Notation: Let \(\mathbb{R} \) denote the Real Numbers, and \(P(A) \) denote the Power Set of \(A \).

1. (20 pts.) Circle \(T \) if the statement is true or \(F \) if the statement is false.

 - \(T \) \(Z \times Z \subseteq \mathbb{R} \times \mathbb{R} \).
 - \(T \) If \(n \) is an Natural Number, the set \(\{1,2,3,\ldots,n\} \) has \(n^2 \) subsets.
 - \(T \) For any set \(A \), \(\emptyset \subseteq P(A) \) and \(\emptyset \in P(A) \).
 - \(F \) The negation of the statement: All Natural Numbers are even is the statement: Some Natural Numbers are not even.
 - \(T \) \([(36 \text{ DIV } 5) - (93 \text{ MOD } 7)] = 5 \).
 - \(T \) If \(d \mid (x + y) \), then \(d \mid x \) and \(d \mid y \).
 - \(T \) If \(A = \{0,1\} \), then \(A \times A \times A = \{000,001,010,011,100,101,110,111\} \).
 - \(T \) If \(\Sigma = \{0,1\} \), then \(\Sigma^5 = \Sigma \times \Sigma \times \Sigma \times \Sigma \times \Sigma \).
 - \(T \) The set of even integers and the set of odd integers partition the set of integers.
 - \(F \) A conditional statement and its contrapositive are logically equivalent.

2. (6 pts.) Use the Euclidian Algorithm to find \(\text{gcd}(1000,60) \).

3. (10 pts.) Show, without using truth tables, that \((\neg p \land q) \rightarrow r \equiv \neg p \rightarrow (q \rightarrow r) \).

4. (4 pts.) Give the converse, inverse, contrapositive, and negation of the universal statement: All prime numbers greater than 2 are odd.

5. (10 pts.) Find the Disjunctive Normal Form of a circuit of four inputs in such a way that if the integer value of the inputs is prime, then current flows out of the circuit. (For example, 12 is not prime, and 12 = 1100, so \(f(1100) = 0 \)).

6. (10 pts.) Show the following is a valid argument:

 \[
 \begin{align*}
 &p \rightarrow (q \land r) \\
 \sim r &
 \end{align*}
 \]

 \[
 \therefore \sim p
 \]

7. (40 pts.) Prove 2 of the 4 theorems:

 Theorem 1: \((A \cup B) \cap (A \cup C^c) \cap (B^c \cup C^c) = (A - B) \cup (B - C) \)

 Theorem 2: For all integers \(a \) and \(b \), if \(b \) is the successor of \(a \), then \(b^2 - a^2 \) is odd.

 Theorem 3: If every integer greater than 1 can be factored as the product of primes, then there is no largest prime.

 Theorem 4: If \(a \), \(b \), and \(c \) are integers with \(a = b + c \), then \(\text{gcd}(a,b) = \text{gcd}(b,c) \).