Exam 2 CMSC 203 Discrete Structures Spring 2003

1. Circle T if the corresponding statement is True or F if it is False.
 T F The Fibonacci Sequence is \(\{s_n \mid s_n = s_{n-1} + s_{n-2}, \text{ with } s_0 = 1 \text{ and } s_1 = 1\} \).
 T F The First (Weak) and Second (Strong) Principles of Mathematical Induction are logically equivalent.
 T F All recursively defined sequences of Integers take on successively larger values.
 T F If lazy students fail CMSC203 and Paul passed CMSC203, then we can conclude logically that Paul is not lazy.
 T F Functions that are \(O(x^2) \) grow faster than functions that are \(O(2^x) \).
 T F The product of a Rational and an Irrational is always Irrational.
 T F The product of an Irrational and an Irrational is always Irrational.
 T F For every recursive algorithm, there is an equivalent iterative algorithm.

2. Circle V for Valid or I for Invalid with respect to the following arguments:
 V I All dogs run fast and Zeke runs slow, therefore Zeke is not a dog.
 V I All dogs run fast and Zeke is a dog, therefore Zeke runs fast.
 V I All dogs run fast and Zeke is not a dog, therefore Zeke runs fast.
 V I All dogs run fast and Zeke runs fast, therefore Zeke is a dog.

3. Let \(\{a_n\} \) and \(\{b_n\} \) be the sequences defined, for \(n \geq 0 \), by: \(a_n = n + 2^n \), \(b_n = (-1)^n \).
 Find \(c_0, c_1, c_2, \) and \(c_3 \) when \(c_n = (a_n)(b_n) \).

4. Rank from 1 (least complex) to 10 (most complex) the complexity of algorithms with the following orders:
 Order \(n^2 \) \(n \log n \) \(n! \) \(2^n \) \(1 \) \(n \) \(n^n \) \(\log n \) \(10^n \) \(n^{10} \)
 Rank

5. Use the Euclidean Algorithm to find \(\text{GCD}(688,124) \).

6. Prove one of the two Theorems below using Mathematical Induction.

 Theorem 1: For all integers \(n \geq 1 \), \(\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} \).

 Theorem 2: Every integer greater than 1 is divisible by a prime.

7. Use the Methods of Valid Arguments to obtain the indicated conclusion.
 Premises:
 - Paul does not forfeit his scholarship and Paul goes to class.
 - If Paul does not watch TV, then Paul gets good grades.
 - If Paul watches TV or Paul does not do his homework, then Paul does not go to class.
 - Paul does his homework or Paul forfeits his scholarship.
 Conclusion:
 Therefore, Paul gets good grades.

8. (20 points) Prove one of the two Theorems below by either Contradiction.
 Theorem 1: If every integer has a prime factorization, then the set of primes is infinite.
 Theorem 2: For all integers \(n \) and primes \(p \), if \(p \) divides \(n \), then \(p \) does not divide \((n + 1) \).