1. Circle \(T \) of the corresponding statement is True and \(F \) if it is False:

\[
\begin{array}{ll}
1 + 2 + 3 + 4 + \ldots + 500 = 250,500 & T \\
The directed graph of a REFLEXIVE relation contains all possible loops. & T \\
If \(G:A \to B \) is a function with \(G = \{(1,-1),(2,-2),(3,-3),(4,-4)\} \), then \(\{-1,-2,-3,-4\} \subseteq B \). & T \\
If \(A \) is a set, then the relation \(R = \{(a,a) \mid a \in A\} \) is the smallest Equivalence Relation on \(A \). & T \\
If \(A \) and \(B \) are sets with \(|A| < |B|\), then there exists a bijective function mapping \(A \) to \(B \). & T \\
If \(f:A \to B \) and \(g:B \to A \) are functions, then \((g \circ f) \) is the identity function. & T \\
1 + 2 + 2^2 + 2^3 + \ldots + 2^{10,000} = 2^{10,001} - 1 & T \\
\end{array}
\]

2. Given the bytes 11101100, 00011111, 10111101, and 00100100, which has least Hamming Distance from the byte 11011011?

3. Write \(1 - 2 + (3^2) - (4^3) + \ldots - (12^{13}) \) in summation notation ranging from \(i = 10 \) to \(23 \).

4. If \(R \) is the Equivalence Relation given by \(R = \{(a,b) \mid a,b \in \{1,2,\ldots,100\} \text{ and } a \equiv b \mod 19\} \), what is \([6]\)?

5. Let \(R \) be an Equivalence Relation relation on \(A = \{0,1,2,3,4,5\} \) which induces the partition \(\{\{0,1\},\{2,3,4,5\}\} \) of \(A \). Draw the directed graph of \(R \).

6. Let \(f:\{1,2,3,4,5\} \to \{1,3,5,7,9\} \) be the function \(f = \{(1,9),(2,5),(3,7),(4,3),(5,1)\} \) and let \(g:\{1,3,5,7,9\} \to \{0,2,4,6,8\} \) be the function \(g = \{(1,4),(3,6),(5,2),(7,8),(9,0)\} \). Find \((g \circ f)^{-1}\).

7. Let \(\Sigma = \{x,y,z\} \). Find a bijective function to show that \(\Sigma^2 \) and \(\Sigma \times \Sigma \) have the same cardinality.

8. Prove 3 of the following 4 statements using the indicated method:
 a. Using Strong Induction, show that if \(n \) is an integer greater than 1 and \(n \) is not prime, then \(n \) has a prime factor.

 b. Using Mathematical Induction, show that for all integers \(a > 1 \),
 \[
 \sum_{i=0}^{n} a^i = \frac{a^{n+1} - 1}{a - 1}.
 \]

 c. If \(A \) is a non-empty set, then \(A \times A \) is an Equivalence Relation.

 d. If \(f:A \to B \) is a one-to-one and onto function, then \(|A| = |B|\).