1. Circle T or F as it applies to the associated statement below:

- T F The negation of the statement, “Some integers are positive,” is “Some integers are non-positive.”
- T F The following is a valid argument: T
 \[\sim q \land p \]
 \[T \rightarrow (t \lor s) \]
 \[s \rightarrow \sim p \]
 \[t \rightarrow r \]
 \[\therefore r \]
- T F If \(p \equiv q \), then \(p \leftrightarrow q \) is a tautology.
- T F If \(A = \{1,3\} \), \(B = \{1,2,5\} \), and \(U = \{0, 1, 2, 3, 4, 5\} \), then \((B \cup A)^c = \{3\} \)
- T F If \(A = \{x, y\} \) and \(B = \{a, b\} \), then \(B \times A = \{(a, x), (a, y), (b, x), (b, y)\} \)
- T F If \(f : \{a, b, c, d, e\} \rightarrow \{v, w, x, y, z\} \) is defined as \(f = \{(a,x), (b,z), (c,x), (d,w), (e,y)\} \), then \(f \) is an ONTO function.
- T F If \(f : \{a, b, c, d, e\} \rightarrow \{v, w, x, y, z\} \) is defined as \(f = \{(a,x), (b,z), (c,x), (d,w), (e,y)\} \), then \(f \) is an ONE-TO-ONE function.
- T F If the relation \(R \) on \(A = \{0, 1, 2, 3, 4\} \) is \(R = \{(a, b) \mid a, b \in A \text{ and } b \equiv 4a \mod 5\} \), then \(R = \{(0, 0), (1, 4), (2, 3), (3, 2), (4, 1)\} \)
- T F The relation \(\{(1, 1), (2, 2), (3, 3), (4, 4)\} \) is both SYMMETRIC and ANTI-SYMMETRIC on the set \(\{1, 2, 3, 4\} \).
- T F Let \(S = \{0,1\} \), \(H(s, t) \) be the Hamming Distance Function, and define the equivalence relation \(R = \{(s, t) \mid s, t \in \Sigma^4 \text{ and } H(s, 0000) = H(t, 0000)\} \). Then \([0011] = \{0011, 0000\} \).
- T F There are \(\frac{14!}{4! \cdot 6! \cdot 4!} \) distinct orderings of the letters \(abbabccacbcabb \).
- T F If \(A, B, \) and \(C \) are sets which partition a set \(X \), then \(|A| = |X| - |B| - |C| \).
- T F If \(n \) and \(r \) are positive integers with \(n \geq r \), then \(P(n, r) = nC(n, r) \).
- T F The Characteristic Polynomial of \(s_n = s_{n-3} + s_{n-5} \) is \(x^5 - x^3 - 1 \).
- T F If a recurrence relation has the General Solution: \(s_n = (A + Bn + Cn^2)(3^n) \), then its Characteristic Polynomial is \((x - 3)^3 \).

2. Fill in the blanks so the function \(g : \{a, b, c, d\} \rightarrow \{w, x, y, z\} \) is a 1-1 correspondence.
\[
g = \{(a, _), (b, _), (c, _), (d, _)\}.
\]

3. Find the Boolean Polynomial for a circuit of 5 inputs which outputs a current whenever the first three inputs are the opposite of the last two.

4. How many distinct license plates are there consisting of either 8 non-repeated digits or 3 non-repeated capital letters followed by 5 non-repeated digits?

5. How many different ways can Andrew, Betty, Charles, Diane, Edward, Fay, Gordon, Harriet, Isaac, and June sit around a circular table so that Andrew and Betty never sit next to one another?
6. Show that \(\binom{n}{n - 2} = \frac{n(n - 1)}{2} \).

7. How many integer solutions are there to the equation \(a + b + c + d + e + f + g = 50 \) provided \(a \geq 1, b \geq 2, c \geq 3, d \geq 4, e \geq 5, f \geq 6, \) and \(g \geq 7 \)?

8. Given the recurrence relation \(s_n = 4s_{n-1} + 21s_{n-2} \), what is \(s_{999} \) when \(s_0 = 7 \) and \(s_1 = -1 \)?

9. Prove ONE of the TWO statements below:
 a. If \(d, n, q, \) and \(r \) are integers with \(n = dq + r \), then \(\text{GCD}(n, d) = \text{GCD}(d, r) \).
 b. The square root of 2 is an irrational number.

10. Prove ONE of the TWO statements below:
 a. \(\sum_{i=1}^{n} i^3 = \left(\frac{n(n + 1)}{2} \right)^2 \)
 b. If \(a_1, a_2, a_3, \ldots \) is the sequence: \(a_0 = 3, a_1 = 5, a_2 = 7 \) with \(a_n = a_{n-1} + a_{n-2} + a_{n-3} \), then \(a_n \) is odd for all \(n \geq 3 \).

11. Prove ONE of the TWO statements below:
 a. The function \(f: \mathbb{R} \rightarrow \mathbb{R} \) given by \(3y + 2x = 6 \) is a bijection.
 b. The relation \(R \) on \(\mathbb{Z} \) given by \(R = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } b \equiv a \mod 5\} \) is an equivalence relation.