Name	SSN
1	5511

1. Compute the value of the double summation: $\sum_{i=0}^{3} \sum_{j=i}^{5} (2i + 5j)$

Name	SSN
1 (diffe	DD11

2. Find the big-O estimate for the function: $(n^2 \log n + n^3)(2n^2 + 3)$

Nomo	CCN
Name	SSN

3. Write out the algorithm which describes the computation of: $\sum_{i=0}^{3} \sum_{j=i}^{5} 2i + 5j$

Name	SSN
1 WITH	DD11

4. If a, b, and c are integers with a = b + c, show that gcd(a,b) = gcd(b,c). (Hint: if $x \le y$ and $x \ge y$, then x = y).

Name	SSN

5. If a, b, and m are positive integers with $a = b \mod m$, show that $a \mod m = b \mod m$.

Name	SSN

6. Use the Euclidean Algorithm to find gcd(3268, 160).