Name

 SSNCMSC 203 - Homework Assignment 4 - Due November 14, 2002

1. Show algebraically that $\mathrm{C}(25,12)=\mathrm{C}(24,12)+\mathrm{C}(24,11)$

Name

 SSN
CMSC 203 - Homework Assignment 4 - Due November 14, 2002

2. Show that the sequence $\left\{a_{n}\right\}$ generated by $a_{n}=5 n+3$ satisfies the recurrence relation:

$$
a_{n}=2 a_{n-1}-a_{n-2} .
$$

Name

 SSNCMSC 203-Homework Assignment 4 - Due November 14, 2002
3. Find the general solution for the linear, homogeneous recurrence relation:

$$
a_{n}=12 a_{n-1}-36 a_{n-2} \text { for } \mathrm{n}>1
$$

Name

 SSN
CMSC 203 - Homework Assignment 4 - Due November 14, 2002

4. Find the Particular Solution for the linear, homogeneous recurrence relation whose general solution is:

$$
a_{n}=3\left(2^{n}\right)-2\left(5^{n}\right)
$$

subject to the initial conditions $a_{0}=1$ and $a_{1}=-4$.
\qquad

CMSC 203 - Homework Assignment 4 - Due November 14, 2002
5. Draw the directed graph of the relation R on $\mathrm{A}=\{1,2,3,4,5,6,7,8\}$ defined as

$$
\mathrm{R}=\{(a, b) \mid a, b \in \mathrm{~A} \text { and } a \equiv b \bmod 3\}
$$

$$
2
$$

$$
3
$$

$1 \bullet$

- 4

8• •5

CMSC 203-Homework Assignment 4 - Due November 14, 2002

6. Let F be a function on the integers.
(a) Show that the relation $\mathrm{R}=\{(x, y) \mid x, y$ are integers and $\mathrm{F}(x)=\mathrm{F}(y)\}$ is a Reflexive, Symmetric, and Transitive relation.
(b) Describe the partition of the integers induced by R.
