Today

- 2D Transformations
 - “Primitive” Operations
 - Scale, Rotate, Shear, Flip, Translate
 - Homogenous Coordinates
 - SVD
 - Start thinking about rotations...
Introduction

- **Transformation:**
 An operation that changes one configuration into another

- **For images, shapes, etc.**
 A geometric transformation maps positions that define the object to other positions

 Linear transformation means the transformation is defined by a linear function... which is what matrices are good for.
Some Examples

Images from *Conan The Destroyer*, 1984
Mapping Function

\[f(x) = x \text{ in old image} \]

\[c(x) = [195, 120, 58] \]

\[c' x = c(f(x)) \]
Linear -vs- Nonlinear

Linear (shear)

Nonlinear (swirl)
Geometric -vs- Color Space

Color Space Transform
(edge finding)

Linear Geometric
(flip)
Instancing

M.C. Escher, from Ghostscript 8.0 Distribution
Instancing

- Reuse geometric descriptions
- Saves memory
Linear is Linear

- Polygons defined by points
- Edges defined by interpolation between two points
- Interior defined by interpolation between all points
- *Linear* interpolation
Linear is Linear

- Composing two linear function is still linear
- Transform polygon by transforming vertices
Linear is Linear

- Composing two linear functions is still linear
- Transform polygon by transforming vertices

\[f(x) = a + bx \quad g(f) = c + df \]

\[g(x) = c + df \quad f(x) = c + ad + bdx \]

\[g(x) = a' + b'x \]
Points in Space

- Represent point in space by vector in \mathbb{R}^n
 - Relative to some origin!
 - Relative to some coordinate axes!
- Later we’ll add something extra...

$\mathbf{p} = [4, 2]^T$
Basic Transformations

- Basic transforms are: rotate, scale, and translate
- Shear is a composite transformation!
Linear Functions in 2D

\[x' = f(x, y) = c_1 + c_2x + c_3y \]
\[y' = f(x, y) = d_1 + d_2x + d_3y \]

\[
\begin{bmatrix}
x'
y'
\end{bmatrix} = \begin{bmatrix} t_x \\ t_y \end{bmatrix} + \begin{bmatrix} M_{xx} & M_{xy} \\ M_{yx} & M_{yy} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}
\]

\[x' = t + M \cdot x \]
Rotations

\[p' = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} p \]

Rotate

45 degree rotation

\[
\begin{bmatrix}
\begin{array}{c}
.707 \\
-.707
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
.707 \\
.707
\end{array}
\end{bmatrix}
\]
Rotations

- Rotations are positive counter-clockwise
- Consistent w/ right-hand rule
- Don’t be different...

Note:
- rotate by zero degrees give identity
- rotations are modulo 360 (or 2π)
Rotations

- Preserve lengths and distance to origin
- Rotation matrices are orthonormal
- $\det(R) = 1 \neq -1$
- In 2D rotations commute...
 - But in 3D they won’t!
Scales

Uniform/isotropic

Non-uniform/anisotropic

\[
p' = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} p
\]
Scales

- Diagonal matrices
 - Diagonal parts are scale in X and scale in Y directions
 - Negative values flip
 - Two negatives make a positive (180 deg. rotation)
 - Really, axis-aligned scales
Shears

\[p' = \begin{bmatrix} 1 & H_{yx} \\ H_{xy} & 1 \end{bmatrix} p \]
Shears

- Shears are not really primitive transforms
- Related to non-axis-aligned scales
- More shortly.....
Translation

- This is the not-so-useful way:

\[p' = p + \begin{bmatrix} t_x \\ t_y \end{bmatrix} \]

Translate

Note that its not like the others.
Arbitrary Matrices

- For everything but translations we have:
 \[x' = A \cdot x \]

- Soon, translations will be assimilated as well

- What does an arbitrary matrix mean?
Singular Value Decomposition

For any matrix, A, we can write SVD:

$$A = QR^T$$

where Q and R are orthonormal and S is diagonal

Can also write Polar Decomposition

$$A = QR SR^T$$

where Q is still orthonormal

not the same Q
Decomposing Matrices

- We can force Q and R to have $\text{Det}=1$ so they are rotations.
- Any matrix is now:
 - Rotation:Rotation:Scale:Rotation
 - See, shear is just a mix of rotations and scales.
Composition

- Matrix multiplication composites matrices

\[p' = BA p \]

“Apply A to p and then apply B to that result.”

\[p' = B(Ap) = (BA)p = C_p \]

- Several translations composted to one

- Translations still left out...

\[p' = B(Ap + t) = \Box A_p + Bt = C_p + u \]
Composition

Transformations built up from others

SVD builds from scale and rotations

Also build other ways

i.e. 45 deg rotation built from shears
Homogeneous Coordinates

- Move to one higher dimensional space
 - Append a 1 at the end of the vectors

\[
\mathbf{p} = \begin{bmatrix} p_x \\ p_y \end{bmatrix} \quad \tilde{\mathbf{p}} = \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}
\]

- For directions the extra coordinate is a zero
Homogeneous Translation

\[
\tilde{p}' = \begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
p_x \\
p_y \\
1
\end{bmatrix}
\]

\[\tilde{p}' = \tilde{A}\tilde{p}\]

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.
Homogeneous Others

Now everything looks the same...
Hence the term “homogenized!”
Compositing Matrices

- Rotations and scales always about the origin
- How to rotate/scale about another point?
Rotate About Arb. Point

- Step 1: Translate point to origin

Translate \((-C)\)
Rotate About Arb. Point

- Step 1: Translate point to origin
- Step 2: Rotate as desired

Translate (-C)
Rotate (θ)
Rotate About Arb. Point

- Step 1: Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was

\[\tilde{p}' = (-T)RT\tilde{p} = A\tilde{p} \]

Don’t negate the 1...
Scale About Arb. Axis

- Diagonal matrices scale about coordinate axes only:

Not axis-aligned
Scale About Arb. Axis

- Step 1: Translate axis to origin
Scale About Arb. Axis

- Step 1: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
Scale About Arb. Axis

- Step 1: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired
Scale About Arb. Axis

- Step 1: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired
- Steps 4&5: Undo 2 and 1 (reverse order)
Order Matters!

- The order that matrices appear in matters
 \[A \cdot B \neq BA \]
- Some special cases work, but they are special
- But matrices are associative
 \[(A \cdot B) \cdot C = A \cdot (B \cdot C) \]
- Think about efficiency when you have many points to transform...
Matrix Inverses

- In general: A^{-1} undoes effect of A

- Special cases:
 - Translation: negate t_x and t_y
 - Rotation: transpose
 - Scale: invert diagonal (axis-aligned scales)

- Others:
 - Invert matrix
 - Invert SVD matrices
Point Vectors / Direction Vectors

- Points in space have a 1 for the “w” coordinate

- What should we have for $\mathbf{a} - \mathbf{b}$?
 - $w = 0$

- Directions not the same as positions
- Difference of positions is a direction
- Position + direction is a position
- Direction + direction is a direction
- Position + position is nonsense
For example normals do not transform normally

$$M(a \times b) \neq (Ma) \times (Mb)$$

Use inverse transpose of the matrix for normals. See text book.
Suggested Reading

- Fundamentals of Computer Graphics by Pete Shirley
 - Chapter 5
 - And re-read chapter 4 if your linear algebra is rusty!
CS-184: Computer Graphics

Lecture #5: 3D Transformations and Rotations

Prof. James O’Brien
University of California, Berkeley
Today

- Transformations in 3D
- Rotations
 - Matrices
 - Euler angles
 - Exponential maps
 - Quaternions
3D Transformations

- Generally, the extension from 2D to 3D is straightforward
 - Vectors get longer by one
 - Matrices get extra column and row
 - SVD still works the same way
 - Scale, Translation, and Shear all basically the same
- Rotations get interesting
Translations

\[\tilde{A} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \quad \text{For 2D} \]

\[\tilde{A} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{For 3D} \]
\[\tilde{A} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

For 2D

\[\tilde{A} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

For 3D

(Axis-aligned!)
Shears

\[\tilde{\mathbf{A}} = \begin{bmatrix} 1 & h_{xy} & 0 \\ h_{yx} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

For 2D

\[\mathbf{A} = \begin{bmatrix} 1 & h_{xy} & h_{xz} & 0 \\ h_{yx} & 1 & h_{yz} & 0 \\ h_{zx} & h_{zy} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

For 3D

(Axis-aligned!)
Shears

\[\tilde{A} = \begin{bmatrix}
1 & h_{xy} & h_{xz} & 0 \\
 h_{yx} & 1 & h_{yz} & 0 \\
 h_{zx} & h_{zy} & 1 & 0 \\
 0 & 0 & 0 & 1 \\
\end{bmatrix} \]

Shears \(y \) into \(x \)
Rotations

- 3D Rotations fundamentally more complex than in 2D
 - 2D: amount of rotation
 - 3D: amount and axis of rotation
Rotations

- Rotations still orthonormal
- $\text{Det}(R) = 1 \neq -1$
- Preserve lengths and distance to origin
- 3D rotations **DO NOT COMMUTE!**
- Right-hand rule
- Unique matrices
Axis-aligned 3D Rotations

- 2D rotations implicitly rotate about a third out of plane axis
Axis-aligned 3D Rotations

- 2D rotations implicitly rotate about a third out of plane axis

\[
R = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{bmatrix}
\]

\[
\hat{R} = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) & 0 \\
\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Note: looks same as \(\hat{R} \)
Axis-aligned 3D Rotations

\[\mathbf{R}_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \]

\[\mathbf{R}_y = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \]

\[\mathbf{R}_z = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \]
Axis-aligned 3D Rotations

\[
\mathbf{R}_x = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos(\theta) & -\sin(\theta) \\
0 & \sin(\theta) & \cos(\theta)
\end{bmatrix}
\]

\[
\mathbf{R}_y = \begin{bmatrix}
\cos(\theta) & 0 & \sin(\theta) \\
0 & 1 & 0 \\
-\sin(\theta) & 0 & \cos(\theta)
\end{bmatrix}
\]

\[
\mathbf{R}_z = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) & 0 \\
\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Also right handed “Zup”
Axis-aligned 3D Rotations

Also known as “direction-cosine” matrices

\[
R_x = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos(\theta) & -\sin(\theta) \\
0 & \sin(\theta) & \cos(\theta)
\end{bmatrix} \quad R_y = \begin{bmatrix}
\cos(\theta) & 0 & \sin(\theta) \\
0 & 1 & 0 \\
-\sin(\theta) & 0 & \cos(\theta)
\end{bmatrix} \quad R_z = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) & 0 \\
\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Arbitrary Rotations

- Can be built from axis-aligned matrices:
 \[\mathbf{R} = \mathbf{R}_z \cdot \mathbf{R}_y \cdot \mathbf{R}_x \]

- Result due to Euler... hence called Euler Angles

- Easy to store in vector
 \[\mathbf{R} = \text{rot}(x, y, z) \]

- But NOT a vector.
Arbitrary Rotations

\[\mathbf{R} = \mathbf{R}_{\hat{z}} \cdot \mathbf{R}_{\hat{y}} \cdot \mathbf{R}_{\hat{x}} \]
Arbitrary Rotations

- Allows tumbling
- Euler angles are non-unique
- Gimbal-lock
- Moving -vs- fixed axes
 - Reverse of each other
Exponential Maps

- Direct representation of arbitrary rotation
- AKA: axis-angle, angular displacement vector
- Rotate θ degrees about some axis
- Encode θ by length of vector

$$\theta = |\mathbf{r}|$$
Exponential Maps

- Given vector \mathbf{r}, how to get matrix \mathbf{R}
- Method from text:
 1. rotate about x axis to put \mathbf{r} into the x-y plane
 2. rotate about z axis align \mathbf{r} with the x axis
 3. rotate θ degrees about x axis
 4. undo #2 and then #1
 5. composite together
Vector expressing a point has two parts

- \mathbf{X}_\parallel does not change
- \mathbf{X}_\perp rotates like a 2D point
Exponential Maps

\[x' = x_{\parallel} + x_{\perp} \sin(\theta) + x_{\perp} \cos(\theta) \]
Exponential Maps

- Rodriguez Formula

\[x' = \hat{r}(\hat{r} \cdot x) + \sin(\theta)(\hat{r} \times x) - \cos(\theta)(\hat{r} \times (\hat{r} \times x)) \]

Linear in \(x \)

Actually a minor variation ...
Exponential Maps

- Building the matrix

\[x' = ((\hat{r}\hat{r}^t) + \sin(\theta)(\hat{r} \times) - \cos(\theta)(\hat{r} \times)(\hat{r} \times))x \]

\[(\hat{r} \times) = \begin{bmatrix} 0 & -\hat{r}_z & \hat{r}_y \\ \hat{r}_z & 0 & -\hat{r}_x \\ -\hat{r}_y & \hat{r}_x & 0 \end{bmatrix} \]

Antisymmetric matrix

\((a \times)b = a \times b\)

Easy to verify by expansion
Exponential Maps

- Allows tumbling
- No gimbal-lock!
- Orientations are space within π-radius ball
- Nearly unique representation
- Singularities on shells at 2π
- Nice for interpolation
Exponential Maps

- Why exponential?
- Recall series expansion of e^x

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
Exponential Maps

- Why exponential?
- Recall series expansion of e^x
- Euler: what happens if you put in $i\theta$ for x

$$e^{i\theta} = 1 + \frac{i\theta}{1!} + \frac{-\theta^2}{2!} + \frac{-i\theta^3}{3!} + \frac{\theta^4}{4!} + \cdots$$

$$= \left(1 + \frac{-\theta^2}{2!} + \frac{\theta^4}{4!} + \cdots \right) + i \left(\frac{\theta}{1!} + \frac{-\theta^3}{3!} + \cdots \right)$$

$$= \cos(\theta) + i\sin(\theta)$$
Exponential Maps

- Why exponential?

\[
e^{(\hat{r} \times) \theta} = \mathbf{I} + \frac{(\hat{r} \times) \theta}{1!} + \frac{(\hat{r} \times)^2 \theta^2}{2!} + \frac{(\hat{r} \times)^3 \theta^3}{3!} + \frac{(\hat{r} \times)^4 \theta^4}{4!} + \ldots
\]

But notice that: \((\hat{r} \times)^3 = -(\hat{r} \times)\)

\[
e^{(\hat{r} \times) \theta} = \mathbf{I} + \frac{(\hat{r} \times) \theta}{1!} + \frac{(\hat{r} \times)^2 \theta^2}{2!} + \frac{-(\hat{r} \times) \theta^3}{3!} + \frac{-(\hat{r} \times)^2 \theta^4}{4!} + \ldots
\]
Exponential Maps

\[e^{(\hat{r} \times) \theta} = \mathbf{I} + \frac{(\hat{r} \times) \theta}{1!} + \frac{(\hat{r} \times)^2 \theta^2}{2!} + \frac{-(\hat{r} \times) \theta^3}{3!} + \frac{-(\hat{r} \times)^2 \theta^4}{4!} + \cdots \]

\[e^{(\hat{r} \times) \theta} = (\hat{r} \times) \left(\frac{\theta}{1!} - \frac{\theta^3}{3!} + \cdots \right) + \mathbf{I} + (\hat{r} \times)^2 \left(\frac{\theta^2}{2!} - \frac{\theta^4}{4!} + \cdots \right) \]

\[e^{(\hat{r} \times) \theta} = (\hat{r} \times) \sin(\theta) + \mathbf{I} + (\hat{r} \times)^2 (1 - \cos(\theta)) \]
Quaternions

- More popular than exponential maps
- Natural extension of $e^{i\theta} = \cos(\theta) + i\sin(\theta)$
- Due to Hamilton (1843)
 - Interesting history
 - Involves “hermaphroditic monsters”
Quaternions

- Uber-Complex Numbers

\[q = (z_1, z_2, z_3, s) = (z, s) \]

\[q = i z_1 + j z_2 + k z_3 + s \]

\[i^2 = j^2 = k^2 = -1 \]

- \(i j = k \) \quad \(j i = -k \)
- \(j k = i \) \quad \(k j = -i \)
- \(k i = j \) \quad \(i k = -j \)
Quaternions

- **Multiplication** natural consequence of defn.
 \[q \cdot p = (z_q s_p + z_p s_q + z_p \times z_q, \ s_p s_q - z_p \cdot z_q) \]

- **Conjugate**
 \[q^{*} = (-z, s) \]

- **Magnitude**
 \[||q||^2 = z \cdot z + s^2 = q \cdot q^{*} \]
Quaternions

- Vectors as quaternions
 \[v = (v, 0) \]

- Rotations as quaternions
 \[r = (\hat{r}\sin\frac{\theta}{2}, \cos\frac{\theta}{2}) \]

- Rotating a vector
 \[x' = r \cdot x \cdot r^* \]

- Composing rotations
 \[r = r_1 \cdot r_2 \]

Compare to Exp. Map
Quaternions

- No tumbling
- No gimbal-lock
- Orientations are “double unique”
- Surface of a 3-sphere in 4D $||r|| = 1$
- Nice for interpolation
Interpolation
Rotation Matrices

- Eigen system
 - One real eigenvalue
 - Real axis is axis of rotation
 - Imaginary values are 2D rotation as complex number

- Logarithmic formula

\[
(\hat{\mathbf{r}} \times) = \ln(\mathbf{R}) = \frac{\theta}{2 \sin \theta} (\mathbf{R} - \mathbf{R}^T)
\]

\[
\theta = \cos^{-1}\left(\frac{\text{Tr}(\mathbf{R}) - 1}{2}\right)
\]

Similar formulae as for exponential...
Rotation Matrices

- Consider:

\[
RI = \begin{bmatrix}
 r_{xx} & r_{xy} & r_{xz} \\
 r_{yx} & r_{yy} & r_{yz} \\
 r_{zx} & r_{zy} & r_{zz}
\end{bmatrix} \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\]

- Columns are coordinate axes after transformation (true for general matrices)

- Rows are original axes in original system (not true for general matrices)
Note:

- Rotation stuff in the book is a bit weak... luckily you have these nice slides!
CS-184: Computer Graphics

Lecture #8: Projection

Prof. James O’Brien
University of California, Berkeley
Today

- Windowing and Viewing Transformations
 - Windows and viewports
 - Orthographic projection
 - Perspective projection
Screen Space

- Monitor has some number of pixels
 - e.g. 1024 x 768
- Some sub-region used for given program
 - You call it a window
 - Let’s call it a viewport instead
Screen Space

- May not really be a “screen”
 - Image file
 - Printer
 - Other
- Little pixel details
- Sometimes odd
 - Upside down
 - Hexagonal

From Shirley textbook.
Screen Space

- Viewport is somewhere on screen
 - You probably don’t care where
 - Window System likely manages this detail
 - Sometimes you care exactly where

- Viewport has a size in pixels
 - Sometimes you care (images, text, etc.)
 - Sometimes you don’t (using high-level library)
Screen Space

\[nx-0.5, ny-0.5 \]

Integer Pixel Addresses

\[i=3 \]

\[j=5 \]

-0.5,-0.5

10 × 10 Image Resolution
Screen Space

Float Pixel Coordinates

\[u = 0.35 = \frac{(i + 0.5)}{nx} \]

\[v = 0.55 = \frac{(j + 0.5)}{ny} \]
Canonical View Space

- Canonical view region
 - 2D: [-1, -1] to [+1, +1]

$\begin{align*}
\text{x} &= 0.0, \quad \text{y} = 0.0
\end{align*}$
Canonical View Space

- Canonical view region
 - 2D: [-1,-1] to [+1,+1]

From Shirley textbook. (Image coordinates are up-side-down.)

Remove minus for right-side-up
Canonical View Space

- Canonical view region
 - 2D: [-1, -1] to [+1, +1]
- Define arbitrary window and define objects
- Transform window to canonical region
- Do other things (we’ll see clipping latter)
- Transform canonical to screen space
- Draw it.

From Shirley textbook.
Canonical View Space

World Coordinates (Meters) Canonical Screen Space (Pixels)

Note distortion issues...
Projection

- Process of going from 3D to 2D
- Studies throughout history (e.g. painters)
- Different types of projection
 - Linear
 - Orthographic
 - Perspective
 - Nonlinear

Many special cases in books just one of these two...

Orthographic is special case of perspective...
Perspective Projections
Linear Projection

- Projection onto a **planar surface**
- Projection directions either
 - Converge to a point
 - Are parallel (converge at infinity)
Linear Projection

- A 2D view

Perspective

Orthographic
Linear Projection

Orthographic

Perspective
Linear Projection

Orthographic

Perspective
Linear Projection

- A 2D view

Note how different things can be seen

Parallel lines “meet” at infinity

Perspective

Orthographic
Orthographic Projection

- No foreshortening
- Parallel lines stay parallel
- Poor depth cues
Canonical View Space

- Canonical view region
 - 3D: $[-1,-1,-1]$ to $[+1,+1,+1]$
- Assume looking down $-Z$ axis
 - Recall that “Z is in your face”
Orthographic Projection

- Convert arbitrary view volume to canonical
Orthographic Projection

- **View vector**
- **Up vector**
- **Right** = view \times up
- **Center**
- **Origin**

Assume up is perpendicular to view.
Orthographic Projection

- Step 1: translate center to origin
Orthographic Projection

- Step 1: translate center to origin
- Step 2: rotate view to $-Z$ and up to $+Y$
Orthographic Projection

- Step 1: translate center to origin
- Step 2: rotate view to $-Z$ and up to $+Y$
- Step 3: center view volume
Orthographic Projection

- Step 1: translate center to origin
- Step 2: rotate view to -Z and up to $+Y$
- Step 3: center view volume
- Step 4: scale to canonical size
Orthographic Projection

- Step 1: translate center to origin
- Step 2: rotate view to $-Z$ and up to $+Y$
- Step 3: center view volume
- Step 4: scale to canonical size

\[M = S \cdot T_2 \cdot R \cdot T_1 \]
\[M = M_o \cdot M_v \]
Perspective Projection

- Foreshortening: further objects appear smaller
- Some parallel line stay parallel, most don’t
- Lines still look like lines
- Z ordering preserved (where we care)
Perspective Projection

Pinhole a.k.a center of projection

Image from D. Forsyth
Perspective Projection

Foreshortening: distant objects appear smaller
Perspective Projection

- Vanishing points
 - Depend on the scene
 - Not intrinsic to camera

“One point perspective”
Perspective Projection

- Vanishing points
 - Depend on the scene
 - Nor intrinsic to camera

“Two point perspective”
Perspective Projection

- Vanishing points
 - Depend on the scene
 - Not intrinsic to camera

“Three point perspective”
Perspective Projection
Perspective Projection

- Near n
- Far f
- Up
- Center
- View
- Distance to image plane i
- Top t
- Bottom b
Perspective Projection

- Step 1: Translate center to origin
Perspective Projection

- Step 1: Translate center to origin
- Step 2: Rotate view to -Z, up to +Y
Perspective Projection

- Step 1: Translate *center* to origin
- Step 2: Rotate *view* to \(-Z\), *up* to \(+Y\)
- Step 3: Shear center-line to \(-Z\) axis
Perspective Projection

- Step 1: Translate center to origin
- Step 2: Rotate view to \(-Z\), up to \(+Y\)
- Step 3: Shear center-line to \(-Z\) axis
- Step 4: Perspective
Perspective Projection

Step 4: Perspective
- Points at $z=-i$ stay at $z=-i$
- Points at $z=-f$ stay at $z=-f$
- Points at $z=0$ goto $z=\pm \infty$
- Points at $z=-\infty$ goto $z=-(i+f)$

- x and y values divided by $-z/i$
- Straight lines stay straight
- Depth ordering preserved in $[-i,-f]$
- Movement along lines distorted

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{i+f}{i} & f & 0 \\
0 & 0 & \frac{-1}{i} & 0 & 0 \\
\end{bmatrix}
\]
Perspective Projection

WRONG!

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{i+f}{i} & 0 & f \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & i & 0 & 0 \\
\end{bmatrix}
\]
Perspective Projection

“Eye” plane

Top

Near

Far

Some horizontal lines

View vector

\[\hat{z} \]
Perspective Projection

Visualizing division of x and y but not z
Perspective Projection

Motion in x,y
Perspective Projection

Note that points on near plane fixed
Perspective Projection

Recall that points on far plane will stay there...
Perspective Projection

When we also divide z points must remain on straight lines.
Perspective Projection

Lines extend outside view volume
Perspective Projection

Motion in z
Perspective Projection

Motion in z
Perspective Projection

Motion in z
Perspective Projection

Total motion
Perspective Projection

- Step 1: Translate center to orange
- Step 2: Rotate view to \(-Z\), up to \(+Y\)
- Step 3: Shear center-line to \(-Z\) axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size
Perspective Projection

- Step 1: Translate center to orange
- Step 2: Rotate view to \(-Z\), up to \(+Y\)
- **Step 3: Shear center-line to \(-Z\) axis**
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size

\[M = M_o \cdot M_p \cdot M_v \]
Perspective Projection

- There are other ways to set up the projection matrix
 - View plane at \(z = 0 \) zero
 - Looking down another axis
 - \textit{etc...}
- Functionally equivalent
Vanishing Points

- Consider a ray:

\[\mathbf{r}(t) = \mathbf{p} + t \mathbf{d} \]
Vanishing Points

- Ignore \(Z \) part of matrix
- \(\bf{X} \) and \(\bf{Y} \) will give location in image plane
- Assume image plane at \(z = -1 \)

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
I_x \\
I_y \\
I_w \\
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix}
\]
Vanishing Points

\[
\begin{bmatrix}
I_x \\
I_y \\
I_w
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{bmatrix}\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix}
x \\
y \\
-z
\end{bmatrix}
\]

\[
\begin{bmatrix}
I_x/I_w \\
I_y/I_w
\end{bmatrix} = \begin{bmatrix}
-x/z \\
-y/z
\end{bmatrix}
\]
Vanishing Points

- Assume $d_z = -1$

\[
\begin{bmatrix}
\frac{I_x}{I_w} \\
\frac{I_y}{I_w}
\end{bmatrix}
= \begin{bmatrix}
-x/z \\
-y/z
\end{bmatrix}
= \begin{bmatrix}
\frac{p_x + td_x}{-p_z + t} \\
\frac{p_y + td_y}{-p_z + t}
\end{bmatrix}
\]

\[
\text{Lim } t \to \pm \infty = \begin{bmatrix}
d_x \\
d_y
\end{bmatrix}
\]
Vanishing Points

\[\lim_{t \rightarrow \pm \infty} = \begin{bmatrix} d_x \\ d_y \end{bmatrix} \]

- All lines in direction \(\mathbf{d} \) converge to same point in the image plane -- the vanishing point.
- Every point in plane is a v.p. for some set of lines.
- Lines parallel to image plane \((d_z = 0) \) vanish at infinity.

What’s a horizon?
Perspective Tricks
Right Looks Wrong (Sometimes)

From Correction of Geometric Perceptual Distortions in Pictures, Zorin and Barr SIGGRAPH 1995
Right Looks Wrong (Sometimes)

That iPhone Marketshare Chart: WTF?

- U.S. Smartphone Marketshare
- How the pie chart is distorted
- Let's correct the photo perspective
- Chart perspective fixed
- Here it is overlaid with a pie chart using the same data. There's no funny business here — except for the perspective trick!
Strangeness

The Ambassadors by Hans Holbein the Younger
Ray Picking

- Pick object by picking point on screen

- Compute ray from pixel coordinates.
Ray Picking

- Transform from World to Screen is:

\[
\begin{bmatrix}
I_x \\
I_y \\
I_z \\
I_w
\end{bmatrix}
= \mathbf{M}
\begin{bmatrix}
W_x \\
W_y \\
W_z \\
W_w
\end{bmatrix}
\]

- Inverse:

\[
\begin{bmatrix}
W_x \\
W_y \\
W_z \\
W_w
\end{bmatrix}
= \mathbf{M}^{-1}
\begin{bmatrix}
I_x \\
I_y \\
I_z \\
I_w
\end{bmatrix}
\]

- What Z value?
Ray Picking

- **Recall that:**
 - Points at $z=-i$ stay at $z=-i$
 - Points at $z=-f$ stay at $z=-f$

\[
\mathbf{r}(t) = \mathbf{p} + t \mathbf{d}
\]

\[
\mathbf{r}(t) = \mathbf{a}_w + t(\mathbf{b}_w - \mathbf{a}_w)
\]

\[
\mathbf{a}_s = \begin{bmatrix} s_x, s_y, -i \end{bmatrix}
\]

\[
\mathbf{b}_s = \begin{bmatrix} s_x, s_y, -f \end{bmatrix}
\]

Depends on screen details, YMMV

General idea should translate...
Depth Distortion

- Recall depth distortion from perspective
 - Interpolating in screen space different than in world
 - Ok, for shading (mostly)
 - Bad for texture
Depth Distortion

\[S_1 = \frac{P_1}{h_1} \]
\[S_2 = \frac{P_2}{h_2} \]
\[S_3 = \frac{P_3}{h_3} \]
\[S_4 = \frac{P_4}{h_4} \]
Depth Distortion

We know the S_i, P_i, and b_i, but not the a_i.

\[S_1 = \frac{P_1}{h_1} \]
\[S_2 = \frac{P_2}{h_2} \]
\[S_3 = \frac{P_3}{h_3} \]
\[S_4 = \frac{P_4}{h_4} \]
\[X = \sum_i S_i b_i \]
\[Q = \sum_i P_i a_i \]
Depth Distortion

\[S_1 = \frac{P_1}{h_1} \]

\[S_2 = \frac{P_2}{h_2} \]

\[S_3 = \frac{P_3}{h_3} \]

\[S_4 = \frac{P_4}{h_4} \]

\[X = \sum_i S_i b_i \]

\[X = \frac{Q}{h} = \frac{\left(\sum_i P_i a_i \right)}{\left(\sum_j h_j a_j \right)} \]
Depth Distortion

\[S_1 = P_1/h_1 \]

\[S_2 = P_2/h_2 \]

\[S_3 = P_3/h_3 \]

\[S_4 = P_4/h_4 \]

\[X = \sum_i S_i b_i \]

\[Q = \sum_i P_i a_i \]

\[\sum_i S_i b_i = \left(\sum_i P_i a_i \right) / \left(\sum_j h_j a_j \right) \]
Depth Distortion

\[S_1 = P_1 / h_1 \]

\[S_2 = P_2 / h_2 \]

\[S_3 = P_3 / h_3 \]

\[S_4 = P_4 / h_4 \]

\[X = \sum_i S_i b_i \]

\[\sum_i P_i b_i / h_i = \left(\sum_i P_i a_i \right) / \left(\sum_j h_j a_j \right) \]
Depth Distortion

\[S_1 = P_1/h_1 \]
\[S_4 = P_4/h_4 \]
\[S_3 = P_3/h_3 \]
\[X = \sum_i S_ib_i \]
\[Q = \sum_i P_ia_i \]

Independent of given vertex locations.

\[\sum_i P_i b_i/h_i = \left(\sum_i P_ia_i \right) / \left(\sum_j h_ja_j \right) \]

\[b_i/h_i = a_i/ \left(\sum_j h_ja_j \right) \quad \forall i \]
Depth Distortion

\[S_1 = P_1 / h_1 \]

\[S_2 = P_2 / h_2 \]

\[S_3 = P_3 / h_3 \]

\[S_4 = P_4 / h_4 \]

\[X = \sum_i S_i b_i \]

\[Q = \sum_i P_i a_i \]

\[b_i / h_i = a_i / \left(\sum_j h_j a_j \right) \quad \forall i \]

Linear equations in the \(a_i \).

\[\left(\sum_j h_j a_j \right) b_i / h_i - a_i = 0 \quad \forall i \]
Depth Distortion

Linear equations in the a_i.

$$\left(\sum_j h_j a_j \right) \frac{b_i}{h_i} - a_i = 0 \quad \forall i$$

Not invertible so add some extra constraints.

$$\sum_i a_i = \sum_i b_i = 1$$
Depth Distortion

For a line:
\[a_1 = \frac{h_2 b_i}{(b_1 h_2 + h_1 b_2)} \]

For a triangle:
\[a_1 = \frac{h_2 h_3 b_1}{(h_2 h_3 b_1 + h_1 h_3 b_2 + h_1 h_2 b_3)} \]

Obvious Permutations for other coefficients.