Review and AVR Architecture

Microcontrollers and AVR Specific Information

Credit to Dr. Robucci for slide information
{micro} Processor, Computer, Controller

- **CPU**
 - Unit that fetches and processes a set of general-purpose instructions

- **Microprocessor**
 - A CPU on a single chip. It may also have other units (e.g. caches, floating point processing)

- **Microcomputer**
 - A microprocessor + I/O + memory etc are put together to form a small computer for applications like data collection, or control application.

- **Microcontroller**
 - A microcomputer on a single chip. It brings together the microprocessor core and a rich collection of peripherals and I/O capability.
Microcontroller (MCU)

• Common peripherals include
 ▫ Serial communication devices
 ▫ Timers, counters, pulse width modulators
 ▫ Analog-to-digital and digital-to-analog convertors

• Particularly suited for use in embedded systems
 ▫ Real-time control applications
 ▫ On-chip program memory and devices

• Enables single-chip system implementation
 ▫ Smaller and lower-cost products

• Examples: Motorola 68HC11xx, HC12xx, HC16xx, Intel 8051, 80251, PIC 16F84, PIC18, ARM9, ARM7, Atmel AVR, etc.
Alternatives for MCU

- **Discrete ICs**
 - Dedicated digital circuit
 - Can use various ICs for functions (AND, OR, etc..)

- **PLD (Programmable Logic Device)**
 - Contains various user selected logic functions
 - Results in more compact system compared to dedicated digital circuits

- **ASIC (Application Specific Integrated Circuit)**
 - Specific optimized implementation
Why use Microcontrollers?

- Peripheral loaded
 - ADC, DAC, GPIOs, Serial Interfaces
- Cheap
 - ~$1 for 8-bit processor
- Low Power
 - ~300µA operation (1 AA battery for 275 days)
 - <1µA sleep (1 AA battery for 225 years)
- Programmable
 - Assembly or C
AVR Architecture

- RISC Harvard Architecture
 - RISC vs. CISC
 - Harvard vs. Von Neumann
 - Separate program and data memory bus
 - On-chip program memory → Flash memory
 - On-chip data memory → RAM and EEPROM
- 32 x 8 general purpose registers
- On-Chip programmable timers
- Internal and external interrupt sources
- Programmable watchdog timer
- On-chip RC clock oscillator
- Variety of I/O, Programmable I/O Lines
General 8-Bit AVR Architecture

- Models will differ in:
 - Memory size
 - Number and type of I/Os
 - Slightly in instruction set (hardware differences)
 - Power usage, voltage, clock
Pipeline

- AVR has 2-stage pipeline (Fetch, Execute)
 - Decode occurs in IF cycle
- Most instructions execute in a single clock cycle
 - Some take 2 or more cycles

![Figure 6-3. Single Cycle ALU Operation](image)
ATmega 169P

 - From megaAVR family
 - Families – Similar group of devices
 - “P” of 169P means “Low Power”
 - “16” in 169P means 16k program memory
 - “9” in 169P means 9th design revision
Atmega 169P

Figure 2-1. Block Diagram

Source: Atmega 169P datasheet
Program Memory

- Atmega 169P contains 16k bytes Flash memory
 - Program storage
- All AVR instructions are 16 or 32 bits wide
- Flash organized as 8k*16
- $8k = 2^{13} \rightarrow 13$ bits needed to address program memory
 - Program Counter = 13 bits
Data Memory

- Entire data memory space can be accessed as memory
 - Register instructions faster on real registers
- General Purpose Registers
 - 32, labeled R0-R31
 - Called Register File
 - Can be used in instructions
 - i.e. ADD R2, R3
Special Function Registers (SFRs)

- SFRs include:
 - I/O Registers
 - Timers
 - Stack Pointers
 - Program Counter

- Some SFRs are not writeable by instructions

- I/O Registers
 - Can be accessed using LDs and STs
 - Some are bit accessible using SBI and CBI
SRAM Access Time

- 2 Cycles to access SRAM
- Address pointers (Registers X,Y,Z) used for addressing
- First Cycle
 - Register file accessed
 - ALU calculates address
- Second Cycle
 - Calculated address accesses SRAM location
EEPROM Space

- EEPROM
 - Electrically eraseable programmable read-only memory
 - 100k write/erase cycles for a lifetime
 - 512 bytes

- Persists after power-down

- Reads and Writes will halt CPU