Name	SSN

1. Use the Method of Contraposition to prove: If n is an integer and n^2 is even, then n is even.

Name	SSN

2. Using the previous problem and the definition of a Rational Number (x = p/q is rational provided p and q are integers, q is non-zero, and p and q are in lowest terms), prove by the Method of Contradiction that $\sqrt{2}$ is irrational.

Name	SSN
1 (diffe	DD11

3. Find the terms a_4 , a_5 , a_6 , and a_7 for the recursively defined sequence given by: $a_0 = 1$, $a_1 = 3$ and $a_n = 3a_{(n-1)}a_{(n-2)}$ for n > 1.

Name SSN

4. Using Mathematical Induction, prove for all integers n > 0,

$$\sum_{i=1}^{n+1} i \cdot 2^i = n \cdot 2^{n+2} + 2.$$

Name	SSN
------	-----

5. Suppose Maryland issues license plates of the form CCLLDDC, where:

L is a letter from $\{A, B, ..., Z\}$,

D is a digit from {0, 1, 2, ..., 9},

C is a character from {A, B, ..., Z, 0, 1, 2, ..., 9}.

How many distinct plates can be produced if the first character must be "X" and the last character must be "9"?

Name	SSN	
CMSC 203 - Homework Assignment 3 - Due October 31, 2002		
6. The Mars Candy Company sells bags of M&M candidifferent colors in them.	ies with 60 pieces candy colored from 8	
(a) How many different bags can they produce?		
(b) How many different bags can they produce if each b	bag must contain at least 5 of each color?	