handling

	win64: Microsoft Win64 Object Files
	win64: Writing Position-Independent Code
	win64: Structured Exception Handling

	coff: Common Object File Format
	macho32 and macho64: Mach Object File Format
	elf32, elf64, elfx32: Executable and Linkable Format Object Files
	ELF specific directive osabi
	elf Extensions to the SECTION Directive
	Position-Independent Code: elf Special Symbols and WRT
	Thread Local Storage: elf Special Symbols and WRT
	elf Extensions to the GLOBAL Directive
	elf Extensions to the COMMON Directive
	16-bit code and ELF
	Debug formats and ELF

	aout: Linux a.out Object Files
	aoutb: NetBSD/FreeBSD/OpenBSD a.out Object Files
	as86: Minix/Linux as86 Object Files
	rdf: Relocatable Dynamic Object File Format
	Requiring a Library: The LIBRARY Directive
	Specifying a Module Name: The MODULE Directive
	rdf Extensions to the GLOBAL Directive
	rdf Extensions to the EXTERN Directive

	dbg: Debugging Format

	Writing 16-bit Code (DOS, Windows 3/3.1)
	Producing .EXE Files
	Using the obj Format To Generate .EXE Files
	Using the bin Format To Generate .EXE Files

	Producing .COM Files
	Using the bin Format To Generate .COM Files
	Using the obj Format To Generate .COM Files

	Producing .SYS Files
	Interfacing to 16-bit C Programs
	External Symbol Names
	Memory Models
	Function Definitions and Function Calls
	Accessing Data Items
	c16.mac: Helper Macros for the 16-bit C Interface

	Interfacing to Borland Pascal Programs
	The Pascal Calling Convention
	Borland Pascal Segment Name Restrictions
	Using c16.mac With Pascal Programs

	Writing 32-bit Code (Unix, Win32, DJGPP)
	Interfacing to 32-bit C Programs
	External Symbol Names
	Function Definitions and Function Calls
	Accessing Data Items
	c32.mac: Helper Macros for the 32-bit C Interface

	Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries
	Obtaining the Address of the GOT
	Finding Your Local Data Items
	Finding External and Common Data Items
	Exporting Symbols to the Library User
	Calling Procedures Outside the Library
	Generating the Library File

	Mixing 16 and 32 Bit Code
	Mixed-Size Jumps
	Addressing Between Different-Size Segments
	Other Mixed-Size Instructions

	Writing 64-bit Code (Unix, Win64)
	Register Names in 64-bit Mode
	Immediates and Displacements in 64-bit Mode
	Interfacing to 64-bit C Programs (Unix)
	Interfacing to 64-bit C Programs (Win64)

	Troubleshooting
	Common Problems
	NASM Generates Inefficient Code
	My Jumps are Out of Range
	ORG Doesn't Work
	TIMES Doesn't Work

	Bugs

	Ndisasm
	Introduction
	Getting Started: Installation
	Running NDISASM
	COM Files: Specifying an Origin
	Code Following Data: Synchronisation
	Mixed Code and Data: Automatic (Intelligent) Synchronisation
	Other Options

	Bugs and Improvements

	Instruction List
	Introduction
	Special instructions...
	Conventional instructions
	Katmai Streaming SIMD instructions (SSE ŒŒ a.k.a. KNI, XMM, MMX2)
	Introduced in Deschutes but necessary for SSE support
	XSAVE group (AVX and extended state)
	Generic memory operations
	New MMX instructions introduced in Katmai
	AMD Enhanced 3DNow! (Athlon) instructions
	Willamette SSE2 Cacheability Instructions
	Willamette MMX instructions (SSE2 SIMD Integer Instructions)
	Willamette Streaming SIMD instructions (SSE2)
	Prescott New Instructions (SSE3)
	VMX Instructions
	Extended Page Tables VMX instructions
	Tejas New Instructions (SSSE3)
	AMD SSE4A
	New instructions in Barcelona
	Penryn New Instructions (SSE4.1)
	Nehalem New Instructions (SSE4.2)
	Intel SMX
	Geode (Cyrix) 3DNow! additions
	Intel new instructions in ???
	Intel AES instructions
	Intel AVX AES instructions
	Intel AVX instructions
	Intel Carry-Less Multiplication instructions (CLMUL)
	Intel AVX Carry-Less Multiplication instructions (CLMUL)
	Intel Fused Multiply-Add instructions (FMA)
	Intel post-32 nm processor instructions
	VIA (Centaur) security instructions
	AMD Lightweight Profiling (LWP) instructions
	AMD XOP and FMA4 instructions (SSE5)
	Intel AVX2 instructions
	Transactional Synchronization Extensions (TSX)
	Intel BMI1 and BMI2 instructions
	Systematic names for the hinting nop instructions

	NASM Version History
	NASM 2 Series
	Version 2.10.04
	Version 2.10.03
	Version 2.10.02
	Version 2.10.01
	Version 2.10
	Version 2.09.10
	Version 2.09.09
	Version 2.09.08
	Version 2.09.07
	Version 2.09.06
	Version 2.09.05
	Version 2.09.04
	Version 2.09.03
	Version 2.09.02
	Version 2.09.01
	Version 2.09
	Version 2.08.02
	Version 2.08.01
	Version 2.08
	Version 2.07
	Version 2.06
	Version 2.05.01
	Version 2.05
	Version 2.04
	Version 2.03.01
	Version 2.03
	Version 2.02
	Version 2.01
	Version 2.00

	NASM 0.98 Series
	Version 0.98.39
	Version 0.98.38
	Version 0.98.37
	Version 0.98.36
	Version 0.98.35
	Version 0.98.34
	Version 0.98.33
	Version 0.98.32
	Version 0.98.31
	Version 0.98.30
	Version 0.98.28
	Version 0.98.26
	Version 0.98.25alt
	Version 0.98.25
	Version 0.98.24p1
	Version 0.98.24
	Version 0.98.23
	Version 0.98.22
	Version 0.98.21
	Version 0.98.20
	Version 0.98.19
	Version 0.98.18
	Version 0.98.17
	Version 0.98.16
	Version 0.98.15
	Version 0.98.14
	Version 0.98.13
	Version 0.98.12
	Version 0.98.11
	Version 0.98.10
	Version 0.98.09
	Version 0.98.08
	Version 0.98.09b with John Coffman patches released 28-Oct-2001
	Version 0.98.07 released 01/28/01
	Version 0.98.06f released 01/18/01
	Version 0.98.06e released 01/09/01
	Version 0.98p1
	Version 0.98bf (bug-fixed)
	Version 0.98.03 with John Coffman's changes released 27-Jul-2000
	Version 0.98.03
	Version 0.98
	Version 0.98p9
	Version 0.98p8
	Version 0.98p7
	Version 0.98p6
	Version 0.98p3.7
	Version 0.98p3.6
	Version 0.98p3.5
	Version 0.98p3.4
	Version 0.98p3.3
	Version 0.98p3.2
	Version 0.98p3-hpa
	Version 0.98 pre-release 3
	Version 0.98 pre-release 2
	Version 0.98 pre-release 1

	NASM 0.9 Series
	Version 0.97 released December 1997
	Version 0.96 released November 1997
	Version 0.95 released July 1997
	Version 0.94 released April 1997
	Version 0.93 released January 1997
	Version 0.92 released January 1997
	Version 0.91 released November 1996
	Version 0.90 released October 1996

	Index

