1. Circle T for True or F for False as they apply to the following statements:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

2. Find the truth table for the compound statement:

\[[(p \leftrightarrow q) \oplus r] \lor [p \land (\neg q \to r)] \]

3. Find the related forms for the statement: **For all Integers, x, if x is odd, then \(x^2 \) is odd.**

CONVERSE: __________________________ **NEGATION:** __________________________

4. Draw a graph for a function, \(f: \{1, 2, 3, 4\} \to \{w, x, y, z\} \), that is: (a) onto; (b) one-to-one.

5. Show that the function \(f: R \to R \) defined as \(f(x) = 7x - 3 \) is a bijection.

6. Calculate the following (assuming all strings are from the alphabet \{0, 1\}):

 (a) \(\ell(1001001001) \)
 (b) \(d(010011000111) \)
 (c) \(H(11011101, 00110011) \)
 (d) \(([8.1] - 5)((8.1) - 5) + 8 \)

7. (a) Let \(f = \{(0,35), (1,55), (2,15), (3,25), (4,45)\} \) and \(g = \{(15,400), (25,100), (35,200), (45,300), (55,500)\} \).

 Show that \((g \circ f)^{-1} = f^{-1} \circ g^{-1} \).

 (b) Find the Inverse of the function of \(h = \{(1,2), (2,3), (3,4), (4,5), (5,6)\} \).

8. Use the logic of valid arguments to determine whether or not we can deduce \(t \):

\[
\begin{align*}
& s \to \neg q \\
& \neg p \to (r \lor s) \\
& \neg p \land q \\
& r \to t
\end{align*}
\]

9. Use the Properties of Sets to verify for any sets A, B, C, and D

\[
(A^c \cup B \cup C \cup D)^c = [(A - B) - C] - D.
\]