CMSC 313 Lecture 19

• Combinational Logic Components
• Programmable Logic Arrays
• Karnaugh Maps
Last Time & Before

• Returned midterm exam
• Half adders & full adders
• Ripple carry adders vs carry lookahead adders
• Propagation delay
• Multiplexers
Multiplexer

\[F = \overline{A} \overline{B} D_0 + \overline{A} B D_1 + A \overline{B} D_2 + A B D_3 \]
Demultiplexer

\[F_0 = D \overline{A} \overline{B} \]
\[F_1 = D \overline{A} B \]
\[F_2 = D A \overline{B} \]
\[F_3 = D A B \]

<table>
<thead>
<tr>
<th>D</th>
<th>A</th>
<th>B</th>
<th>F_0</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Gate-Level Implementation of DEMUX

Diagram showing a 4-line Demultiplexer with inputs A and B and outputs F0, F1, F2, F3.
Decoder

\[
\begin{array}{c|c|c|c|c|c|c}
A & B & D_0 & D_1 & D_2 & D_3 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]

Enable = 1

\[
\begin{array}{c|c|c|c|c|c|c}
A & B & D_0 & D_1 & D_2 & D_3 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Enable = 0

\[
D_0 = \overline{A} \overline{B} \\
D_1 = \overline{A} B \\
D_2 = A \overline{B} \\
D_3 = A B
\]
Gate-Level Implementation of Decoder

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring
Decoder Implementation of Majority Function

- Note that the enable input is not always present. We use it when discussing decoders for memory.
Priority Encoder

- An encoder translates a set of inputs into a binary encoding.
- Can be thought of as the converse of a decoder.
- A priority encoder imposes an order on the inputs.
- \(A_i \) has a higher priority than \(A_{i+1} \)

\[
\begin{align*}
F_0 &= \overline{A_0} A_1 A_3 + \overline{A_0} A_1 A_2 \\
F_1 &= \overline{A_0} A_2 A_3 + \overline{A_0} A_1
\end{align*}
\]

<table>
<thead>
<tr>
<th>(A_0)</th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(F_0)</th>
<th>(F_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
AND-OR Implementation of Priority Encoder

\[A_0 \rightarrow \text{AND gate} \rightarrow F_0 \]
\[A_1 \rightarrow \text{AND gate} \rightarrow F_0 \]
\[A_2 \rightarrow \text{AND gate} \rightarrow F_1 \]
\[A_3 \rightarrow \text{AND gate} \rightarrow F_1 \]
Programmable Logic Array

- A PLA is a customizable AND matrix followed by a customizable OR matrix.
- Black box view of PLA:

\[\begin{array}{c}
A \\
B \\
C
\end{array} \quad \begin{array}{c}
\text{PLA} \\
F_0 \\
F_1
\end{array}\]
Simplified Representation of PLA Implementation of Majority Function
Full Adder

A full adder is a digital circuit that can add three binary digits, two input digits A_i and B_i, and one carry digit C_i, to produce a sum digit S_i and a carry digit C_{i+1}. The truth table for a full adder is as follows:

<table>
<thead>
<tr>
<th>A_i</th>
<th>B_i</th>
<th>C_i</th>
<th>S_i</th>
<th>C_{i+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The circuit diagram of a full adder is shown on the right side of the page.
PLA Realization of Full Adder
Reduction (Simplification) of Boolean Expressions

• It is usually possible to simplify the canonical SOP (or POS) forms.
• A smaller Boolean equation generally translates to a lower gate count in the target circuit.
• We cover three methods: algebraic reduction, Karnaugh map reduction, and tabular (Quine-McCluskey) reduction.
Karnaugh Maps: Venn Diagram Representation of Majority Function

• Each distinct region in the “Universe” represents a minterm.
• This diagram can be transformed into a Karnaugh Map.
K-Map for Majority Function

- Place a “1” in each cell that corresponds to that minterm.
- Cells on the outer edge of the map “wrap around”

<table>
<thead>
<tr>
<th>Minterm Index</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Adjacency Groupings for Majority Function

- \(F = BC + AC + AB \)
Minimized AND-OR Majority Circuit

- $F = BC + AC + AB$
- The K-map approach yields the same minimal two-level form as the algebraic approach.
K-Map Groupings

- Minimal grouping is on the left, non-minimal (but logically equivalent) grouping is on the right.
- To obtain minimal grouping, create *smallest* groups first.

\[
F = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{C} \overline{D} + \\
A \overline{B} C + A \overline{C} \overline{D}
\]

\[
F = BD + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{C} \overline{D} + \\
A \overline{B} C + A \overline{C} \overline{D}
\]
Example Requiring More Rules
K-Map Corners are Logically Adjacent

\[F = B \overline{C} D + \overline{B} \overline{D} + \overline{A} B \]
K-Maps and Don’t Cares

• There can be more than one minimal grouping, as a result of don’t cares.

\[F = B \bar{C} \bar{D} + B \bar{D} \]

\[F = A \bar{B} D + B \bar{D} \]
Gray Code

- Two bits: 00, 01, 11, 10
- Three bits: 000, 001, 011, 010, 110, 111, 101, 100
- Successive bit patterns only differ at 1 position
- For Karnaugh maps, adjacent 1’s represent minterms that can be simplified using the rule:
 \[ABC' + A'BC' = (A + A')BC' = 1BC' = BC'\]
Karnaugh Maps

- **Implicant**: rectangle with 1, 2, 4, 8, 16 ... 1’s
- **Prime Implicant**: an implicant that cannot be extended into a larger implicant
- **Essential Prime Implicant**: the only prime implicant that covers some 1

K-map Algorithm (not from M&H):

1. Find ALL the prime implicants. Be sure to check every 1 and to use don’t cares.
2. Include all essential prime implicants.
3. Try all possibilities to find the minimum cover for the remaining 1’s.
K-map Example

\[A'B + AC'D + AB'D' \]
Notes on K-maps

• Also works for POS

• Takes 2^n time for formulas with n variables

• Only optimizes two-level logic

 ◦ Reduces number of terms, then number of literals in each term

• Assumes inverters are free

• Does not consider minimizations across functions

• Circuit minimization is generally a hard problem

• Quine-McCluskey can be used with more variables

• CAD tools are available if you are serious
Circuit Minimization is Hard

• Unix systems store passwords in encrypted form.
 ◦ User types in x, system computes f(x) and looks for f(x) in a file.

• Suppose we use 64-bit passwords and I want to find the password x, such that f(x) = y. Let
 \[g_i(x) = 0 \text{ if } f(x) = y \text{ and the } i\text{th} \text{ bit of } x \text{ is 0} \]
 \[1 \text{ otherwise.} \]

• If the ith bit of x is 1, then \(g_i(x) \) outputs 1 for every x and has a very, very simple circuit.

• If you can simplify every circuit quickly, then you can crack passwords quickly.
3-Level Majority Circuit

- K-Map Reduction results in a reduced two-level circuit (that is, AND followed by OR. Inverters are not included in the two-level count). Algebraic reduction can result in multi-level circuits with even fewer logic gates and fewer inputs to the logic gates.