1. (16 points) Circle T if the corresponding statement is True or F if it is False.

T F For any positive integer, n, GCD(n, 1) = 1.

T F Every positive integer is either prime or composite.

T F If \(a \equiv b \mod p \), then \((a/p) = (b/p) \).

T F If \(a \) and \(b \) are positive integers, then \(a = b(a \operatorname{DIV} b) + (a \operatorname{MOD} b) \).

T F \(1 + 3 + 3^2 + 3^3 + 3^4 + \ldots + 3^{33} = 3^{34} - 1 \).

T F Algorithms with \(O(n^3) \) are less efficient than those with \(O(3^n) \).

T F Any statement validated by the Weak Principle of Mathematical Induction cannot be validated by the Strong Principle of Mathematical Induction.

T F GCD(368, 60) = GCD(60, 8).

2. (8 points) Find GCD(2^{35}2^{7}11^{1}13^{0}17^{5}19^{0}23^{1}29^{1}31^{2} , 2^{45}17^{0}11^{2}13^{4}17^{4}19^{3}23^{1}29^{0}31^{3})

GCD = 2^{35}17^{0}11^{1}13^{0}17^{4}19^{0}23^{1}29^{0}31^{2}
 equivalently, = 2^{35}11^{1}17^{4}23^{1}31^{2}

3. (8 points) List out the search intervals of the Binary Search algorithm to find 4 in the list:
 3 4 6 9 13 18 21 34 55 72 83 85 92 104 111 133

Pass 1: (3 4 6 9 13 18 21 34) (55 72 83 85 92 104 111 133)

Pass 2: (3 4 6 9) (13 18 21 34)

Pass 3: (3 4) (6 9)

Pass 4: (3) (4)
4. (10 points) List the next 5 terms of the sequence \(\{a_n\} \) that follows the Fibonacci relation with the initial conditions, \(a_0 = 2 \) and \(a_1 = 4 \).

\[
2, 4, (2+4), (2+4+2+4), (4+2+4+2+4+4+2+4), (2+4+4+2+4+4+2+4+4+2+4), ... \\
= 2, 4, 2+4 = 6, 4+6 = 10, 6+10 = 16, 10+16 = 26, 16+26 = 42, ...
\]

so the next 5 terms are 6, 10, 16, 26, 42.

5. (12 points) Write out the Division Algorithm and trace its steps to calculate \((44 \text{ MOD } 12)\).

\[
\text{PROCEDURE DIV ALG (INPUT N,D: INTEGER)} \\
\begin{align*}
\text{SET Q} & = 0 \\
\text{WHILE (N > D)} & \\
\text{SET Q} & = Q + 1 \\
\text{SET N} & = N - D \\
\text{ENDWHILE} \\
\text{OUTPUT (Q, N)}
\end{align*}
\]

Trace:

<table>
<thead>
<tr>
<th>Pass</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>N</td>
<td>44</td>
<td>32</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>D</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

OUTPUT(3, 8).

6. (8 points) What set, \(S \), is defined by the Inductive Definition:

\[
1 \in S, \text{ and, if } n \in S, \text{ then } (5n) \in S.
\]

Iterations of \(S \): \(\{1\}, \{1, 5\}, \{1, 5, 5^2\}, \{1, 5, 5^2, 5^3, 5^4\}, \{1, 5, 5^2, 5^3, 5^4, 5^5, 5^6, 5^7, 5^8\}, \text{ etc.} \)

so, \(S \) is the set of powers of 5.

7. (8 points) Show \(n^{10} \) is the Big-Oh of the algorithm with complexity:

\[
(2n^3 + 3n^2)(n^7 + 6n^5) + [3n^5 + 2n^4].
\]

\[
(2n^3 + 3n^2)(n^7 + 6n^5) + [3n^5 + 2n^4] \\
\leq (2n^3 + 3n^3)(n^7 + 6n^7) + [3n^5 + 2n^5] \\
= (5n^3)(7n^7) + (5n^5) \\
= (35n^{10}) + (5n^5) \\
\leq (35n^{10}) + (5n^{10}) = 40n^{10}.
\]
8. (10 points) Prove ONE of the TWO Theorems below using Mathematical Induction.

Theorem 1: For all Natural numbers \(n \),
\[
\sum_{i=0}^{n} 7^i = \frac{7^{n+1} - 1}{6}.
\]

Theorem 2: If \(a_0 = 10, a_1 = 20, \) and \(a_2 = 30, \) then \(a_n = a_{n-1} + a_{n-2} + a_{n-3} \) is a multiple of 10, for all \(n > 2. \)

Theorem 1: Proof (Weak Induction):

\textbf{Basis Step:} Show true for \(n = 0. \) In this case, \(
\sum_{i=0}^{0} 7^i = 7^0 = 1\), and \(\frac{7^{0+1} - 1}{6} = \frac{7-1}{6} = \frac{6}{6} = 1 \), hence \(\sum_{i=0}^{n} 7^i = \frac{7^{n+1} - 1}{6} \), when \(n = 0. \)

\textbf{Induction Step:} Assume \(\sum_{i=0}^{k} 7^i = \frac{7^{k+1} - 1}{6} \) and show \(\sum_{i=0}^{k+1} 7^i = \frac{7^{k+2} - 1}{6}. \)

Now, \(\sum_{i=0}^{k+1} 7^i = \sum_{i=0}^{k} 7^i + \sum_{i=k+1}^{k+1} 7^i = \frac{7^{k+1} - 1}{6} + \frac{7^{k+1} - 1}{6} = \frac{7^{k+1} - 1 + 6(7^{k+1})}{6} = \frac{7^{k+1} - 1 + 6 \cdot 7}{6} = \frac{7^{k+1} - 1 + 42}{6} = \frac{7^{k+2} - 1}{6}. \)

Therefore \(\sum_{i=0}^{n} 7^i = \frac{7^{n+1} - 1}{6} \) for all Natural numbers, \(n. \) QED

Theorem 2: Proof (Strong Induction):

\textbf{Basis Step:} Show true for \(n = 3. \) Now, \(a_3 = a_2 + a_1 + a_0 = 30 + 20 + 10 = 60 = 10(6) \) and 6 is an Integer, hence \(a_3 \) is a multiple of 10. Thus the assertion is true for \(n = 3. \)

\textbf{Induction Step:} Assume \(a_4, a_5, a_6, \ldots, a_k \) are all multiples of 10. Show \(a_{k+1} \) is a multiple of 10.

Now, \(a_{k+1} = a_k + a_{k-1} + a_{k-2}, \) but \(a_k, a_{k-1} \) and \(a_{k-2} \) are all multiples of 10 by the Inductive Hypotheses, hence there exist Integers, \(p, q, r, \) such that \(a_k = 10p, a_{k-1} = 10q, \) and \(a_{k-2} = 10r. \)

Thus, \(a_{k+1} = 10p + 10q + 10r = 10(p + q + r). \) Since \(p, q, r \) are Integers, we have that \((p + q + r) \) is
an Integer, implying a_{k+1} is a multiple of 10.

Therefore an is a multiple of 10 for all Integers $n > 2$. QED

9. (10 points) Prove ONE of the TWO Theorems below:

Theorem 1: If a, b, and c are Integers, with $a = b + c$, then GCD(a, b) = GCD(b, c).

Theorem 2: If a, b, c, d, and p are Integers with $a \equiv b \mod p$, and $c \equiv d \mod p$, then $(a + c) \equiv (b + d) \mod p$.

Theorem 1:

Proof: Assume a, b, and c are Integers with $a = b + c$. We will show that GCD(a, b) \geq GCD(b, c) and GCD(a, b) \leq GCD(b, c), thus concluding that GCD(a, b) = GCD(b, c).

Case 1: (Show GCD(a, b) \leq GCD(b, c)). Denote $X = \text{GCD}(a, b)$, and $Y = \text{GCD}(b, c)$. Since X is the GCD(a, b), X is a common divisor of a and b, hence, there are Integers m, n with $a = mX$ and $b = nX$.

Now, $a = b + c$ implies $(mX) = (nX) + c$, so $c = (mX) - (nX) = (m - n)X$. Since m, n are Integers, we have that $(m - n)$ is an Integer. Thus X is an integer multiple of c, so it is a divisor of c. Since X is also a divisor of b, it is a common divisor of b and c, hence $X = \text{GCD}(a, b) \leq \text{GCD}(b, c)$.

Case 2: (Show GCD(b, c) \leq GCD(a, b)). As above, denote $X = \text{GCD}(a, b)$, and $Y = \text{GCD}(b, c)$. Since Y is the GCD(b, c), Y is a common divisor of b and c, hence, there are Integers p, q with $b = pY$ and $c = qY$.

Now, $a = b + c$ implies $a = (pY) + (qY)$, so $a = (p + q)Y$. Since p, q are Integers, we have that $(p + q)$ is an Integer. Thus Y is an integer multiple of a, so it is a divisor of a. Since Y is also a divisor of b, it is a common divisor of a and b, hence $Y = \text{GCD}(a, b) \leq \text{GCD}(a, b)$.

Therefore, GCD(a, b) = GCD(b, c). QED

Theorem 2:

Proof: Let a, b, c, d, and p be Integers with $a \equiv b \mod p$, and $c \equiv d \mod p$. Thus, there exist Integers, X and Y with $(a - b) = pX$ and $(c - d) = pY$.

Now, $(a + c) - (b + d) = (a + c - b - d) = (a - b) + (c - d) = pX + pY = p(X + Y)$. Since X and Y are Integers, we see that $(X + Y)$ is an Integer, hence $(a + c) - (b + d)$ is an Integer multiple of p.
Therefore, \((a + c) \equiv (b + d) \mod p\). QED

10. (10 points) Prove ONE of the TWO Theorems below by Contradiction or Contraposition.

Theorem 1: The set of Natural numbers is infinite.

Theorem 2: If \(n\) is an Integer and \(n^2\) is even, then \(n\) is even.

Theorem 1:
Proof: (Contradiction) Assume the set of Natural numbers is not infinite; that is, assume there is a largest Natural, say, \(Z\).

Now, since \(Z\) is a Natural number, \((Z + 1)\) is also a Natural number, but since \(Z\) is the largest Natural number, we have that \((Z + 1) < Z\). Subtracting \(Z\) from both sides yields \(1 < 0\), a contradiction.

Hence, \(Z\) cannot be the largest Natural number, therefore the set of Natural numbers is infinite.

Theorem 2:
Proof: (Contraposition) We will prove that assuming \(n\) is an Integer and \(n\) is odd, then \(n^2\) is odd.

Now, since \(n\) is odd, there is an Integer, \(X\), with \(n = 2X + 1\).

Thus, \(n^2 = (2X + 1)^2 = 4X^2 + 4X + 1 = 2(2X^2 + 2X) + 1\). However, since \(X\) is an Integer, it follows that \(2X^2 + 2X\) is an Integer.

Therefore \(n^2\) is an odd integer. QED