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Let’s get started with...

Logic!
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Logic
• Crucial for mathematical reasoning
• Used for designing electronic circuitry

• Logic is a system based on propositions.
• A proposition is a statement that is either

true or false (not both).
• We say that the truth value of a proposition

is either true (T) or false (F).

• Corresponds to 1 and 0 in digital circuits
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The Statement/Proposition Game

“Elephants are bigger than mice.”

Is this a statement? yes

Is this a proposition? yes

What is the truth value
of the proposition? true
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The Statement/Proposition Game

“520 < 111”

Is this a statement? yes

Is this a proposition? yes

What is the truth value
of the proposition? false
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The Statement/Proposition Game

“y > 5”

Is this a statement? yes

Is this a proposition? no

Its truth value depends on the value of y,
but this value is not specified.
We call this type of statement a
propositional function or open sentence.
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The Statement/Proposition Game

“Today is January 1  and  99 < 5.”

Is this a statement? yes

Is this a proposition? yes

What is the truth value
of the proposition? false
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The Statement/Proposition Game

“Please do not fall asleep.”

Is this a statement? no

Is this a proposition? no

Only statements can be propositions.

It’s a request.
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The Statement/Proposition Game

“If elephants were red,
they could hide in cherry trees.”

Is this a statement? yes

Is this a proposition? yes

What is the truth value
of the proposition? probably false
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The Statement/Proposition Game
“x < y if and only if y > x.”

Is this a statement? yes
Is this a proposition? yes

What is the truth value
of the proposition? true

… because its truth value
does not depend on
specific values of x and y.
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Combining Propositions

As we have seen in the previous examples,
one or more propositions can be combined
to form a single compound proposition.

We formalize this by denoting propositions
with letters such as p, q, r, s, and
introducing several logical operators.
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Logical Operators (Connectives)
We will examine the following logical operators:

• Negation (NOT)
• Conjunction (AND)
• Disjunction (OR)
• Exclusive or (XOR)
• Implication      (if – then)
• Biconditional  (if and only if)

Truth tables can be used to show how these
operators can combine propositions to
compound propositions.
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Negation (NOT)

Unary Operator, Symbol:  ¬¬

true (T)false (F)

false (F)true (T)

¬¬PP
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Conjunction (AND)
Binary Operator, Symbol:  ∧∧

FFT
FTF
FFF

TTT
P∧QQP
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Disjunction (OR)
Binary Operator, Symbol:  ∨∨

TFT
TTF
FFF

TTT
P∨∨QQP
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Exclusive Or (XOR)
Binary Operator, Symbol:  ⊕⊕

TFT
TTF
FFF

FTT
P⊕⊕QQP
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Implication (if - then)
Binary Operator, Symbol:  →→

FFT
TTF
TFF

TTT
P→→QQP
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Biconditional (if and only if)
Binary Operator, Symbol:  ↔↔

FFT
FTF
TFF

TTT
P↔↔QQP
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Statements and Operators
Statements and operators can be combined in any

way to form new statements.

T
F
T
F

¬Q

T
T
F
F

¬P

TFT
TTF
TFF

FTT
(¬P)∨(¬Q)QP
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Statements and Operations
Statements and operators can be combined in any

way to form new statements.

T
T
T
F

¬ (P∧Q)

F
F
F
T

P∧Q

TFT
TTF
TFF

FTT
(¬P)∨(¬Q)QP
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Equivalent Statements

T
T
T
F

(¬P)∨(¬Q)

T
T
T
F

¬(P∧Q)

TFT
TTF
TFF

TTT
¬(P∧Q)↔↔(¬P)∨(¬Q)QP

The statements ¬(P∧Q) and (¬P) ∨ (¬Q) are logically
equivalent, since ¬(P∧Q) ↔↔ (¬P) ∨ (¬Q) is always true.
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Tautologies and Contradictions

A tautology is a statement that is always true.

Examples:
• R∨(¬R)
• ¬(P∧Q)↔↔(¬P)∨(¬Q)

If S→→T is a tautology, we write S⇒T.
If S↔↔T is a tautology, we write S⇔T.
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Tautologies and Contradictions

A contradiction is a statement that is always
false.

Examples:
• R∧(¬R)
• ¬(¬(P∧Q)↔↔(¬P)∨(¬Q))

The negation of any tautology is a contra-
diction, and the negation of any contradiction is
a tautology.
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Exercises
We already know the following tautology:

¬(P∧Q) ⇔⇔ (¬P)∨(¬Q)
Nice home exercise:
Show that ¬(P∨Q) ⇔⇔ (¬P)∧(¬Q).
These two tautologies are known as De
Morgan’s laws.
Table 5 in Section 1.2 shows many useful laws.
Exercises 1 and 7 in Section 1.2 may help you
get used to propositions and operators.
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Let’s Talk About Logic

• Logic is a system based on propositions.

• A proposition is a statement that is either
true or false (not both).

• We say that the truth value of a proposition
is either true (T) or false (F).

• Corresponds to 1 and 0 in digital circuits
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Logical Operators (Connectives)
• Negation (NOT)
• Conjunction (AND)
• Disjunction (OR)
• Exclusive or (XOR)
• Implication      (if – then)
• Biconditional  (if and only if)

Truth tables can be used to show how these
operators can combine propositions to
compound propositions.
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Tautologies and Contradictions

A tautology is a statement that is always true.

Examples:
• R∨(¬R)
• ¬(P∧Q)↔↔(¬P)∨(¬Q)

If S→→T is a tautology, we write S⇒T.
If S↔↔T is a tautology, we write S⇔T.
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Tautologies and Contradictions

A contradiction is a statement that is always
false.

Examples:
• R∧(¬R)
• ¬(¬(P∧Q)↔↔(¬P)∨(¬Q))

The negation of any tautology is a contradiction,
and the negation of any contradiction is a
tautology.
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Propositional Functions
Propositional function (open sentence):
statement involving one or more variables,

e.g.: x-3 > 5.

Let us call this propositional function P(x),
where P is the predicate and x is the variable.

What is the truth value of P(2) ? false
What is the truth value of P(8) ?
What is the truth value of P(9) ?

false
true
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Propositional Functions
Let us consider the propositional function
Q(x, y, z) defined as:

x + y = z.

Here, Q is the predicate and x, y, and z are the
variables.

What is the truth value of Q(2, 3, 5) ? true
What is the truth value of Q(0, 1, 2) ?
What is the truth value of Q(9, -9, 0) ?

false
true
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Universal Quantification

Let P(x) be a propositional function.

Universally quantified sentence:
For all x in the universe of discourse P(x) is true.

Using the universal quantifier ∀:
∀x P(x)   “for all x P(x)” or “for every x P(x)”

(Note: ∀x P(x) is either true or false, so it is a
proposition, not a propositional function.)
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Universal Quantification

Example:
S(x): x is a UMBC student.
G(x): x is a genius.

What does ∀x (S(x) →→ G(x)) mean ?

“If x is a UMBC student, then x is a genius.”
or
“All UMBC students are geniuses.”
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Existential Quantification
Existentially quantified sentence:
There exists an x in the universe of discourse
for which P(x) is true.

Using the existential quantifier ∃:
∃x P(x)    “There is an x such that P(x).”

      “There is at least one x such that P(x).”

(Note: ∃x P(x) is either true or false, so it is a
proposition, but no propositional function.)
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Existential Quantification
Example:
P(x): x is a UMBC professor.
G(x): x is a genius.

What does ∃x (P(x) ∧∧ G(x)) mean ?

“There is an x such that x is a UMBC professor
and x is a genius.”
or
“At least one UMBC professor is a genius.”
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Quantification

Another example:
Let the universe of discourse be the real numbers.

What does ∀x∃y (x + y = 320) mean ?

“For every x there exists a y so that x + y = 320.”

Is it true?

Is it true for the natural numbers?

yes

no
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Disproof by Counterexample

A counterexample to ∀x P(x) is an object c so
that P(c) is false.

Statements such as ∀x (P(x) →→ Q(x)) can be
disproved by simply providing a counterexample.

Statement: “All birds can fly.”
Disproved by counterexample: Penguin.
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Negation

¬(∀x P(x)) is logically equivalent to ∃x (¬P(x)).

¬(∃x P(x)) is logically equivalent to ∀x (¬P(x)).

See Table 3 in Section 1.3.

I recommend exercises 5 and 9 in Section 1.3.
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… and now for something
completely different…

Set Theory
Actually, you will see that logic and
set theory are very closely related.
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Set Theory
• Set: Collection of objects (“elements”)

• a∈A                      “a is an element of A”
                             “a is a member of A”

• a∉A                      “a is not an element of A”

• A = {a1, a2, …, an}   “A contains…”

• Order of elements is meaningless

• It does not matter how often the same
element is listed.
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Set Equality

Sets A and B are equal if and only if they
contain exactly the same elements.

Examples:
• A = {9, 2, 7, -3}, B = {7, 9, -3, 2} : A = B

• A = {dog, cat, horse},
   B = {cat, horse, squirrel, dog} : A ≠ B
• A = {dog, cat, horse},
   B = {cat, horse, dog, dog} : A = B
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Examples for Sets

“Standard” Sets:
• Natural numbers N = {0, 1, 2, 3, …}
• Integers Z = {…, -2, -1, 0, 1, 2, …}
• Positive Integers Z+ = {1, 2, 3, 4, …}
• Real Numbers R = {47.3, -12, π, …}
• Rational Numbers Q = {1.5, 2.6, -3.8, 15, …}

(correct definition will follow)
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Examples for Sets
• A = ∅∅                         “empty set/null set”
• A = {z}            Note: z∈A, but z ≠ {z}
• A = {{b, c}, {c, x, d}}
• A = {{x, y}}

Note: {x, y} ∈A, but {x, y} ≠ {{x, y}}
• A = {x | P(x)}

“set of all x such that P(x)”
• A = {x | x∈N ∧ x > 7} = {8, 9, 10, …}

“set builder notation”
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Examples for Sets
We are now able to define the set of rational
numbers Q:
Q = {a/b | a∈Z ∧ b∈Z+}
or
Q = {a/b | a∈Z ∧ b∈Z ∧ b≠0}

And how about the set of real numbers R?

R = {r | r is a real number}
That is the best we can do.
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Subsets
A ⊆⊆ B           “A is a subset of B”
A ⊆⊆ B if and only if every element of A is also
          an element of B.
We can completely formalize this:
A ⊆⊆ B ⇔ ∀x (x∈A → x∈B)

Examples:
A = {3, 9}, B = {5, 9, 1, 3},           A ⊆⊆ B ? true

A = {3, 3, 3, 9}, B = {5, 9, 1, 3},   A ⊆⊆ B ?

false

true

A = {1, 2, 3}, B = {2, 3, 4},           A ⊆⊆ B ?
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Subsets
Useful rules:
• A = B ⇔ (A ⊆⊆ B) ∧∧ (B ⊆⊆ A)
• (A ⊆⊆ B) ∧∧ (B ⊆⊆ C) ⇒ A ⊆⊆ C   (see Venn Diagram)

U

A
B C
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Subsets
Useful rules:
• ∅∅ ⊆⊆ A for any set A
• A ⊆⊆ A for any set A

Proper subsets:
A ⊂ B     “A is a proper subset of B”
A ⊂ B ⇔ ∀x (x∈A → x∈B) ∧ ∃x (x∈B ∧ x∉A)
or
A ⊂ B ⇔ ∀x (x∈A → x∈B) ∧ ¬∀x (x∈B → x∈A)
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Cardinality of Sets
If a set S contains n distinct elements, n∈N,
we call S a finite set with cardinality n.

Examples:
A = {Mercedes, BMW, Porsche},   |A| = 3
B = {1, {2, 3}, {4, 5}, 6} |B| = 4
C = ∅ |C| = 0
D = { x∈N | x ≤ 7000 } |D| = 7001
E = { x∈N | x ≥ 7000 } E is infinite!
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The Power Set
P(A)           “power set of A”
P(A) = {B | B ⊆⊆ A}     (contains all subsets of A)

Examples:

A = {x, y, z}
P(A) = {∅∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}

A = ∅
P(A) = {∅}
Note: |A| = 0,  |P(A)| = 1
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The Power Set
Cardinality of power sets:
| P(A) | = 2|A|

• Imagine each element in A has an “on/off” switch
• Each possible switch configuration in A

corresponds to one element in 2A

zzzzzzzzz
yyyyyyyyy
xxxxxxxxx
87654321A

• For 3 elements in A, there are
2××2××2 = 8 elements in P(A)



17

Fall 2002 CMSC 203 - Discrete Structures 49

Cartesian Product
The ordered n-tuple (a1, a2, a3, …, an) is an
ordered collection of objects.
Two ordered n-tuples (a1, a2, a3, …, an) and
(b1, b2, b3, …, bn) are equal if and only if they
contain exactly the same elements in the same
order, i.e. ai = bi for 1 ≤ i ≤ n.

The Cartesian product of two sets is defined as:
A×B = {(a, b) | a∈A ∧ b∈B}
Example: A = {x, y}, B = {a, b, c}
A×B = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)}
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Cartesian Product
The Cartesian product of two sets is defined as:
A×B = {(a, b) | a∈A ∧ b∈B}
Example:
A = {good, bad}, B = {student, prof}

A×B = {(good, student), (good, prof), (bad, student), (bad, prof)}

(student, good), (prof, good), (student, bad), (prof, bad)}B×A = {
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Cartesian Product
Note that:
• A×∅ = ∅
• ∅×A = ∅
• For non-empty sets A and B: A≠B ⇔ A×B ≠ B×A
• |A×B| = |A|⋅|B|

The Cartesian product of two or more sets is
defined as:
A1×A2×…×An = {(a1, a2, …, an) | ai∈A for 1 ≤ i ≤ n}
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Set Operations

Union: A∪B = {x | x∈A ∨ x∈B}

Example: A = {a, b}, B = {b, c, d}
               A∪B = {a, b, c, d}

Intersection: A∩B = {x | x∈A ∧ x∈B}

Example: A = {a, b}, B = {b, c, d}
               A∩B = {b}
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Set Operations

Two sets are called disjoint if their intersection
is empty, that is, they share no elements:
A∩B = ∅

The difference between two sets A and B
contains exactly those elements of A that are
not in B:
A-B = {x | x∈A ∧ x∉B}
Example: A = {a, b}, B = {b, c, d}, A-B = {a}
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Set Operations

The complement of a set A contains exactly
those elements under consideration that are not
in A:
Ac = U-A

Example: U = N,  B = {250, 251, 252, …}
                         Bc = {0, 1, 2, …, 248, 249}
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Set Operations
Table 1 in Section 1.5 shows many useful equations.
How can we prove A∪(B∩C) = (A∪B)∩(A∪C)?

Method I:
     x∈A∪(B∩C)
⇔ x∈A ∨ x∈(B∩C)
⇔ x∈A ∨ (x∈B ∧ x∈C)
⇔ (x∈A ∨ x∈B) ∧ (x∈A ∨ x∈C)

  (distributive law for logical expressions)
⇔ x∈(A∪B) ∧ x∈(A∪C)
⇔ x∈(A∪B)∩(A∪C)
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Set Operations
Method II: Membership table
1 means “x is an element of this set”
0 means “x is not an element of this set”

111111   1   1
111101   1   0
111101   0   1
111101   0   0
111110   1   1
001000   1   0
010000   0   1
000000   0   0

(A∪B) ∩(A∪C)A∪CA∪BA∪(B∩C)B∩CA   B   C
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Set Operations

Every logical expression can be transformed into an
equivalent expression in set theory and vice versa.

You could work on Exercises 9 and 19 in Section 1.5
to get some practice.
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… and the following mathematical
appetizer is about…

Functions
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Functions
A function f from a set A to a set B is an
assignment of exactly one element of B to each
element of A.
We write
f(a) = b
if b is the unique element of B assigned by the
function f to the element a of A.

If f is a function from A to B, we write
f: A→B
(note:  Here, “→“ has nothing to do with if… then)
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Functions

If f:A→B, we say that A is the domain of f and B
is the codomain of f.

If f(a) = b, we say that b is the image of a and a is
the pre-image of b.

The range of f:A→B is the set of all images of
elements of A.

We say that f:A→B maps A to B.
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Functions

Let us take a look at the function f:P→C with
P = {Linda, Max, Kathy, Peter}
C = {Boston, New York, Hong Kong, Moscow}

f(Linda) = Moscow
f(Max) = Boston
f(Kathy) = Hong Kong
f(Peter) = New York

Here, the range of f is C.
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Functions

Let us re-specify f as follows:

f(Linda) = Moscow
f(Max) = Boston
f(Kathy) = Hong Kong
f(Peter) = Boston

Is f still a function? yes

{Moscow, Boston, Hong Kong}What is its range?
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Functions
Other ways to represent f:

BostonPeter

Hong
KongKathy

BostonMax

MoscowLinda

f(x)x Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow
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Functions
If the domain of our function f is large, it is
convenient to specify f with a formula, e.g.:
f:R→R
f(x) = 2x

This leads to:
f(1) = 2
f(3) = 6
f(-3) = -6
…
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Functions
Let f1 and f2 be functions from A to R.
Then the sum and the product of f1 and f2 are
also functions from A to R defined by:
(f1 + f2)(x) =  f1(x) + f2(x)
(f1f2)(x) =  f1(x) f2(x)

Example:
f1(x) = 3x,  f2(x) = x + 5
(f1 + f2)(x) =  f1(x) + f2(x) = 3x + x + 5 = 4x + 5
(f1f2)(x) =  f1(x) f2(x) = 3x (x + 5) = 3x2 + 15x
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Functions

We already know that the range of a function
f:A→B is the set of all images of elements a∈A.

If we only regard a subset S⊆A, the set of all
images of elements s∈S is called the image of S.

We denote the image of S by f(S):

f(S) = {f(s) | s∈S}
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Functions
Let us look at the following well-known function:
f(Linda) = Moscow
f(Max) = Boston
f(Kathy) = Hong Kong
f(Peter) = Boston

What is the image of S = {Linda, Max} ?
f(S) = {Moscow, Boston}

What is the image of S = {Max, Peter} ?
f(S) = {Boston}
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Properties of Functions

A function f:A→B is said to be one-to-one (or
injective), if and only if

∀x, y∈A (f(x) = f(y) → x = y)

In other words: f is one-to-one if and only if it
does not map two distinct elements of A onto the
same element of B.
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Properties of Functions
And again…
f(Linda) = Moscow
f(Max) = Boston
f(Kathy) = Hong Kong
f(Peter) = Boston

Is f one-to-one?

No, Max and Peter are
mapped onto the same
element of the image.

g(Linda) = Moscow
g(Max) = Boston
g(Kathy) = Hong Kong
g(Peter) = New York

Is g one-to-one?

Yes, each element is
assigned a unique
element of the image.
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Properties of Functions
How can we prove that a function f is one-to-one?
Whenever you want to prove something, first
take a look at the relevant definition(s):
∀x, y∈A (f(x) = f(y) → x = y)

Example:
f:R→R
f(x) = x2

Disproof by counterexample:
f(3) = f(-3), but 3 ≠ -3, so f is not one-to-one.
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Properties of Functions
… and yet another example:

f:R→R
f(x) = 3x

One-to-one: ∀x, y∈A (f(x) = f(y) → x = y)
To show: f(x) ≠ f(y) whenever x ≠ y

x ≠ y
⇔ 3x ≠ 3y
⇔ f(x) ≠ f(y),
so if x ≠ y, then f(x) ≠ f(y), that is, f is one-to-one.
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Properties of Functions

A function f:A→B with A,B ⊆ R is called strictly
increasing, if
∀x,y∈A (x < y → f(x) < f(y)),
and strictly decreasing, if
∀x,y∈A (x < y → f(x) > f(y)).

Obviously, a function that is either strictly
increasing or strictly decreasing is one-to-one.
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Properties of Functions
A function f:A→B is called onto, or surjective, if
and only if for every element b∈B there is an
element a∈A with f(a) = b.
In other words, f is onto if and only if its range is
its entire codomain.

A function f: A→B is a one-to-one correspondence,
or a bijection, if and only if it is both one-to-one
and onto.
Obviously, if f is a bijection and A and B are finite
sets, then |A| = |B|.
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Properties of Functions

Examples:

In the following examples, we use the arrow
representation to illustrate functions f:A→B.

In each example, the complete sets A and B are
shown.
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Properties of Functions

Is f injective?
No.
Is f surjective?
No.
Is f bijective?
No.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow
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Properties of Functions

Is f injective?
No.
Is f surjective?
Yes.
Is f bijective?
No.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

Paul
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Properties of Functions

Is f injective?
Yes.
Is f surjective?
No.
Is f bijective?
No.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

Lübeck
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Properties of Functions

Is f injective?
No! f is not even
a function!

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

Lübeck
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Properties of Functions

Is f injective?
Yes.
Is f surjective?
Yes.
Is f bijective?
Yes.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

LübeckHelena
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Inversion

An interesting property of bijections is that
they have an inverse function.

The inverse function of the bijection f:A→B
is the function f-1:B→A with
f-1(b) = a whenever f(a) = b.
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Inversion
Example:

f(Linda) = Moscow
f(Max) = Boston
f(Kathy) = Hong Kong
f(Peter) = Lübeck
f(Helena) = New York

Clearly, f is bijective.

The inverse function
f-1 is given by:

f-1(Moscow) = Linda
f-1(Boston) = Max
f-1(Hong Kong) = Kathy
f-1(Lübeck) = Peter
f-1(New York) = Helena

Inversion is only
possible for bijections
(= invertible functions)
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Inversion

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

LübeckHelena

f

f-1

f-1:C→P is no
function, because
it is not defined
for all elements of
C and assigns two
images to the pre-
image New York.

Fall 2002 CMSC 203 - Discrete Structures 83

Composition
The composition of two functions g:A→B and
f:B→C, denoted by  f°g, is defined by
(f°g)(a) = f(g(a))
This means that
•  first, function g is applied to element a∈A,
   mapping it onto an element of B,
•  then, function f is applied to this element of
   B, mapping it onto an element of C.
•  Therefore, the composite function maps
   from A to C.
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Composition

Example:

f(x) = 7x – 4, g(x) = 3x,
f:R→R, g:R→R

(f°g)(5) = f(g(5)) = f(15) = 105 – 4 = 101

(f°g)(x) = f(g(x)) = f(3x) = 21x - 4
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Composition

Composition of a function and its inverse:

(f-1°f)(x) = f-1(f(x)) = x

The composition of a function and its inverse
is the identity function i(x) = x.

Fall 2002 CMSC 203 - Discrete Structures 86

Graphs

The graph of a function f:A→B is the set of
ordered pairs {(a, b) | a∈A and f(a) = b}.

The graph is a subset of A×B that can be used
to visualize f in a two-dimensional coordinate
system.

Fall 2002 CMSC 203 - Discrete Structures 87

Floor and Ceiling Functions

The floor and ceiling functions map the real
numbers onto the integers (R→Z).

The floor function assigns to r∈R the largest
z∈Z with z ≤ r, denoted by r.

Examples: 2.3 = 2, 2 = 2, 0.5 = 0, -3.5 = -4

The ceiling function assigns to r∈R the smallest
z∈Z with z ≥ r, denoted by r.

Examples: 2.3 = 3, 2 = 2, 0.5 = 1, -3.5 = -3



30

Fall 2002 CMSC 203 - Discrete Structures 88

Exercises

I recommend Exercises 1 and 15 in Section 1.6.

It may also be useful to study the graph displays
in that section.

Another question: What do all graph displays for
any function f:R→R have in common?
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… and now for…

Sequences
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Sequences
Sequences represent ordered lists of elements.
A sequence is defined as a function from a subset
of N to a set S. We use the notation an to denote
the image of the integer n. We call an a term of
the sequence.
Example:

subset of N:        1   2   3   4   5   …

S:                        2   4   6   8   10  …



31

Fall 2002 CMSC 203 - Discrete Structures 91

Sequences

We use the notation {an} to describe a sequence.

Important: Do not confuse this with the {} used
in set notation.

It is convenient to describe a sequence with a
formula.

For example, the sequence on the previous slide
can be specified as {an}, where an = 2n.
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The Formula Game

1, 3, 5, 7, 9, … an = 2n - 1

-1, 1, -1, 1, -1, … an = (-1)n

2, 5, 10, 17, 26, … an = n2 + 1

0.25, 0.5, 0.75, 1, 1.25 … an = 0.25n

3, 9, 27, 81, 243, … an = 3n

What are the formulas that describe the
following sequences a1, a2, a3, … ?
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Strings

Finite sequences are also called strings, denoted
by a1a2a3…an.

The length of a string S is the number of terms
that it consists of.

The empty string contains no terms at all. It has
length zero.
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Summations

It represents the sum am + am+1 + am+2 + … + an.

The variable j is called the index of summation,
running from its lower limit m to its upper limit n.
We could as well have used any other letter to
denote this index.

∑
=

n

mj
jaWhat does          stand for?
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Summations

It is 1 + 2 + 3 + 4 + 5 + 6 = 21.

We write it as         .∑
=

1000

1

2

j

j

What is the value of         ?∑
=

6

1j

j

It is so much work to calculate this…

What is the value of         ?∑
=

100

1j

j

How can we express the sum of the first 1000
terms of the sequence {an} with an=n2 for
n = 1, 2, 3, … ?
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Summations

It is said that Friedrich Gauss came up with the
following formula:

∑
=

+
=

n

j

nn
j

1 2

)1(

When you have such a formula, the result of any
summation can be calculated much more easily,
for example:

5050
2

10100

2

)1100(100100

1

==
+

=∑
=j

j
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Arithemetic Series

How does: ∑
=

+
=

n

j

nn
j

1 2

)1(

Observe that:
1 + 2 + 3 +…+ n/2 + (n/2 + 1) +…+ (n - 2) + (n - 1) + n

???

= [1 + n] + [2 + (n - 1)] + [3 + (n - 2)] +…+ [n/2 + (n/2 + 1)]

 = (n + 1) + (n + 1) + (n + 1) + … + (n + 1)    (with n/2 terms)

 = n(n + 1)/2.
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Geometric Series

How does: ∑
=

+

−
−

=
n

j

n
j

a

a
a

0

)1(

)1(

1

Observe that:
S = 1 + a + a2 + a3 + … + an

???

aS  =   a + a2 + a3 + … + an + a(n+1)

so,   (aS - S) = (a - 1)S = a(n+1) - 1

Therefore, 1 + a + a2 + … + an = (a(n+1) - 1) / (a - 1).
For example: 1 + 2 + 4 + 8 +… + 1024 = 2047.
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Useful Series

1.

2.

3.

4.

∑
=

+

−
−

=
n

j

n
j

a

a
a

0

)1(

)1(

1

∑
=

+
=

n

j

nn
j

1 2

)1(

∑
=

++
=

n

j

nnn
j

1

2

6

)12)(1(

∑
=

+
=

n

j

nn
j

1

22
3

4

)1(
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Double Summations
Corresponding to nested loops in C or Java, there is
also double (or triple etc.) summation:

Example:

∑∑
= =

5

1

2

1i j

ij

∑
=

+=
5

1

)2(
i

ii

∑
=

=
5

1

3
i

i

451512963 =++++=
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Double Summations

Table 2 in Section 1.7 contains some very useful
formulas for calculating sums.

Exercises 15 and 17 make a nice homework.
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Enough Mathematical Appetizers!

Let us look at something more interesting:

Algorithms
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Algorithms

What is an algorithm?

An algorithm is a finite set of precise instructions
for performing a computation or for solving a
problem.

This is a rather vague definition. You will get to
know a more precise and mathematically useful
definition when you attend CS420.

But this one is good enough for now…
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Algorithms

Properties of algorithms:

• Input from a specified set,
• Output from a specified set (solution),
• Definiteness of every step in the computation,
• Correctness of output for every possible input,
• Finiteness of the number of calculation steps,
• Effectiveness of each calculation step and
• Generality for a class of problems.
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Algorithm Examples

We will use a pseudocode to specify algorithms,
which slightly reminds us of Basic and Pascal.
Example: an algorithm that finds the maximum
element in a finite sequence

procedure max(a1, a2, …, an: integers)
max := a1
for i := 2 to n

if max < ai then max := ai
{max is the largest element}
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Algorithm Examples
Another example: a linear search algorithm, that
is, an algorithm that linearly searches a sequence
for a particular element.
procedure linear_search(x: integer; a1, a2, …, an: 

     integers)
i := 1
while (i ≤ n and x ≠ ai)

i := i + 1
if i ≤ n then location := i
else location := 0
{location is the subscript of the term that equals
x, or is zero if x is not found}
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Algorithm Examples

If the terms in a sequence are ordered, a binary
search algorithm is more efficient than linear
search.

The binary search algorithm iteratively restricts
the relevant search interval until it closes in on
the position of the element to be located.
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Algorithm Examples

a  c  d  f  g  h  j  l  m  o  p  r  s  u  v  x  z

binary search for the letter ‘j’

center element

search interval
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Algorithm Examples

a  c  d  f  g  h  j  l  m  o  p  r  s  u  v  x  z

binary search for the letter ‘j’

center element

search interval
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Algorithm Examples

a  c  d  f  g  h  j  l  m  o  p  r  s  u  v  x  z

binary search for the letter ‘j’

center element

search interval
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Algorithm Examples

a  c  d  f  g  h  j  l  m  o  p  r  s  u  v  x  z

binary search for the letter ‘j’

center element

search interval
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Algorithm Examples

a  c  d  f  g  h  j  l  m  o  p  r  s  u  v  x  z

binary search for the letter ‘j’

center element

search interval

found !
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Algorithm Examples
procedure binary_search(x: integer; a1, a2, …, an: 

      integers)
i := 1   {i is left endpoint of search interval}
j := n  {j is right endpoint of search interval}
while (i < j)
begin

m := (i + j)/2
if x > am then i := m + 1
else j := m

end
if x = ai then location := i
else location := 0
{location is the subscript of the term that equals x,
or is zero if x is not found}
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Complexity

In general, we are not so much interested in the
time and space complexity for small inputs.

For example, while the difference in time
complexity between linear and binary search is
meaningless for a sequence with n = 10, it is
gigantic for n = 230.
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Complexity

For example, let us assume two algorithms A and
B that solve the same class of problems.

The time complexity of A is 5,000n, the one for
B is 1.1n for an input with n elements.

For n = 10, A requires 50,000 steps, but B only 3,
so B seems to be superior to A.

For n = 1000, however, A requires 5,000,000
steps, while B requires 2.5⋅1041 steps.
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Complexity

This means that algorithm B cannot be used for
large inputs, while algorithm A is still feasible.

So what is important is the growth of the
complexity functions.

The growth of time and space complexity with
increasing input size n is a suitable measure for
the comparison of algorithms.
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Complexity

Comparison: time complexity of algorithms A and B

Algorithm A Algorithm BInput Size
n
10

100
1,000

1,000,000

5,000n
50,000
500,000

5,000,000
5⋅109

1.1n
3

2.5⋅1041

13,781

4.8⋅1041392
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Complexity

This means that algorithm B cannot be used for
large inputs, while running algorithm A is still
feasible.

So what is important is the growth of the
complexity functions.

The growth of time and space complexity with
increasing input size n is a suitable measure for
the comparison of algorithms.
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The Growth of Functions

The growth of functions is usually described
using the big-O notation.

Definition: Let f and g be functions from the
integers or the real numbers to the real numbers.
We say that f(x) is O(g(x)) if there are
constants C and k such that

|f(x)| ≤ C|g(x)|

whenever x > k.
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The Growth of Functions

When we analyze the growth of complexity
functions, f(x) and g(x) are always positive.

Therefore, we can simplify the big-O requirement
to

f(x) ≤ C⋅g(x)  whenever x > k.

If we want to show that f(x) is O(g(x)), we only
need to find one pair (C, k) (which is never unique).
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The Growth of Functions
The idea behind the big-O notation is to establish
an upper boundary for the growth of a function
f(x) for large x.
This boundary is specified by a function g(x) that
is usually much simpler than f(x).
We accept the constant C in the requirement
f(x) ≤ C⋅g(x)  whenever x > k,
because C does not grow with x.
We are only interested in large x, so it is OK if
f(x) > C⋅g(x)  for x ≤ k.
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The Growth of Functions

Example:
Show that f(x) = x2 + 2x + 1 is O(x2).

For x > 1 we have:
x2 + 2x + 1 ≤ x2 + 2x2 + x2

⇒ x2 + 2x + 1 ≤ 4x2

Therefore, for C = 4 and k = 1:
f(x) ≤ Cx2 whenever x > k.

⇒ f(x) is O(x2).
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The Growth of Functions

Question: If f(x) is O(x2), is it also O(x3)?

Yes. x3 grows faster than x2, so x3 grows also
faster than f(x).

Therefore, we always have to find the smallest
simple function g(x) for which f(x) is O(g(x)).
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The Growth of Functions
“Popular” functions g(n) are
n log n, 1, 2n, n2, n!, n, n3, log n

Listed from slowest to fastest growth:
•  1
•  log n
•  n
•  n log n
•  n2

•  n3

•  2n

•  n!
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The Growth of Functions

A problem that can be solved with polynomial
worst-case complexity is called tractable.

Problems of higher complexity are called
intractable.

Problems that no algorithm can solve are called
unsolvable.

You will find out more about this in CS420.
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Useful Rules for Big-O
For any polynomial f(x) = anxn + an-1xn-1 + … + a0,
where a0, a1, …, an are real numbers,
f(x) is O(xn).

If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then
(f1 + f2)(x) is O(max(g1(x), g2(x)))

If f1(x) is O(g(x)) and f2(x) is O(g(x)), then
(f1 + f2)(x) is O(g(x)).

If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then
(f1f2)(x) is O(g1(x) g2(x)).
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Complexity Examples
What does the following algorithm compute?
procedure who_knows(a1, a2, …, an: integers)
m := 0
for i := 1 to n-1

for j := i + 1 to n
if |ai – aj| > m then m := |ai – aj|

{m is the maximum difference between any two
numbers in the input sequence}
Comparisons: n-1 + n-2 + n-3 + … + 1
                     = (n – 1)n/2 = 0.5n2 – 0.5n

Time complexity is O(n2).
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Complexity Examples
Another algorithm solving the same problem:
procedure max_diff(a1, a2, …, an: integers)
min := a1
max := a1
for i := 2 to n

if ai < min then min := ai
else if ai > max then max := ai

m := max - min
Comparisons: 2n - 2

Time complexity is O(n).
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Let us get into…

Number Theory
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Introduction to Number Theory

Number theory is about integers and their
properties.

We will start with the basic principles of
•  divisibility,
•  greatest common divisors,
•  least common multiples, and
•  modular arithmetic

and look at some relevant algorithms.
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Division

If a and b are integers with a ≠ 0, we say that
a divides b if there is an integer c so that b = ac.

When a divides b we say that a is a factor of b
and that b is a multiple of a.

The notation a | b means that a divides b.

We write a X b when a does not divide b
(see book for correct symbol).
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Divisibility Theorems

For integers a, b, and c it is true that

•  if a | b and a | c, then a | (b + c)
  Example: 3 | 6 and 3 | 9, so 3 | 15.

•  if a | b, then a | bc for all integers c
  Example: 5 | 10, so 5 | 20, 5 | 30, 5 | 40, …

•  if a | b and b | c, then a | c
  Example: 4 | 8 and 8 | 24, so 4 | 24.
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Primes

A positive integer p greater than 1 is called prime
if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not
prime is called composite.

The fundamental theorem of arithmetic:
Every positive integer can be written uniquely as
the product of primes, where the prime factors
are written in order of increasing size.
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Primes
Examples:

3·5
48 =
17 =
100 =
512 =
515 =
28 =

15 =
2·2·2· 2·3 = 24· 3
17
2·2·5· 5 = 22· 52

2·2·2· 2·2·2·2·2· 2 = 29

5· 103
2·2·7
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Primes

If n is a composite integer, then n has a prime
divisor less than or equal      .

This is easy to see: if n is a composite integer, it
must have two prime divisors p1 and p2 such that
p1⋅p2 = n.

p1 and p2 cannot both be greater than
     , because then p1⋅p2 > n.

n

n
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The Division Algorithm

Let a be an integer and d a positive integer.
Then there are unique integers q and r, with
0 ≤≤ r < d, such that a = dq + r.

In the above equation,
•  d is called the divisor,
•  a is called the dividend,
•  q is called the quotient, and
•  r is called the remainder.
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The Division Algorithm

Example:

When we divide 17 by 5, we have

17 = 5⋅3 + 2.

•  17 is the dividend,
•  5  is the divisor,
•  3  is called the quotient, and
•  2  is called the remainder.
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The Division Algorithm
Another example:

What happens when we divide -11 by 3 ?

Note that the remainder cannot be negative.

-11 = 3⋅(-4) + 1.

•  -11 is the dividend,
•  3  is the divisor,
•  -4 is called the quotient, and
•  1  is called the remainder.
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Greatest Common Divisors
Let a and b be integers, not both zero.
The largest integer d such that d | a and d | b is
called the greatest common divisor of a and b.
The greatest common divisor of a and b is denoted
by gcd(a, b).
Example 1: What is gcd(48, 72) ?
The positive common divisors of 48 and 72 are
1, 2, 3, 4, 6, 8, 12, 16, and 24, so gcd(48, 72) = 24.
Example 2: What is gcd(19, 72) ?
The only positive common divisor of 19 and 72 is
1, so gcd(19, 72) = 1.
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Greatest Common Divisors
Using prime factorizations:

a = p1
a1  p2

a2 … pn
an ,  b = p1

b1  p2
b2 … pn

bn ,
where p1 < p2 < … < pn and ai, bi ∈ N for 1 ≤ i ≤ n

gcd(a, b) = p1
min(a1, b1 ) p2

min(a2, b2 ) … pn
min(an, bn )

Example:

a = 60 = 22 31 51

b = 54 = 21 33 50

gcd(a, b) = 21 31 50  = 6
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Relatively Prime Integers
Definition:
Two integers a and b are relatively prime if
gcd(a, b) = 1.

Examples:
Are 15 and 28 relatively prime?
Yes, gcd(15, 28) = 1.
Are 55 and 28 relatively prime?
Yes, gcd(55, 28) = 1.
Are 35 and 28 relatively prime?
No, gcd(35, 28) = 7.
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Relatively Prime Integers
Definition:
The integers a1, a2, …, an are pairwise relatively
prime if gcd(ai, aj) = 1 whenever 1 ≤ i < j ≤ n.

Examples:

Are 15, 17, and 27 pairwise relatively prime?
No, because gcd(15, 27) = 3.
Are 15, 17, and 28 pairwise relatively prime?
Yes, because gcd(15, 17) = 1, gcd(15, 28) = 1 and
gcd(17, 28) = 1.
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Least Common Multiples
Definition:
The least common multiple of the positive
integers a and b is the smallest positive integer
that is divisible by both a and b.
We denote the least common multiple of a and b
by lcm(a, b).
Examples:
lcm(3, 7) = 21
lcm(4, 6) = 12
lcm(5, 10) = 10
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Least Common Multiples
Using prime factorizations:

a = p1
a1  p2

a2 … pn
an ,  b = p1

b1  p2
b2 … pn

bn ,
where p1 < p2 < … < pn and ai, bi ∈ N for 1 ≤ i ≤ n

lcm(a, b) = p1
max(a1, b1 ) p2

max(a2, b2 ) … pn
max(an, bn )

Example:

a = 60 = 22 31 51

b = 54 = 21 33 50

lcm(a, b) = 22 33 51  = 4⋅27⋅5 = 540
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GCD and LCM

a = 60 = 22   31   51

b = 54 = 21   33   50

lcm(a, b) = 22 33 51      = 540

gcd(a, b) = 21 31 50      = 6

Theorem:  a⋅⋅b = gcd(a,b)⋅⋅lcm(a,b)
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Modular Arithmetic
Let a be an integer and m be a positive integer.
We denote by a mod m the remainder when a is
divided by m.

Examples:

9 mod 4 = 1
9 mod 3 = 0
9 mod 10 = 9
-13 mod 4 = 3
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Congruences

Let a and b be integers and m be a positive integer.
We say that a is congruent to b modulo m  if
m divides a – b.

We use the notation a ≡≡ b (mod m) to indicate
that a is congruent to b modulo m.

In other words:
a ≡ b (mod m) if and only if a mod m = b mod m.



50

Fall 2002 CMSC 203 - Discrete Structures 148

Congruences
Examples:
Is it true that 46 ≡ 68 (mod 11) ?
Yes, because 11 | (46 – 68).
Is it true that 46 ≡ 68 (mod 22)?
Yes, because 22 | (46 – 68).
For which integers z is it true that z ≡ 12 (mod 10)?
It is true for any z∈{…,-28, -18, -8, 2, 12, 22, 32, …}

Theorem: Let m be a positive integer. The integers
a and b are congruent modulo m if and only if there
is an integer k such that a = b + km.
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Congruences
Theorem: Let m be a positive integer.
If a ≡ b (mod m) and c ≡ d (mod m), then
a + c ≡ b + d (mod m) and ac ≡ bd (mod m).
Proof:
We know that a ≡ b (mod m) and c ≡ d (mod m)
implies that there are integers s and t with
b = a + sm and d = c + tm.
Therefore,
b + d = (a + sm) + (c + tm) = (a + c) + m(s + t) and
bd = (a + sm)(c + tm) = ac + m(at + cs + stm).
Hence, a + c ≡ b + d (mod m) and ac ≡ bd (mod m).
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The Euclidean Algorithm
The Euclidean Algorithm finds the greatest
common divisor of two integers a and b.
For example, if we want to find gcd(287, 91), we
divide 287 by 91:
287 = 91⋅3 + 14
We know that for integers a, b and c,
if a | b and a | c, then a | (b + c).
Therefore, any divisor of 287 and 91 must also be
a divisor of 287 - 91⋅3 = 14.
Consequently, gcd(287, 91) = gcd(14, 91).
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The Euclidean Algorithm
In the next step, we divide 91 by 14:

91 = 14⋅6 + 7

This means that gcd(14, 91) = gcd(14, 7).

So we divide 14 by 7:

14 = 7⋅2 + 0

We find that 7 | 14, and thus gcd(14, 7) = 7.

Therefore, gcd(287, 91) = 7.
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The Euclidean Algorithm
In pseudocode, the algorithm can be implemented
as follows:

procedure gcd(a, b: positive integers)
x := a
y := b
while y ≠ 0
begin

r := x mod y
x := y
y := r

end {x is gcd(a, b)}
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Representations of Integers
Let b be a positive integer greater than 1.
Then if n is a positive integer, it can be expressed
uniquely in the form:

n = akbk + ak-1bk-1 + … + a1b + a0,

where k is a nonnegative integer,
a0, a1, …, ak are nonnegative integers less than b,
and ak ≠ 0.

Example for b=10:
859 = 8⋅102 + 5⋅101 + 9⋅100
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Representations of Integers

Example for b=2 (binary expansion):
(10110)2 = 1⋅24 + 1⋅22 + 1⋅21 = (22)10

Example for b=16 (hexadecimal expansion):
(we use letters A to F to indicate numbers 10 to 15)
(3A0F)16 = 3⋅163 + 10⋅162 + 15⋅160 = (14863)10
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Representations of Integers
How can we construct the base b expansion of an
integer n?
First, divide n by b to obtain a quotient q0 and
remainder a0, that is,
n = bq0 + a0, where 0 ≤ a0 < b.
The remainder a0 is the rightmost digit in the base
b expansion of n.
Next, divide q0 by b to obtain:
q0 = bq1 + a1, where 0 ≤ a1 < b.
a1 is the second digit from the right in the base b
expansion of n. Continue this process until you
obtain a quotient equal to zero.
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Representations of Integers

Example:
What is the base 8 expansion of (12345)10  ?

First, divide 12345 by 8:
12345 = 8⋅1543 + 1

1543 = 8⋅192 + 7
192 = 8⋅24 + 0
24 = 8⋅3 + 0
3 = 8⋅0 + 3

The result is: (12345)10 = (30071)8.
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Representations of Integers

procedure base_b_expansion(n, b: positive integers)
q := n
k := 0
while q ≠ 0
begin

ak := q mod b
q := q/b
k := k + 1

end
{the base b expansion of n is (ak-1 … a1a0)b }
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Addition of Integers
Let a = (an-1an-2…a1a0)2, b = (bn-1bn-2…b1b0)2.

How can we add these two binary numbers?
First, add their rightmost bits:
a0 + b0 = c0⋅2 + s0,
where s0 is the rightmost bit in the binary
expansion of a + b, and c0 is the carry.
Then, add the next pair of bits and the carry:
a1 + b1 + c0 = c1⋅2 + s1,
where s1 is the next bit in the binary expansion of
a + b, and c1 is the carry.
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Addition of Integers

Continue this process until you obtain cn-1.

The leading bit of the sum is sn = cn-1.

The result is:
a + b = (snsn-1…s1s0)2
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Addition of Integers
Example:
Add a = (1110)2 and b = (1011)2.

a0 + b0 = 0 + 1 = 0⋅2 + 1, so that c0 = 0 and s0 = 1.
a1 + b1 + c0 = 1 + 1 + 0 = 1⋅2 + 0, so c1 = 1 and s1 = 0.
a2 + b2 + c1 = 1 + 0 + 1 = 1⋅2 + 0, so c2 = 1 and s2 = 0.
a3 + b3 + c2 = 1 + 1 + 1 = 1⋅2 + 1, so c3 = 1 and s3 = 1.
s4 = c3 = 1.

Therefore, s = a + b = (11001)2.
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Addition of Integers
How do we (humans) add two integers?

Example:        7583
      + 4932

51521

111 carry

Binary expansions:              (1011)2
                                       +  (1010)2

10

carry1

10

1

1( )2
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Addition of Integers
Let a = (an-1an-2…a1a0)2, b = (bn-1bn-2…b1b0)2.

How can we algorithmically add these two binary
numbers?
First, add their rightmost bits:
a0 + b0 = c0⋅2 + s0,
where s0 is the rightmost bit in the binary
expansion of a + b, and c0 is the carry.
Then, add the next pair of bits and the carry:
a1 + b1 + c0 = c1⋅2 + s1,
where s1 is the next bit in the binary expansion of
a + b, and c1 is the carry.
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Addition of Integers

Continue this process until you obtain cn-1.

The leading bit of the sum is sn = cn-1.

The result is:
a + b = (snsn-1…s1s0)2
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Addition of Integers
Example:
Add a = (1110)2 and b = (1011)2.

a0 + b0 = 0 + 1 = 0⋅2 + 1, so that c0 = 0 and s0 = 1.
a1 + b1 + c0 = 1 + 1 + 0 = 1⋅2 + 0, so c1 = 1 and s1 = 0.
a2 + b2 + c1 = 1 + 0 + 1 = 1⋅2 + 0, so c2 = 1 and s2 = 0.
a3 + b3 + c2 = 1 + 1 + 1 = 1⋅2 + 1, so c3 = 1 and s3 = 1.
s4 = c3 = 1.

Therefore, s = a + b = (11001)2.
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Addition of Integers
procedure add(a, b: positive integers)
c := 0
for j := 0 to n-1
begin

d := (aj + bj + c)/2
sj := aj + bj + c – 2d
c := d

end
sn := c
{the binary expansion of the sum is (snsn-1…s1s0)2}
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Let’s proceed to…

Mathematical
Reasoning
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Mathematical Reasoning

We need mathematical reasoning to
• determine whether a mathematical argument is
   correct or incorrect and
• construct mathematical arguments.

Mathematical reasoning is not only important for
conducting proofs and program verification, but
also for artificial intelligence systems (drawing
inferences).
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Terminology
An axiom is a basic assumption about
mathematical structured that needs no proof.

We can use a proof to demonstrate that a
particular statement is true. A proof consists of a
sequence of statements that form an argument.

The steps that connect the statements in such a
sequence are the rules of inference.
Cases of incorrect reasoning are called fallacies.

A theorem is a statement that can be shown to be
true.
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Terminology

A lemma is a simple theorem used as an
intermediate result in the proof of another
theorem.

A corollary is a proposition that follows directly
from a theorem that has been proved.

A conjecture is a statement whose truth value is
unknown. Once it is proven, it becomes a theorem.
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Rules of Inference

Rules of inference provide the justification of
the steps used in a proof.

One important rule is called modus ponens or the
law of detachment. It is based on the tautology
(p∧(p→q)) → q. We write it in the following way:

p
p → q
____
∴ q

The two hypotheses p and p → q are
written in a column, and the conclusion
below a bar, where ∴ means “therefore”.
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Rules of Inference

The general form of a rule of inference is:

  p1
  p2  .  .  .
  pn____
∴ q

The rule states that if p1 and p2 and …
and pn are all true, then q is true as well.

These rules of inference can be used in
any mathematical argument and do not
require any proof.
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Rules of Inference

 p
_____
∴ p∨q Addition

 p∧q
_____
∴ p Simplification

 p
 q
_____
∴ p∧q

Conjunction

 ¬q
 p→q
_____
∴ ¬p

Modus
tollens

 p→q
 q→r
_____
∴ p→r

Hypothetical
syllogism

 p∨q
 ¬p
_____
∴ q

Disjunctive
syllogism
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Arguments

Just like a rule of inference, an argument consists
of one or more hypotheses and a conclusion.

We say that an argument is valid, if whenever all
its hypotheses are true, its conclusion is also true.

However, if any hypothesis is false, even a valid
argument can lead to an incorrect conclusion.
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Arguments
Example:
“If 101 is divisible by 3, then 1012 is divisible by 9.
101 is divisible by 3. Consequently, 1012 is divisible
by 9.”

Although the argument is valid, its conclusion is
incorrect, because one of the hypotheses is false
(“101 is divisible by 3.”).

If in the above argument we replace 101 with 102,
we could correctly conclude that 1022 is divisible
by 9.
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Arguments
Which rule of inference was used in the last
argument?

p: “101 is divisible by 3.”
q: “1012 is divisible by 9.”

 p
 p→q
_____
∴ q

Modus
ponens

Unfortunately, one of the hypotheses (p) is false.
Therefore, the conclusion q is incorrect.
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Arguments

Another example:

“If it rains today, then we will not have a
barbeque today. If we do not have a barbeque
today, then we will have a barbeque tomorrow.
Therefore, if it rains today, then we will have a
barbeque tomorrow.”

This is a valid argument: If its hypotheses are
true, then its conclusion is also true.
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Arguments

Let us formalize the previous argument:

p: “It is raining today.”
q: “We will not have a barbecue today.”
r: “We will have a barbecue tomorrow.”

So the argument is of the following form:

 p→q
 q→r
_____
∴ p→r

Hypothetical
syllogism
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Arguments

Another example:

Gary is either intelligent or a good actor.
If Gary is intelligent, then he can count
from 1 to 10.
Gary can only count from 1 to 2.
Therefore, Gary is a good actor.

i: “Gary is intelligent.”
a: “Gary is a good actor.”
c: “Gary can count from 1 to 10.”
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Arguments
i: “Gary is intelligent.”
a: “Gary is a good actor.”
c: “Gary can count from 1 to 10.”

Step 1:   ¬c Hypothesis
Step 2:   i → c            Hypothesis
Step 3:   ¬i    Modus tollens Steps 1 & 2
Step 4:   a ∨ i Hypothesis
Step 5:   a Disjunctive Syllogism

Steps 3 & 4

Conclusion: a (“Gary is a good actor.”)
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Arguments
Yet another example:

If you listen to me, you will pass CS 320.
You passed CS 320.
Therefore, you have listened to me.

Is this argument valid?

No, it assumes ((p→q) ∧ q) → p.
This statement is not a tautology. It is false if p
is false and q is true.
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Rules of Inference for Quantified Statements
 ∀x P(x)__________
∴ P(c) if c∈U

Universal
instantiation

P(c) for an arbitrary c∈U___________________
∴ ∀x P(x)

Universal
generalization

 ∃x P(x)______________________
∴ P(c) for some element c∈U

Existential
instantiation

P(c) for some element c∈U____________________
∴ ∃x P(x)

Existential
generalization
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Rules of Inference for Quantified Statements

Example:

Every UMB student is a genius.
George is a UMB student.
Therefore, George is a genius.

U(x): “x is a UMB student.”
G(x): “x is a genius.”
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Rules of Inference for Quantified Statements

The following steps are used in the argument:

Step 1: ∀x (U(x) → G(x)) Hypothesis
Step 2: U(George) → G(George) Univ. instantiation

using Step 1

 ∀x P(x)__________
∴ P(c) if c∈U

Universal
instantiation

Step 3: U(George) Hypothesis
Step 4: G(George) Modus ponens

using Steps 2 & 3
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Proving Theorems

Direct proof:

An implication p→q can be proved by showing that
if p is true, then q is also true.

Example: Give a direct proof of the theorem
“If n is odd, then n2 is odd.”

Idea: Assume that the hypothesis of this
implication is true (n is odd). Then use rules of
inference and known theorems to show that q
must also be true (n2 is odd).
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Proving Theorems

n is odd.

Then n = 2k + 1, where k is an integer.

Consequently, n2 = (2k + 1)2.
 = 4k2 + 4k + 1
 = 2(2k2 + 2k) + 1

Since n2 can be written in this form, it is odd.
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Proving Theorems
Indirect proof:
An implication p→q is equivalent to its contra-
positive ¬q → ¬p. Therefore, we can prove p→q
by showing that whenever q is false, then p is also
false.
Example: Give an indirect proof of the theorem
“If 3n + 2 is odd, then n is odd.”
Idea: Assume that the conclusion of this
implication is false (n is even). Then use rules of
inference and known theorems to show that p
must also be false (3n + 2 is even).
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Proving Theorems
n is even.

Then n = 2k, where k is an integer.

It follows that 3n + 2 = 3(2k) + 2
= 6k + 2
= 2(3k + 1)

Therefore, 3n + 2 is even.

We have shown that the contrapositive of the
implication is true, so the implication itself is also
true (If 2n + 3 is odd, then n is odd).
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Follow me for a walk through...

Mathematical
Induction
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Induction

The principle of mathematical induction is a
useful tool for proving that a certain predicate
is true for all natural numbers.

It cannot be used to discover theorems, but
only to prove them.
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Induction
If we have a propositional function P(n), and we
want to prove that P(n) is true for any natural
number n, we do the following:

•  Show that P(0) is true.
    (basis step)
• Show that if P(n) then P(n + 1) for any n∈N.
    (inductive step)
• Then P(n) must be true for any n∈N.
    (conclusion)
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Induction
Example:

Show that n < 2n for all positive integers n.

Let P(n) be the proposition “n < 2n.”

1.  Show that P(1) is true.
(basis step)

P(1) is true, because 1 < 21 = 2.
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Induction
2.  Show that if P(n) is true, then P(n + 1) is

true.
(inductive step)

Assume that n < 2n is true.
We need to show that P(n + 1) is true, i.e.
n + 1 < 2n+1

We start from n < 2n:
n + 1 < 2n + 1 ≤ 2n + 2n = 2n+1

Therefore, if n < 2n then n + 1 < 2n+1
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Induction

• Then P(n) must be true for any positive
integer.
(conclusion)

n < 2n is true for any positive integer.

End of proof.
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Induction
Another Example (“Gauss”):

1 + 2 + … + n = n (n + 1)/2

• Show that P(0) is true.
(basis step)

For n = 0 we get 0 = 0. True.
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Induction
• Show that if P(n) then P(n + 1) for any n∈N.

(inductive step)

1 + 2 + … + n = n (n + 1)/2
1 + 2 + … + n + (n + 1) = n (n + 1)/2 + (n + 1)

= (2n + 2 + n (n + 1))/2
= (2n + 2 + n2 + n)/2
= (2 + 3n + n2 )/2
= (n + 1) (n + 2)/2
= (n + 1) ((n + 1) + 1)/2
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Induction

• Then P(n) must be true for any n∈N.
(conclusion)

1 + 2 + … + n = n (n + 1)/2 is true for all n∈N.

End of proof.
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Induction

There is another proof technique that is very
similar to the principle of mathematical induction.

It is called the second principle of
mathematical induction.

It can be used to prove that a propositional
function P(n) is true for any natural number n.
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Induction

The second principle of mathematical induction:

• Show that P(0) is true.
(basis step)

• Show that if P(0) and P(1) and … and P(n),
then P(n + 1) for any n∈N.
(inductive step)

• Then P(n) must be true for any n∈N.
(conclusion)
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Induction

Example: Show that every integer greater than
1 can be written as the product of primes.

•  Show that P(2) is true.
    (basis step)

2 is the product of one prime: itself.
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Induction
• Show that if P(2) and P(3) and … and P(n),

then P(n + 1) for any n∈N. (inductive step)
Two possible cases:
• If (n + 1) is prime, then obviously P(n + 1) is true.
• If (n + 1) is composite, it can be written as the

product of two integers a and b such that
2 ≤ a ≤ b < n + 1.

   By the induction hypothesis, both a and b can be
written as the product of primes.

   Therefore, n + 1 = a⋅b can be written as the
product of primes.
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Induction

•  Then P(n) must be true for any n∈N.
    (conclusion)

End of proof.

We have shown that every integer greater
than 1 can be written as the product of primes.
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If I told you once, it must be...

Recursion
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Recursive Definitions

Recursion is a principle closely related to
mathematical induction.

In a recursive definition, an object is defined in
terms of itself.

We can recursively define sequences, functions
and sets.
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Recursively Defined Sequences
Example:

The sequence {an} of powers of 2 is given by
an = 2n for n = 0, 1, 2, … .

The same sequence can also be defined
recursively:

a0 = 1
an+1 = 2an     for n = 0, 1, 2, …

Obviously, induction and recursion are similar
principles.
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Recursively Defined Functions

We can use the following method to define a
function with the natural numbers as its domain:

•  Specify the value of the function at zero.
•  Give a rule for finding its value at any integer
     from its values at smaller integers.

Such a definition is called recursive or inductive
definition.
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Recursively Defined Functions

Example:

f(0) = 3
f(n + 1) = 2f(n) + 3

f(0) = 3
f(1) = 2f(0) + 3 = 2⋅3 + 3 = 9
f(2) = 2f(1) + 3 = 2⋅9 + 3 = 21
f(3) = 2f(2) + 3 = 2⋅21 + 3 = 45
f(4) = 2f(3) + 3 = 2⋅45 + 3 = 93
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Recursively Defined Functions

How can we recursively define the factorial
function f(n) = n! ?

f(0) = 1
f(n + 1) = (n + 1)f(n)
f(0) = 1
f(1) = 1f(0) = 1⋅1 = 1
f(2) = 2f(1) = 2⋅1 = 2
f(3) = 3f(2) = 3⋅2 = 6
f(4) = 4f(3) = 4⋅6 = 24
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Recursively Defined Functions
A famous example: The Fibonacci numbers
f(0) = 0, f(1) = 1
f(n) = f(n – 1) + f(n - 2)
f(0) = 0
f(1) = 1
f(2) = f(1) + f(0) = 1 + 0 = 1
f(3) = f(2) + f(1) = 1 + 1 = 2
f(4) = f(3) + f(2) = 2 + 1 = 3
f(5) = f(4) + f(3) = 3 + 2 = 5
f(6) = f(5) + f(4) = 5 + 3 = 8
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Recursively Defined Sets
If we want to recursively define a set, we need
to provide two things:

•  an initial set of elements,
•  rules for the construction of additional
   elements from elements in the set.

Example: Let S be recursively defined by:
3 ∈ S
(x + y) ∈ S if (x ∈ S) and (y ∈ S)

S is the set of positive integers divisible by 3.
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Recursively Defined Sets
Proof:

Let A be the set of all positive integers divisible
by 3.

To show that A = S, we must show that
A ⊆ S and S ⊆ A.

Part I: To prove that A ⊆ S, we must show that
every positive integer divisible by 3 is in S.

We will use mathematical induction to show this.
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Recursively Defined Sets
Let P(n) be the statement “3n belongs to S”.

Basis step: P(1) is true, because 3 is in S.

Inductive step: To show:
If P(n) is true, then P(n + 1) is true.

Assume 3n is in S. Since 3n is in S and 3 is in S, it
follows from the recursive definition of S that
3n + 3 = 3(n + 1) is also in S.

Conclusion of Part I: A ⊆ S.
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Recursively Defined Sets
Part II: To show: S ⊆ A.
Basis step: To show:
All initial elements of S are in A. 3 is in A. True.
Inductive step: To show:
(x + y) is in A whenever x and y are in S.
If x and y are both in A, it follows that 3 | x and
3 | y. From Theorem I, Section 2.3, it follows
that 3 | (x + y).

Conclusion of Part II: S ⊆ A.
Overall conclusion: A = S.
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Recursively Defined Sets

Another example:

The well-formed formulae of variables, numerals
and operators from {+, -, *, /, ^} are defined by:

x is a well-formed formula if x is a numeral or
variable.

(f + g), (f – g), (f * g), (f / g), (f ^ g) are well-
formed formulae if f and g are.
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Recursively Defined Sets

With this definition, we can construct formulae
such as:

(x – y)
((z / 3) – y)
((z / 3) – (6 + 5))
((z / (2 * 4)) – (6 + 5))
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Recursive Algorithms

An algorithm is called recursive if it solves a
problem by reducing it to an instance of the same
problem with smaller input.

Example I: Recursive Euclidean Algorithm

procedure gcd(a, b: nonnegative integers with a < b)
if a = 0 then gcd(a, b) := b
else gcd(a, b) := gcd(b mod a, a)
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Recursive Algorithms

Example II: Recursive Fibonacci Algorithm

procedure fibo(n: nonnegative integer)
if n = 0 then fibo(0) := 0
else if n = 1 then fibo(1) := 1
else fibo(n) := fibo(n – 1) + fibo(n – 2)
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Recursive Algorithms
Recursive Fibonacci Evaluation:

f(4)

f(3)

f(2)

f(1) f(0)

f(1)

f(2)

f(1) f(0)
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Recursive Algorithms
procedure iterative_fibo(n: nonnegative integer)
if n = 0 then y := 0
else
begin

x := 0
y := 1
for i := 1 to n-1
begin

z := x + y
x : = y
y := z

end
end   {y is the n-th Fibonacci number}
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Recursive Algorithms

For every recursive algorithm, there is an
equivalent iterative algorithm.

Recursive algorithms are often shorter, more
elegant, and easier to understand than their
iterative counterparts.

However, iterative algorithms are usually more
efficient in their use of space and time.
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One, two, three, we’re…

Counting
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Basic Counting Principles

Counting problems are of the following kind:

“How many different 8-letter passwords are
there?”

“How many possible ways are there to pick 11
soccer players out of a 20-player team?”

Most importantly, counting is the basis for
computing probabilities of discrete events.

(“What is the probability of winning the lottery?”)
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Basic Counting Principles
The sum rule:
If a task can be done in n1 ways and a second task
in n2 ways, and if these two tasks cannot be done
at the same time, then there are n1 + n2 ways to
do either task.

Example:
The department will award a free computer to
either a CS student or a CS professor.
How many different choices are there, if there
are 530 students and 15 professors?

There are 530 + 15 = 545 choices.
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Basic Counting Principles

Generalized sum rule:
 If we have tasks T1, T2, …, Tm that can be done in
n1, n2, …, nm ways, respectively, and no two of
these tasks can be done at the same time, then
there are n1 + n2 + … + nm ways to do one of these
tasks.
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Basic Counting Principles

The product rule:
Suppose that a procedure can be broken down
into two successive tasks. If there are n1 ways to
do the first task and n2 ways to do the second
task after the first task has been done, then
there are n1n2 ways to do the procedure.
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Basic Counting Principles
Example:
How many different license plates are there that
containing exactly three English letters ?

Solution:
There are 26 possibilities to pick the first letter,
then 26 possibilities for the second one, and 26
for the last one.

So there are 26⋅26⋅26 = 17576 different license
plates.
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Basic Counting Principles

Generalized product rule:
If we have a procedure consisting of sequential
tasks T1, T2, …, Tm that can be done in n1, n2, …, nm
ways, respectively, then there are n1 ⋅ n2 ⋅ … ⋅ nm
ways to carry out the procedure.
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Basic Counting Principles
The sum and product rules can also be phrased in
terms of set theory.

Sum rule: Let A1, A2, …, Am be disjoint sets. Then
the number of ways to choose any element from
one of these sets is |A1 ∪ A2 ∪ … ∪ Am | =
|A1| + |A2| + … + |Am|.

Product rule: Let A1, A2, …, Am be finite sets.
Then the number of ways to choose one element
from each set in the order A1, A2, …, Am is
|A1 × A2 × … × Am | = |A1| ⋅ |A2| ⋅ … ⋅ |Am|.
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Inclusion-Exclusion
How many bit strings of length 8 either start with a
1 or end with 00?
Task 1: Construct a string of length 8 that starts
with a 1.
There is one way to pick the first bit (1),
two ways to pick the second bit (0 or 1),
two ways to pick the third bit (0 or 1),
.
..
two ways to pick the eighth bit (0 or 1).
Product rule: Task 1 can be done in 1⋅27 = 128 ways.
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Inclusion-Exclusion
Task 2: Construct a string of length 8 that ends
with 00.
There are two ways to pick the first bit (0 or 1),
two ways to pick the second bit (0 or 1),
..
.
two ways to pick the sixth bit (0 or 1),
one way to pick the seventh bit (0), and
one way to pick the eighth bit (0).
Product rule: Task 2 can be done in 26 = 64 ways.
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Inclusion-Exclusion
Since there are 128 ways to do Task 1 and 64 ways
to do Task 2, does this mean that there are 192 bit
strings either starting with 1 or ending with 00 ?

No, because here Task 1 and Task 2 can be done at
the same time.

When we carry out Task 1 and create strings
starting with 1, some of these strings end with 00.

Therefore, we sometimes do Tasks 1 and 2 at the
same time, so the sum rule does not apply.
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Inclusion-Exclusion
If we want to use the sum rule in such a case, we
have to subtract the cases when Tasks 1 and 2 are
done at the same time.
How many cases are there, that is, how many
strings start with 1 and end with 00?
There is one way to pick the first bit (1),
two ways for the second, …, sixth bit (0 or 1),
one way for the seventh, eighth bit (0).
Product rule: In 25 = 32 cases, Tasks 1 and 2 are
carried out at the same time.
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Inclusion-Exclusion
Since there are 128 ways to complete Task 1 and
64 ways to complete Task 2, and in 32 of these
cases Tasks 1 and 2 are completed at the same
time, there are
128 + 64 – 32 = 160 ways to do either task.

In set theory, this corresponds to sets A1 and A2
that are not disjoint. Then we have:
|A1 ∪ A2| = |A1| + |A2| - |A1 ∩ A2|

This is called the principle of inclusion-exclusion.
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Tree Diagrams
How many bit strings of length four do not have
two consecutive 1s?

Task 1 Task 2 Task 3 Task 4
(1st bit) (2nd bit) (3rd bit) (4th bit)

0

0
0 0

11
0

1 0 0
1

1 0
0 0

11
0There are 8 strings.
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The Pigeonhole Principle
The pigeonhole principle: If (k + 1) or more
objects are placed into k boxes, then there is at
least one box containing two or more of the
objects.

Example 1: If there are 11 players in a soccer
team that wins 12-0, there must be at least one
player in the team who scored at least twice.

Example 2: If you have 6 classes from Monday to
Friday, there must be at least one day on which you
have at least two classes.
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The Pigeonhole Principle

The generalized pigeonhole principle: If N
objects are placed into k boxes, then there is at
least one box containing at least N/k of the
objects.

Example 1: In our 60-student class, at least 12
students will get the same letter grade (A, B, C, D,
or F).
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The Pigeonhole Principle

Example 2: Assume you have a drawer containing a
random distribution of a dozen brown socks and a
dozen black socks. It is dark, so how many socks do
you have to pick to be sure that among them there
is a matching pair?

There are two types of socks, so if you pick at
least 3 socks, there must be either at least two
brown socks or at least two black socks.

Generalized pigeonhole principle: 3/2 = 2.
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Permutations and Combinations
How many ways are there to pick a set of 3 people
from a group of 6?
There are 6 choices for the first person, 5 for the
second one, and 4 for the third one, so there are
6⋅5⋅4 = 120 ways to do this.
This is not the correct result!
For example, picking person C, then person A, and
then person E leads to the same group as first
picking E, then C, and then A.
However, these cases are counted separately in
the above equation.
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Permutations and Combinations
So how can we compute how many different
subsets of people can be picked (that is, we want
to disregard the order of picking) ?

To find out about this, we need to look at
permutations.

A permutation of a set of distinct objects is an
ordered arrangement of these objects.

An ordered arrangement of r elements of a set is
called an r-permutation.
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Permutations and Combinations
Example: Let S = {1, 2, 3}.
The arrangement 3, 1, 2 is a permutation of S.
The arrangement 3, 2 is a 2-permutation of S.

The number of r-permutations of a set with n
distinct elements is denoted by P(n, r).

We can calculate P(n, r) with the product rule:
P(n, r) = n⋅(n – 1)⋅(n – 2) ⋅…⋅(n – r + 1).
(n choices for the first element, (n – 1) for the
second one, (n – 2) for the third one…)
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Permutations and Combinations
Example:

P(8, 3) = 8⋅7⋅6 = 336
   = (8⋅7⋅6⋅5⋅4⋅3⋅2⋅1)/(5⋅4⋅3⋅2⋅1)

General formula:
P(n, r) = n!/(n – r)!

Knowing this, we can return to our initial question:
How many ways are there to pick a set of 3 people
from a group of 6 (disregarding the order of
picking)?
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Permutations and Combinations
An r-combination of elements of a set is an
unordered selection of r elements from the set.
Thus, an r-combination is simply a subset of the set
with r elements.
Example: Let S = {1, 2, 3, 4}.
Then {1, 3, 4} is a 3-combination from S.
The number of r-combinations of a set with n
distinct elements is denoted by C(n, r).
Example: C(4, 2) = 6, since, for example, the 2-
combinations of a set {1, 2, 3, 4} are {1, 2}, {1, 3},
{1, 4}, {2, 3}, {2, 4}, {3, 4}.
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Permutations and Combinations
How can we calculate C(n, r)?
Consider that we can obtain the r-permutation of a
set in the following way:

First, we form all the r-combinations of the set
(there are C(n, r) such r-combinations).
Then, we generate all possible orderings in each of
these r-combinations (there are P(r, r) such
orderings in each case).

Therefore, we have:
P(n, r) = C(n, r)⋅P(r, r)
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Permutations and Combinations
C(n, r) = P(n, r)/P(r, r)

  = n!/(n – r)!/(r!/(r – r)!)
  = n!/(r!(n – r)!)

Now we can answer our initial question:
How many ways are there to pick a set of 3 people
from a group of 6 (disregarding the order of
picking)?
C(6, 3) = 6!/(3!⋅3!) = 720/(6⋅6) = 720/36 = 20

There are 20 different ways, that is, 20 different
groups to be picked.
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Permutations and Combinations
Corollary:
Let n and r be nonnegative integers with r ≤ n.
Then C(n, r) = C(n, n – r).

Note that “picking a group of r people from a
group of n people” is the same as “splitting a group
of n people into a group of r people and another
group of (n – r) people”.

Please also look at proof on page 252.
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Permutations and Combinations
Example:
A soccer club has 8 female and 7 male members.
For today’s match, the coach wants to have 6
female and 5 male players on the grass. How many
possible configurations are there?

C(8, 6) ⋅ C(7, 5) = 8!/(6!⋅2!) ⋅ 7!/(5!⋅2!)
        = 28⋅21
        = 588
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Combinations
We also saw the following:
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This symmetry is intuitively plausible. For example,
let us consider a set containing six elements (n = 6).
Picking two elements and leaving four is essentially
the same as picking four elements and leaving two.
In either case, our number of choices is the
number of possibilities to divide the set into one
set containing two elements and another set
containing four elements.
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Combinations

Pascal’s Identity:

Let n and k be positive integers with n ≥ k.
Then C(n + 1, k) = C(n, k – 1) + C(n, k).

How can this be explained?

What is it good for?
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Combinations
Imagine a set S containing n elements and a set T
containing (n + 1) elements, namely all elements in
S plus a new element a.
Calculating C(n + 1, k) is equivalent to answering
the question: How many subsets of T containing k
items are there?
Case I: The subset contains (k – 1) elements of S
             plus the element a: C(n, k – 1) choices.
Case II: The subset contains k elements of S and
             does not contain a: C(n, k) choices.
Sum Rule: C(n + 1, k) = C(n, k – 1) + C(n, k).
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Pascal’s Triangle
In Pascal’s triangle, each number is the sum of
the numbers to its upper left and upper right:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
… … … … … …
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Pascal’s Triangle
Since we have C(n + 1, k) = C(n, k – 1) + C(n, k) and
C(0, 0) = 1, we can use Pascal’s triangle to simplify
the computation of C(n, k):

C(0, 0) = 1
C(1, 0) = 1 C(1, 1) = 1

C(2, 0) = 1 C(2, 1) = 2 C(2, 2) = 1

C(3, 0) = 1 C(3, 1) = 3 C(3, 2) = 3 C(3, 3) = 1
C(4, 0) = 1 C(4, 1) = 4 C(4, 2) = 6 C(4, 3) = 4 C(4, 4) = 1

k

n
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Binomial Coefficients
Expressions of the form C(n, k) are also called
binomial coefficients.
How come?
A binomial expression is the sum of two terms,
such as (a + b).
Now consider (a + b)2 = (a + b)(a + b).
When expanding such expressions, we have to
form all possible products of a term in the first
factor and a term in the second factor:
(a + b)2 = a·a + a·b + b·a + b·b
Then we can sum identical terms:
(a + b)2 = a2 + 2ab + b2
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Binomial Coefficients
For (a + b)3 = (a + b)(a + b)(a + b) we have
(a + b)3 = aaa + aab + aba + abb + baa + bab + bba + bbb
(a + b)3 = a3 + 3a2b + 3ab2 + b3

There is only one term a3, because there is only
one possibility to form it: Choose a from all three
factors: C(3, 3) = 1.
There is three times the term a2b, because there
are three possibilities to choose a from two out of
the three factors: C(3, 2) = 3.
Similarly, there is three times the term ab2

(C(3, 1) = 3) and once the term b3 (C(3, 0) = 1).
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Binomial Coefficients
This leads us to the following formula:

j
n

j
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With the help of Pascal’s triangle, this formula
can considerably simplify the process of
expanding powers of binomial expressions.

For example, the fifth row of Pascal’s triangle
(1 – 4 – 6 – 4 – 1) helps us to compute (a + b)4:

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(Binomial Theorem)
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Now it’s Time for…

Recurrence
Relations
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Recurrence Relations

A recurrence relation for the sequence {an} is an
equation that expresses an is terms of one or
more of the previous terms of the sequence,
namely, a0, a1, …, an-1, for all integers n with
n ≥ n0, where n0 is a nonnegative integer.

A sequence is called a solution of a recurrence
relation if it terms satisfy the recurrence
relation.
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Recurrence Relations

In other words, a recurrence relation is like a
recursively defined sequence, but without
specifying any initial values (initial conditions).

Therefore, the same recurrence relation can have
(and usually has) multiple solutions.

If both the initial conditions and the recurrence
relation are specified, then the sequence is
uniquely determined.
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Recurrence Relations
Example:
Consider the recurrence relation
an = 2an-1 – an-2 for n = 2, 3, 4, …

Is the sequence {an} with an=3n a solution of this
recurrence relation?
For n ≥ 2 we see that
2an-1 – an-2 = 2(3(n – 1)) – 3(n – 2) = 3n = an.
Therefore, {an} with an=3n is a solution of the
recurrence relation.
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Recurrence Relations

Is the sequence {an} with an=5 a solution of the
same recurrence relation?
For n ≥ 2 we see that
2an-1 – an-2 = 2⋅5 - 5 = 5 = an.

Therefore, {an} with an=5 is also a solution of the
recurrence relation.
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Modeling with Recurrence Relations

Example:
Someone deposits $10,000 in a savings account at
a bank yielding 5% per year with interest
compounded annually. How much money will be in
the account after 30 years?

Solution:
Let Pn denote the amount in the account after n
years.
How can we determine Pn on the basis of Pn-1?
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Modeling with Recurrence Relations
We can derive the following recurrence relation:
Pn = Pn-1 + 0.05Pn-1 = 1.05Pn-1.
The initial condition is P0 = 10,000.
Then we have:
P1 = 1.05P0
P2 = 1.05P1 = (1.05)2P0
P3 = 1.05P2 = (1.05)3P0
…
Pn = 1.05Pn-1 = (1.05)nP0

We now have a formula to calculate Pn for any
natural number n and can avoid the iteration.
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Modeling with Recurrence Relations

Let us use this formula to find P30 under the
initial condition P0 = 10,000:

P30 = (1.05)30⋅10,000 = 43,219.42

After 30 years, the account contains $43,219.42.
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Modeling with Recurrence Relations

Another example:
Let an denote the number of bit strings of length
n that do not have two consecutive 0s (“valid
strings”). Find a recurrence relation and give
initial conditions for the sequence {an}.

Solution:
Idea: The number of valid strings equals the
number of valid strings ending with a 0 plus the
number of valid strings ending with a 1.
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Modeling with Recurrence Relations
Let us assume that n ≥ 3, so that the string
contains at least 3 bits.
Let us further assume that we know the number
an-1 of valid strings of length (n – 1).
Then how many valid strings of length n are there,
if the string ends with a 1?
There are an-1 such strings, namely the set of
valid strings of length (n – 1) with a 1 appended to
them.
Note: Whenever we append a 1 to a valid string,
that string remains valid.
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Modeling with Recurrence Relations
Now we need to know: How many valid strings of
length n are there, if the string ends with a 0?
Valid strings of length n ending with a 0 must
have a 1 as their (n – 1)st bit (otherwise they
would end with 00 and would not be valid).
And what is the number of valid strings of length
(n – 1) that end with a 1?
We already know that there are an-1 strings of
length n that end with a 1.
Therefore, there are an-2 strings of length (n – 1)
that end with a 1.
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Modeling with Recurrence Relations

So there are an-2 valid strings of length n that
end with a 0 (all valid strings of length (n – 2)
with 10 appended to them).

As we said before, the number of valid strings is
the number of valid strings ending with a 0 plus
the number of valid strings ending with a 1.

That gives us the following recurrence relation:
an = an-1 + an-2

Fall 2002 CMSC 203 - Discrete Structures 266

Modeling with Recurrence Relations
What are the initial conditions?

a1 = 2 (0 and 1)
a2 = 3 (01, 10, and 11)
a3 = a2 + a1 = 3 + 2 = 5
a4 = a3 + a2 = 5 + 3 = 8
a5 = a4 + a3 = 8 + 5 = 13
…

This sequence satisfies the same recurrence
relation as  the Fibonacci sequence.
Since a1 = f3 and a2 = f4, we have an = fn+2.
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Solving Recurrence Relations

In general, we would prefer to have an explicit
formula to compute the value of an rather than
conducting n iterations.

For one class of recurrence relations, we can
obtain such formulas in a systematic way.

Those are the recurrence relations that express
the terms of a sequence as linear combinations of
previous terms.
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Solving Recurrence Relations
Definition: A linear homogeneous recurrence
relation of degree k with constant coefficients is
a recurrence relation of the form:
an = c1an-1 + c2an-2 + … + ckan-k,
Where c1, c2, …, ck are real numbers, and ck ≠ 0.

A sequence satisfying such a recurrence relation
is uniquely determined by the recurrence relation
and the k initial conditions
a0 = C0, a1 = C1, a2 = C2, …, ak-1 = Ck-1.
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Solving Recurrence Relations
Examples:
The recurrence relation Pn = (1.05)Pn-1
is a linear homogeneous recurrence relation of
degree one.
The recurrence relation fn = fn-1 + fn-2
is a linear homogeneous recurrence relation of
degree two.
The recurrence relation an = an-5
is a linear homogeneous recurrence relation of
degree five.
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Solving Recurrence Relations
Basically, when solving such recurrence relations,
we try to find solutions of the form an = rn,
where r is a constant.
an = rn is a solution of the recurrence relation
an = c1an-1 + c2an-2 + … + ckan-k if and only if
rn = c1rn-1 + c2rn-2 + … + ckrn-k.
Divide this equation by rn-k and subtract the
right-hand side from the left:
rk - c1rk-1 - c2rk-2 - … - ck-1r - ck = 0
This is called the characteristic equation of the
recurrence relation.
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Solving Recurrence Relations
The solutions of this equation are called the
characteristic roots of the recurrence relation.
Let us consider linear homogeneous recurrence
relations of degree two.
Theorem: Let c1 and c2 be real numbers. Suppose
that r2 – c1r – c2 = 0 has two distinct roots r1 and r2.
Then the sequence {an} is a solution of the
recurrence relation an = c1an-1 + c2an-2 if and only if
an = α1r1

n + α2r2
n for n = 0, 1, 2, …, where α1 and α2

are constants.
See pp. 321 and 322 for the proof.
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Solving Recurrence Relations

Example: What is the solution of the recurrence
relation an = an-1 + 2an-2 with a0 = 2 and a1 = 7 ?

Solution: The characteristic equation of the
recurrence relation is r2 – r – 2 = 0.
Its roots are r = 2 and r = -1.
Hence, the sequence {an} is a solution to the
recurrence relation if and only if:
an = α12n + α2(-1)n   for some constants α1 and α2.
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Solving Recurrence Relations
Given the equation an = α12n + α2(-1)n and the initial
conditions a0 = 2 and a1 = 7, it follows that
a0 = 2 = α1 + α2
a1 = 7 = α1⋅2 + α2 ⋅(-1)

Solving these two equations gives us
α1 = 3 and α2 = -1.

Therefore, the solution to the recurrence relation
and initial conditions is the sequence {an} with
an = 3⋅2n – (-1)n.
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Solving Recurrence Relations
an = rn is a solution of the linear homogeneous
recurrence relation
an = c1an-1 + c2an-2 + … + ckan-k
if and only if
rn = c1rn-1 + c2rn-2 + … + ckrn-k.
Divide this equation by rn-k and subtract the
right-hand side from the left:
rk - c1rk-1 - c2rk-2 - … - ck-1r - ck = 0
This is called the characteristic equation of the
recurrence relation.

Fall 2002 CMSC 203 - Discrete Structures 275

Solving Recurrence Relations
The solutions of this equation are called the
characteristic roots of the recurrence relation.
Let us consider linear homogeneous recurrence
relations of degree two.
Theorem: Let c1 and c2 be real numbers. Suppose
that r2 – c1r – c2 = 0 has two distinct roots r1 and r2.
Then the sequence {an} is a solution of the
recurrence relation an = c1an-1 + c2an-2 if and only if
an = α1r1

n + α2r2
n for n = 0, 1, 2, …, where α1 and α2

are constants.
See pp. 321 and 322 for the proof.
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Solving Recurrence Relations

Example: Give an explicit formula for the Fibonacci
numbers.
Solution: The Fibonacci numbers satisfy the
recurrence relation fn = fn-1 + fn-2 with initial
conditions f0 = 0 and f1 = 1.
The characteristic equation is r2 – r – 1 = 0.
Its roots are

2

51
,

2

51
21

−
=

+
= rr
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Solving Recurrence Relations
Therefore, the Fibonacci numbers are given by
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for some constants α1 and α2.
We can determine values for these constants so
that the sequence meets the conditions f0 = 0
and f1 = 1:

0210 =+= ααf

1
2
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Solving Recurrence Relations

The unique solution to this system of two
equations and two variables is

5

1
,

5

1
2 == αα

Fibonacci numbers:
nn

nf 
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Solving Recurrence Relations

But what happens if the characteristic equation
has only one root?
How can we then match our equation with the initial
conditions a0 and a1 ?
Theorem: Let c1 and c2 be real numbers with c2 ≠ 0.
Suppose that r2 – c1r – c2 = 0 has only one root r0.
A sequence {an} is a solution of the recurrence
relation an = c1an-1 + c2an-2 if and only if
an = α1r0

n + α2nr0
n, for n = 0, 1, 2, …, where α1 and α2

are constants.
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Solving Recurrence Relations
Example: What is the solution of the recurrence
relation an = 6an-1 – 9an-2 with a0 = 1 and a1 = 6?
Solution: The only root of r2 – 6r + 9 = 0 is r0 = 3.
Hence, the solution to the recurrence relation is
an = α13n + α2n3n  for some constants α1 and α2.
To match the initial condition, we need
a0 = 1 = α1
a1 = 6 = α1⋅3 + α2⋅3
Solving these equations yields α1 = 1 and α2 = 1.
Consequently, the overall solution is given by
an = 3n + n3n.
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You Never Escape Your…

Relations
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Relations
If we want to describe a relationship between
elements of two sets A and B, we can use ordered
pairs with their first element taken from A and
their second element taken from B.
Since this is a relation between two sets, it is
called a binary relation.

Definition: Let A and B be sets. A binary relation
from A to B is a subset of A×B.

In other words, for a binary relation R we have
R ⊆ A×B. We use the notation aRb to denote that
(a, b)∈R and aRb to denote that (a, b)∉R.
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Relations
When (a, b) belongs to R, a is said to be related to
b by R.
Example: Let P be a set of people, C be a set of
cars, and D be the relation describing which person
drives which car(s).
P = {Carl, Suzanne, Peter, Carla},
C = {Mercedes, BMW, tricycle}
D = {(Carl, Mercedes), (Suzanne, Mercedes),
        (Suzanne, BMW), (Peter, tricycle)}
This means that Carl drives a Mercedes, Suzanne
drives a Mercedes and a BMW, Peter drives a
tricycle, and Carla does not drive any of these
vehicles.
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Functions as Relations
You might remember that a function f from a set A
to a set B assigns a unique element of B to each
element of A.
The graph of f is the set of ordered pairs (a, b)
such that b = f(a).
Since the graph of f is a subset of A×B, it is a
relation from A to B.
Moreover, for each element a of A, there is
exactly one ordered pair in the graph that has a as
its first element.
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Functions as Relations

Conversely, if R is a relation from A to B such that
every element in A is the first element of exactly
one ordered pair of R, then a function can be
defined with R as its graph.

This is done by assigning to an element a∈A the
unique element b∈B such that (a, b)∈R.
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Relations on a Set

Definition: A relation on the set A is a relation
from A to A.

In other words, a relation on the set A is a subset
of A×A.

Example: Let A = {1, 2, 3, 4}. Which ordered pairs
are in the relation R = {(a, b) | a < b} ?
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Relations on a Set
Solution:   R = {(1, 2), (1, 3), (1, 4), (2, 3),(2, 4),(3, 4)}

4

3

2

1

4321R1 1

2

3

4

2

3

4

X X X

X X

X
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Relations on a Set
How many different relations can we define on
a set A with n elements?

A relation on a set A is a subset of A×A.
How many elements are in A×A ?
There are n2 elements in A×A, so how many
subsets (= relations on A) does A×A have?
The number of subsets that we can form out of a
set with m elements is 2m. Therefore, 2n2 subsets
can be formed out of A×A.
Answer: We can define 2n2 different relations
on A.
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Properties of Relations
We will now look at some useful ways to classify
relations.
Definition: A relation R on a set A is called
reflexive if (a, a)∈R for every element a∈A.
Are the following relations on {1, 2, 3, 4} reflexive?

R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)} No.
R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)} Yes.
R = {(1, 1), (2, 2), (3, 3)} No.

Definition: A relation on a set A is called
irreflexive if (a, a)∉R for every element a∈A.
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Properties of Relations

Definitions:

A relation R on a set A is called symmetric if (b,
a)∈R whenever (a, b)∈R for all a, b∈A.

A relation R on a set A is called antisymmetric if
a = b whenever (a, b)∈R and (b, a)∈R.

A relation R on a set A is called asymmetric if
(a, b)∈R implies that (b, a)∉R for all a, b∈A.
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Properties of Relations
Are the following relations on {1, 2, 3, 4}
symmetric, antisymmetric, or asymmetric?

R = {(1, 1), (1, 2), (2, 1), (3, 3), (4, 4)} symmetric
R = {(1, 1)} sym. and

antisym.

R = {(1, 3), (3, 2), (2, 1)} antisym.
and asym.

R = {(4, 4), (3, 3), (1, 4)} antisym.
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Properties of Relations
Definition: A relation R on a set A is called
transitive if whenever (a, b)∈R and (b, c)∈R, then
(a, c)∈R for a, b, c∈A.
Are the following relations on {1, 2, 3, 4}
transitive?

R = {(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)} Yes.

R = {(1, 3), (3, 2), (2, 1)} No.

R = {(2, 4), (4, 3), (2, 3), (4, 1)} No.
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Counting Relations
Example: How many different reflexive relations
can be defined on a set A containing n elements?
Solution: Relations on R are subsets of A×A, which
contains n2 elements.
Therefore, different relations on A can be
generated by choosing different subsets out of
these n2 elements, so there are 2n2 relations.
A reflexive relation, however, must contain the n
elements (a, a) for every a∈A.
Consequently, we can only choose among n2 – n =
n(n – 1) elements to generate reflexive relations, so
there are 2n(n – 1) of them.
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Combining Relations

Relations are sets, and therefore, we can apply the
usual set operations to them.

If we have two relations R1 and R2, and both of
them are from a set A to a set B, then we can
combine them to R1 ∪ R2, R1 ∩ R2, or R1 – R2.

In each case, the result will be another relation
from A to B.
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Combining Relations
… and there is another important way to combine
relations.
Definition: Let R be a relation from a set A to a
set B and S a relation from B to a set C. The
composite of R and S is the relation consisting of
ordered pairs (a, c), where a∈A, c∈C, and for which
there exists an element b∈B such that (a, b)∈R and
(b, c)∈S. We denote the composite of R and S by
S°°R.
In other words, if relation R contains a pair (a, b)
and relation S contains a pair (b, c), then S°°R
contains a pair (a, c).
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Combining Relations
Example: Let D and S be relations on A = {1, 2, 3, 4}.
D = {(a, b) | b = 5 - a}     “b equals (5 – a)”
S = {(a, b) | a < b}        “a is smaller than b”

D = {(1, 4), (2, 3), (3, 2), (4, 1)}
S = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
S°°D = { (2, 4), (3, 3), (3, 4), (4, 2), (4, 3),

D maps an element a to the element (5 – a), and
afterwards S maps (5 – a) to all elements larger
than (5 – a), resulting in S°°D = {(a,b) | b > 5 – a}
or S°°D = {(a,b) | a + b > 5}.

(4, 4)}
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Combining Relations

We already know that functions are just special
cases of relations (namely those that map each
element in the domain onto exactly one element in
the codomain).

If we formally convert two functions into relations,
that is, write them down as sets of ordered pairs,
the composite of these relations will be exactly the
same as the composite of the functions (as defined
earlier).
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Combining Relations

Definition: Let R be a relation on the set A. The
powers Rn, n = 1, 2, 3, …, are defined inductively by
R1 = R
Rn+1 = Rn°°R

In other words:
Rn = R°°R°° … °°R  (n times the letter R)
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Combining Relations
Theorem: The relation R on a set A is transitive if
and only if Rn ⊆ R for all positive integers n.
Remember the definition of transitivity:
Definition: A relation R on a set A is called
transitive if whenever (a, b)∈R and (b, c)∈R, then
(a, c)∈R for a, b, c∈A.
The composite of R with itself contains exactly
these pairs (a, c).
Therefore, for a transitive relation R, R°°R does not
contain any pairs that are not in R, so R°°R ⊆ R.
Since R°°R does not introduce any pairs that are not
already in R, it must also be true that (R°°R)°°R ⊆ R,
and so on, so that Rn ⊆ R.
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n-ary Relations

In order to study an interesting application of
relations, namely databases, we first need to
generalize the concept of binary relations to n-ary
relations.

Definition: Let A1, A2, …, An be sets. An n-ary
relation on these sets is a subset of A1×A2×…×An.
The sets A1, A2, …, An are called the domains of the
relation, and n is called its degree.
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n-ary Relations
Example:
Let R = {(a, b, c) | a = 2b ∧ b = 2c with a, b, c∈N}
What is the degree of R?
The degree of R is 3, so its elements are triples.
What are its domains?
Its domains are all equal to the set of integers.
Is (2, 4, 8) in R?
No.
Is (4, 2, 1) in R?
Yes.
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Databases and Relations

Let us take a look at a type of database
representation that is based on relations, namely
the relational data model.

A database consists of n-tuples called records,
which are made up of fields.
These fields are the entries of the n-tuples.

The relational data model represents a database as
an n-ary relation, that is, a set of records.
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Databases and Relations
Example: Consider a database of students, whose
records are represented as 4-tuples with the fields
Student Name, ID Number, Major, and GPA:

R = {(Ackermann, 231455, CS, 3.88),
       (Adams, 888323, Physics, 3.45),
       (Chou, 102147, CS, 3.79),
       (Goodfriend, 453876, Math, 3.45),
       (Rao, 678543, Math, 3.90),
       (Stevens, 786576, Psych, 2.99)}

Relations that represent databases are also called
tables, since they are often displayed as tables.
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Databases and Relations
A domain of an n-ary relation is called a primary
key if the n-tuples are uniquely determined by
their values from this domain.
This means that no two records have the same
value from the same primary key.
In our example, which of the fields Student Name,
ID Number, Major, and GPA are primary keys?
Student Name and ID Number are primary keys,
because no two students have identical values in
these fields.
In a real student database, only ID Number would
be a primary key.
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Databases and Relations
In a database, a primary key should remain one
even if new records are added.
Therefore, we should use a primary key of the
intension of the database, containing all the n-
tuples that can ever be included in our database.

Combinations of domains can also uniquely identify
n-tuples in an n-ary relation.
When the values of a set of domains determine an
n-tuple in a relation, the Cartesian product of
these domains is called a composite key.
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Databases and Relations
We can apply a variety of operations on n-ary
relations to form new relations.
Definition: The projection Pi1, i2, …, im

 maps the n-
tuple (a1, a2, …, an) to the m-tuple (ai1

, ai2
, …, aim

),
where m ≤ n.
In other words, a projection Pi1, i2, …, im

 keeps the m
components ai1

, ai2
, …, aim 

of an n-tuple and deletes
its (n – m) other components.
Example: What is the result when we apply the
projection P2,4 to the student record (Stevens,
786576, Psych, 2.99) ?
Solution: It is the pair (786576, 2.99).
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Databases and Relations

In some cases, applying a projection to an entire
table may not only result in fewer columns, but also
in fewer rows.

Why is that?

Some records may only have differed in those
fields that were deleted, so they become identical,
and there is no need to list identical records more
than once.
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Databases and Relations
We can use the join operation to combine two
tables into one if they share some identical fields.

Definition: Let R be a relation of degree m and S a
relation of degree n. The join Jp(R, S), where p ≤ m
and p ≤ n, is a relation of degree m + n – p that
consists of all (m + n – p)-tuples
(a1, a2, …, am-p, c1, c2, …, cp, b1, b2, …, bn-p),
where the m-tuple (a1, a2, …, am-p, c1, c2, …, cp)
belongs to R and the n-tuple (c1, c2, …, cp, b1, b2, …,
bn-p) belongs to S.
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Databases and Relations

In other words, to generate Jp(R, S), we have to
find all the elements in R whose p last components
match the p first components of an element in S.

The new relation contains exactly these matches,
which are combined to tuples that contain each
matching field only once.
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Databases and Relations
Example: What is J1(Y, R), where Y contains the
fields Student Name and Year of Birth,
Y = {(1978, Ackermann),
       (1972, Adams),
       (1917, Chou),
       (1984, Goodfriend),
       (1982, Rao),
       (1970, Stevens)},
and R contains the student records as defined
before ?
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Databases and Relations

Solution: The resulting relation is:
      {(1978, Ackermann, 231455, CS, 3.88),
       (1972, Adams, 888323, Physics, 3.45),
       (1917, Chou, 102147, CS, 3.79),
       (1984, Goodfriend, 453876, Math, 3.45),
       (1982, Rao, 678543, Math, 3.90),
       (1970, Stevens, 786576, Psych, 2.99)}

Since Y has two fields and R has four, the relation
J1(Y, R) has 2 + 4 – 1 = 5 fields.
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Representing Relations
We already know different ways of representing
relations. We will now take a closer look at two
ways of representation: Zero-one matrices and
directed graphs.
If R is a relation from A = {a1, a2, …, am} to B =
{b1, b2, …, bn}, then R can be represented by the
zero-one matrix MR = [mij] with
mij = 1,   if (ai, bj)∈R, and
mij = 0,  if (ai, bj)∉R.
Note that for creating this matrix we first need to
list the elements in A and B in a particular, but
arbitrary order.
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Representing Relations

Example: How can we represent the relation
R = {(2, 1), (3, 1), (3, 2)} as a zero-one matrix?

Solution: The matrix MR is given by
















=

11

01

00

RM
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Representing Relations
What do we know about the matrices representing
a relation on a set (a relation from A to A) ?
They are square matrices.
What do we know about matrices representing
reflexive relations?
All the elements on the diagonal of such matrices
Mref must be 1s.



























=

1

.

.

.

1

1

refM
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Representing Relations
What do we know about the matrices representing
symmetric relations?
These matrices are symmetric, that is, MR = (MR)t.



















=

1101

1001

0010

1101

RM

symmetric matrix,
symmetric relation.



















=

0011

0011

0011

0011

RM

non-symmetric matrix,
non-symmetric relation.
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Representing Relations
The Boolean operations join and meet (you
remember?) can be used to determine the matrices
representing the union and the intersection of two
relations, respectively.

To obtain the join of two zero-one matrices, we
apply the Boolean “or” function to all corresponding
elements in the matrices.

To obtain the meet of two zero-one matrices, we
apply the Boolean “and” function to all corresponding
elements in the matrices.
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Representing Relations
Example: Let the relations R and S be represented
by the matrices
















=∨=∪

011

111

101

SRSR MMM
















=

001

110

101

SM

What are the matrices representing R∪S and R∩S?
Solution: These matrices are given by
















=∧=∩

000

000

101

SRSR MMM
















=

010

001

101

RM
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Representing Relations Using Matrices

Example: How can we represent the relation
R = {(2, 1), (3, 1), (3, 2)} as a zero-one matrix?

Solution: The matrix MR is given by
















=

11

01

00

RM



107

Fall 2002 CMSC 203 - Discrete Structures 319

Representing Relations Using Matrices
Example: Let the relations R and S be represented
by the matrices
















=∨=∪

011

111

101

SRSR MMM
















=

001

110

101

SM

What are the matrices representing R∪S and R∩S?
Solution: These matrices are given by
















=∧=∩

000

000

101

SRSR MMM
















=

010

001

101

RM
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Representing Relations Using Matrices
Do you remember the Boolean product of two
zero-one matrices?

Let A = [aij] be an m×k zero-one matrix and
B = [bij] be a k×n zero-one matrix.
Then the Boolean product of A and B, denoted by
AοB, is the m×n matrix with (i, j)th entry [cij],
where
cij = (ai1 ∧ b1j) ∨ (ai2 ∧ b2i) ∨ … ∨ (aik ∧ bkj).

cij = 1 if and only if at least one of the terms
(ain ∧ bnj) = 1 for some n; otherwise cij = 0.
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Representing Relations Using Matrices
Let us now assume that the zero-one matrices
MA = [aij], MB = [bij] and MC = [cij] represent
relations A, B, and C, respectively.
Remember: For MC = MAοMB we have:
cij = 1 if and only if at least one of the terms
(ain ∧ bnj) = 1 for some n; otherwise cij = 0.
In terms of the relations, this means that C
contains a pair (xi, zj) if and only if there is an
element yn such that (xi, yn) is in relation A and
(yn, zj) is in relation B.
Therefore, C = B°A  (composite of A and B).
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Representing Relations Using Matrices

This gives us the following rule:

MB°A = MAοMB

In other words, the matrix representing the
composite of relations A and B is the Boolean
product of the matrices representing A and B.

Analogously, we can find matrices representing the
powers of relations:

MRn = MR
[n]    (n-th Boolean power).
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Representing Relations Using Matrices
Example: Find the matrix representing R2, where
the matrix representing R is given by
















=

001

110

010

RM

Solution: The matrix for R2 is given by
















==

010

111

110
]2[

2 RR
MM
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Representing Relations Using Digraphs

Definition: A directed graph, or digraph, consists
of a set V of vertices (or nodes) together with a
set E of ordered pairs of elements of V called
edges (or arcs).
The vertex a is called the initial vertex of the
edge (a, b), and the vertex b is called the terminal
vertex of this edge.

We can use arrows to display graphs.
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Representing Relations Using Digraphs
Example: Display the digraph with V = {a, b, c, d},
E = {(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}.

a b

cd

An edge of the form (b, b) is called a loop.
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Representing Relations Using Digraphs
Obviously, we can represent any relation R on a set
A by the digraph with A as its vertices and all pairs
(a, b)∈R as its edges.

Vice versa, any digraph with vertices V and edges E
can be represented by a relation on V containing all
the pairs in E.

This one-to-one correspondence between
relations and digraphs means that any statement
about relations also applies to digraphs, and vice
versa.
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Equivalence Relations

Equivalence relations are used to relate objects
that are similar in some way.

Definition: A relation on a set A is called an
equivalence relation if it is reflexive, symmetric,
and transitive.

Two elements that are related by an equivalence
relation R are called equivalent.
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Equivalence Relations

Since R is symmetric, a is equivalent to b whenever
b is equivalent to a.

Since R is reflexive, every element is equivalent to
itself.

Since R is transitive, if a and b are equivalent and b
and c are equivalent, then a and c are equivalent.

Obviously, these three properties are necessary
for a reasonable definition of equivalence.
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Equivalence Relations
Example: Suppose that R is the relation on the set
of strings that consist of English letters such that
aRb if and only if l(a) = l(b), where l(x) is the length
of the string x. Is R an equivalence relation?
Solution:
• R is reflexive, because l(a) = l(a) and therefore
  aRa for any string a.
• R is symmetric, because if l(a) = l(b) then l(b) =
  l(a), so if aRb then bRa.
• R is transitive, because if l(a) = l(b) and l(b) = l(c),
  then l(a) = l(c), so aRb and bRc implies aRc.
R is an equivalence relation.
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Equivalence Classes
Definition: Let R be an equivalence relation on a
set A. The set of all elements that are related to
an element a of A is called the equivalence class
of a.
The equivalence class of a with respect to R is
denoted by [a]R.
When only one relation is under consideration, we
will delete the subscript R and write [a] for this
equivalence class.
If b∈[a]R, b is called a representative of this
equivalence class.
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Equivalence Classes

Example: In the previous example (strings of
identical length), what is the equivalence class of
the word mouse, denoted by [mouse] ?

Solution: [mouse] is the set of all English words
containing five letters.

For example, ‘horse’ would be a representative of
this equivalence class.
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Equivalence Classes
Theorem: Let R be an equivalence relation on a set
A. The following statements are equivalent:
•   aRb
•   [a] = [b]
• [a] ∩ [b] ≠ ∅
Definition: A partition of a set S is a collection of
disjoint nonempty subsets of S that have S as their
union. In other words, the collection of subsets Ai,
i∈I, forms a partition of S if and only if
(i)   Ai ≠ ∅ for i∈I
•  Ai ∩ Aj = ∅, if i ≠ j
• ∪i∈I Ai = S
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Equivalence Classes
Examples: Let S be the set {u, m, b, r, o, c, k, s}.
Do the following collections of sets partition S ?

{{m, o, c, k}, {r, u, b, s}} yes.

{{c, o, m, b}, {u, s}, {r}} no (k is missing).

{{b, r, o, c, k}, {m, u, s, t}} no (t is not in S).

{{u, m, b, r, o, c, k, s}} yes.

{{b, o, o, k}, {r, u, m}, {c, s}} yes ({b,o,o,k} = {b,o,k}).

{{u, m, b}, {r, o, c, k, s}, ∅} no (∅ not allowed).
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Equivalence Classes

Theorem: Let R be an equivalence relation on a
set S. Then the equivalence classes of R form a
partition of S. Conversely, given a partition
{Ai | i∈I} of the set S, there is an equivalence
relation R that has the sets Ai, i∈I, as its
equivalence classes.
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Equivalence Classes
Example: Let us assume that Frank, Suzanne and
George live in Boston, Stephanie and Max live in
Lübeck, and Jennifer lives in Sydney.
Let R be the equivalence relation {(a, b) | a and b
live in the same city} on the set P = {Frank, Suzanne,
George, Stephanie, Max, Jennifer}.
Then R = {(Frank, Frank), (Frank, Suzanne),
(Frank, George), (Suzanne, Frank), (Suzanne,
Suzanne), (Suzanne, George), (George, Frank),
(George, Suzanne), (George, George), (Stephanie,
Stephanie), (Stephanie, Max), (Max, Stephanie),
(Max, Max), (Jennifer, Jennifer)}.
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Equivalence Classes

Then the equivalence classes of R are:
{{Frank, Suzanne, George}, {Stephanie, Max},
{Jennifer}}.
This is a partition of P.

The equivalence classes of any equivalence relation
R defined on a set S constitute a partition of S,
because every element in S is assigned to exactly
one of the equivalence classes.
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Equivalence Classes

Another example: Let R be the relation
{(a, b) | a ≡ b (mod 3)} on the set of integers.
Is R an equivalence relation?
Yes, R is reflexive, symmetric, and transitive.

What are the equivalence classes of R ?
{{…, -6, -3, 0, 3, 6, …},
 {…, -5, -2, 1, 4, 7, …},
 {…, -4, -1, 2, 5, 8, …}}
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Yes, No, Maybe...

Boolean
Algebra
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Boolean Algebra

Boolean algebra provides the operations and the
rules for working with the set {0, 1}.
These are the rules that underlie electronic
circuits, and the methods we will discuss are
fundamental to VLSI design.
We are going to focus on three operations:
•  Boolean complementation,
•  Boolean sum, and
•  Boolean product
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Boolean Operations

The complement is denoted by a bar (on the slides,
we will use a minus sign). It is defined by
-0 = 1   and   -1 = 0.

The Boolean sum, denoted by + or by OR, has the
following values:
1 + 1 = 1,    1 + 0 = 1,    0 + 1 = 1,    0 + 0 = 0

The Boolean product, denoted by ⋅ or by AND, has
the following values:
1 ⋅ 1 = 1,    1 ⋅ 0 = 0,    0 ⋅ 1 = 0,    0 ⋅ 0 = 0
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Boolean Functions and Expressions

Definition: Let B = {0, 1}. The variable x is called a
Boolean variable if it assumes values only from B.
A function from Bn, the set {(x1, x2, …, xn) |xi∈B,
1 ≤ i ≤ n}, to B is called a Boolean function of
degree n.

Boolean functions can be represented using
expressions made up from the variables and
Boolean operations.
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Boolean Functions and Expressions

The Boolean expressions in the variables x1, x2, …,
xn are defined recursively as follows:
•  0, 1, x1, x2, …, xn are Boolean expressions.
•  If E1 and E2 are Boolean expressions, then (-E1),
   (E1E2), and (E1 + E2) are Boolean expressions.

Each Boolean expression represents a Boolean
function. The values of this function are obtained
by substituting 0 and 1 for the variables in the
expression.
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Boolean Functions and Expressions

For example, we can create Boolean expression in
the variables x, y, and z using the “building blocks”
0, 1, x, y, and z, and the construction rules:
Since x and y are Boolean expressions, so is xy.
Since z is a Boolean expression, so is (-z).
Since xy and (-z) are expressions, so is xy + (-z).
… and so on…
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Boolean Functions and Expressions

Example: Give a Boolean expression for the
Boolean function F(x, y) as defined by the following
table:

110
001
011

000
F(x, y)yx

Possible solution: F(x, y) = (-x)⋅y
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Boolean Functions and Expressions
Another Example: Possible solution I:

F(x, y, z) = -(xz + y)

0
0
1
1

F(x, y, z)

1
0
1
0
z

00
10
10

00
yx

0
0
0
1

1
0
1
0

11
11

01
01

Possible solution II:
F(x, y, z) = (-(xz))(-y)
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Boolean Functions and Expressions
There is a simple method for deriving a Boolean
expression for a function that is defined by a table.
This method is based on minterms.
Definition: A literal is a Boolean variable or its
complement. A minterm of the Boolean variables x1,
x2, …, xn is a Boolean product y1y2…yn, where yi = xi
or yi = -xi.
Hence, a minterm is a product of n literals, with
one literal for each variable.
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Boolean Functions and Expressions
Consider F(x,y,z) again: F(x, y, z) = 1 if and

only if:
x = y = z = 0  or
x = y = 0, z = 1 or
x = 1, y = z = 0
Therefore,

F(x, y, z) =
(-x)(-y)(-z) +
(-x)(-y)z +
x(-y)(-z)

0
0
1
1

F(x, y, z)

1
0
1
0
z

00
10
10

00
yx

0
0
0
1

1
0
1
0

11
11

01
01

Fall 2002 CMSC 203 - Discrete Structures 348

Boolean Functions and Expressions

Definition: The Boolean functions F and G of n
variables are equal if and only if F(b1, b2, …, bn) =
G(b1, b2, …, bn) whenever b1, b2, …, bn belong to B.
Two different Boolean expressions that represent
the same function are called equivalent.
For example, the Boolean expressions xy, xy + 0,
and xy⋅1 are equivalent.
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Boolean Functions and Expressions

The complement of the Boolean function F is the
function –F, where –F(b1, b2, …, bn) =
-(F(b1, b2, …, bn)).
Let F and G be Boolean functions of degree n. The
Boolean sum F+G and Boolean product FG are then
defined by
(F + G)(b1, b2, …, bn) = F(b1, b2, …, bn) + G(b1, b2, …, bn)
(FG)(b1, b2, …, bn) = F(b1, b2, …, bn) G(b1, b2, …, bn)

Fall 2002 CMSC 203 - Discrete Structures 350

Boolean Functions and Expressions

Question: How many different Boolean functions
of degree 1 are there?
Solution: There are four of them, F1, F2, F3, and F4:

0

1

F3

1

0

F2

101

100

F4F1x

Fall 2002 CMSC 203 - Discrete Structures 351

Boolean Functions and Expressions

Question: How many different Boolean functions
of degree 2 are there?
Solution: There are 16 of them, F1, F2, …, F16:

1
0
0
0
F2

0
0
0
0
F1

010
101
011

000
F3yx

1
1
1
0
F8

0
1
1
0
F7

0
0
0

1
F9

0
0
1
0
F5

1
1
0
0
F4

1
0
1

0
F6

0
1
0
1
F11

1
0
0
1

F10

0
1
1

1
F12

1
0
1
1

F14

0
0
1
1

F13

1
1
0

1
F15

1
1
1
1

F16
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Boolean Functions and Expressions

Question: How many different Boolean functions
of degree n are there?
Solution:
There are 2n different n-tuples of 0s and 1s.
A Boolean function is an assignment of 0 or 1 to
each of these 2n different n-tuples.
Therefore, there are 22n different Boolean
functions.
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Duality
There are useful identities of Boolean expressions
that can help us to transform an expression A into
an equivalent expression B (see Table 5 on page
597 in the textbook).
We can derive additional identities with the help
of the dual of a Boolean expression.
The dual of a Boolean expression is obtained by
interchanging Boolean sums and Boolean products
and interchanging 0s and 1s.
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Duality
Examples:

The dual of x(y + z) is x + yz.
The dual of -x⋅1 + (-y + z) is (-x + 0)((-y)z).

The dual of a Boolean function F represented by
a Boolean expression is the function represented
by the dual of this expression.
This dual function, denoted by Fd, does not
depend on the particular Boolean expression used
to represent F.
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Duality
Therefore, an identity between functions
represented by Boolean expressions remains valid
when the duals of both sides of the identity are

We can use this fact, called the 
to derive new identities.
For example, consider the absorption law

.
By taking the duals of both sides of this identity,

x + xy , which is also an
identity (and also called an absorption law).
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All the properties of Boolean functions and
expressions that we have discovered also apply to
other mathematical structures
propositions and sets and the operations defined
on them.

Boolean algebra, then we know that all results
established about Boolean algebras apply to this

For this purpose, we need an abstract definition
of a Boolean algebra.
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 A Boolean algebra is a set B with two
binary operations ∨ , elements 0 and 1, and a
unary operation – such that the following
properties hold for all x, y, and z in B:
x ∨  1 = x            (identity laws)
x ∨  (-x) = 0    (domination laws)
(x ∨  z = x ∨  z)   and
(x ∧  z = x ∧  z)   and      (associative laws)
x ∨  x   and x ∧  x  (commutative laws)
x ∨  z) = (x ∨  (x ∨
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)      
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Logic Gates
Electronic circuits consist of so-called gates.
There are three basic types of gates:

x

y

x+y OR gate

AND gate
x

y

xy

x -x inverter
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Logic Gates
Example: How can we build a circuit that computes
the function xy + (-x)y ?

xy + (-x)y

x

y

xy

x -x

y

(-x)y
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The
End


