AVR Addressing Modes

AVR specific program and data addressing modes

Credit to Dr. Robucci for slide information
Instructions and Addressing

• Instruction set
 ▫ Decides what operations the processor can perform
 ▫ Each instruction controls some part of the processor

• Addressing Modes
 ▫ Instructions can be categorized based on how they access data and operate on it
 ▫ AVR instructions fall in about 10 categories

• Each instruction has 2 parts
 ▫ Opcode: Indicates to ALU what to do
 ▫ Operands: Numbers on which the ALU operates
1: Register Direct (Single Reg)

- Can operate on any of the 32 registers
- Operation:
 - Read contents of register
 - Operate on contents
 - Store back in same register

- Example Commands:
 - INC R0, DEC R5, LSL R9
2: Register Direct (Two Reg)

- **Two Registers**
 - **Rs**: Source Register
 - **Rd**: Destination Register
- Reads two registers, operates on contents, stores result in destination register

- **Examples:**
 - Add R1, R3
 - Sub R5, R7
3: Immediate Mode

• Constant value is in the instruction
 ▫ Stored with program code in memory
• Operates on register and immediate, stores value in register

• Examples:
 ▫ SUBI R4, 8 // x = x-8
 ▫ ADIW R26, 5 // R27:26 = R27:26 + 5
4: I/O Direct

- Instructions are used to access I/O space
 - Not extended I/O registers
- I/O Registers can be accessed using
 - In Rd, PORTADDRESS
 - Out PORTADDRESS, Rs
 - Rd, Rs: Any register from register file
 - PORTADDRESS: Any register from entire range of 0x00 to 0x3F
4: I/O Direct

- Unsigned char I = PINB;
- Unsigned char k = 54
- PORTB = k;
- IN R10, PINB
- OUT PORTB, R1
5: Data Direct

- Two-word instructions
 - One of the words is the address of the data memory space
 - What is the maximum data memory that can be addressed in this way?

- Examples:
 - STS K,Rs // Store Direct SRAM
 - LDS Rd, K // K is 16-bit address
6: Data Indirect

- Similar to data direct
 - One word each
 - Pointer register (x, y, or z) has base address of data memory
6: Data Indirect

Examples

- LD Rd, X // X = R27:R26
- LD Rd, X+ // Rd ← X; X ← X+1 – indirect with // post decrement
- LDD Rd, Y+q // Rd ← (Y+q) – indirect with // displacement
- ST –Y, Rs // Y ← Y-1, Y ← Rs - Indirect with // pre-decrement
I/O Ports using Indirect

- Ports can be accessed using SRAM access commands
 - Add 0x20 to the port number
 - First 32 numbers are the registers
- Example
 - .DEF register = R16
 - LDI ZH, HIGH(PORTB+32)
 - LDI ZL, LOW(PORTB+32)
 - LD register, Z
Extended I/O

- For I/O Registers located in extended I/O:
 - Commands like “In/Out” cannot be used
 - Instead replaced with direct and indirect memory instructions
 - LDS and STS (Load and Store from SRAM) combined with SBR, CBR (set/clear bits in register)
 - Can also combine with SBRS, SBRC (skip if bit in register if set/clear)
7: Direct Program Addressing

- Call K;
 - Direct Subroutine Call
 - PC $\leftarrow k$ and STACK \leftarrow PC + 1

8: Implicit Addressing

- CLC ;
 - Clear Carry C $\leftarrow 0$ // Implicit
- RET;
 - Subroutine Return
 - PC \leftarrow STACK
9: Indirect Program Addressing

- These instructions use Z register to point to program memory
 - IJMP ; // Indirect Jump to (Z)
 - PC ← Z
 - ICALL ; // Indirect Call to (Z)
 - PC ← Z, STACK = PC + 1
10: Relative Program Addressing

- Instructions of type RJMP and RCALL
 - Offset of +/- 2k to program counter is used

- RCALL k; //Relative Subroutine call
 - PC \leftarrow PC + k + 1, STACK = PC + 1

- RJMP k; //Relative Jump
 - PC \leftarrow PC + k + 1