The CSEE Department may change the policies and procedures contained in this document and will maintain a current and accurate written version in the departmental offices.

Department of Computer Science & Electrical Engineering
University of Maryland, Baltimore County

Computer Science
Graduate Program Handbook
January 2014
http://www.cs.umbc.edu/CSEE/index.html

CS Graduate Program Director: Dr. Kostas Kalpakis

This handbook describes the graduate program in Computer Science at the Department of Computer Science and Electrical Engineering (CSEE) at UMBC.

UMBC is a major research university located in the Baltimore-Washington area and offers graduate students an exciting environment for advanced study. With nearly 12,000 undergraduate and graduate students in the liberal arts, sciences, engineering, and public policy, UMBC is large enough to provide students with excellent training and research experience, and small enough for close student-faculty interaction. The University is a growing center for research and development and technology commercialization. Patent applications by UMBC researchers have more than quadrupled in three years and more than forty University-developed technologies are available for licensing. Adjacent to the campus, the UMBC Technology Center houses private research, development, and training organizations seeking interaction with University faculty, students, and research facilities.

In the CSEE Department, graduate programs are strongly supported by the industrial companies in the greater Baltimore-Washington area, and various collaborative arrangements with governmental and private institutions make state-of-the-art research facilities in the area available to UMBC faculty and students.

The Department offers M.S. (with thesis or non-thesis option) and Ph.D. degrees in computer science (CS), in electrical engineering (EE), and in computer engineering (CE). Separate admissions committees handle admission to each program. The department also offers a systems engineering track under the M.S. in EE and M.S. in CS programs; more information on these programs is available at www.umbc.edu/se.

Prospective Students: We hope you found the information useful; we look forward to hearing from you (the contact information is listed on the CSEE graduate program website).

Admitted Students: Please read this document carefully, lengthy as it is! It will make you more cognizant of the program’s requirements and the various milestones/forms. We wish you success in your graduate studies at UMBC.
Table of Contents

1. Program Admission .. 4
 1.1 Application Deadlines ... 4
 1.2 GRE Requirements and Waiver Requests ... 5
 1.3 Prerequisites for Admission ... 6

2 Financial Assistance .. 7
 2.1 Departmental Financial Aid for Continuing Students ... 7
 2.2 TA Responsibilities .. 8

3 Requirements for the M.S. Degree in Computer Science ... 11
 3.1 M.S. Program Guidelines ... 12
 3.2 TA Support and M.S. Thesis ... 13
 3.3 M.S. Timeline/Milestones ... 13
 3.5 M.S. in Computer Science with Systems Engineering Track .. 15

4 Requirements for the Ph.D. Degree in Computer Science .. 17
 4.1 Coursework Requirements .. 17
 4.3 Preliminary Examination (Prelim) and Candidacy ... 20
 4.4 Dissertation Research ... 21
 4.5 Ph.D. Timeline/Milestones .. 21

5 What I Wish I Had Known: Advice from Fellow Students .. 24
 5.1 Forms and Deadlines .. 24
 5.2 Research and Lab Rotations ... 24
 5.3 Socializing .. 25
 5.4 Fellowships and Internships ... 25
 5.5 Progress Checklists .. 26

6 Facilities and Special Resources .. 27

7 Listing of CMSC Graduate Courses ... 30

1 Computer Science Faculty ... 44
The department offers a graduate program leading to the M.S. and Ph.D. degrees in computer science. This program provides advanced instruction, training, and research opportunities that prepare students for careers and that foster marketable skills in business, industry, academia, and government agencies. The program reflects state-of-the-art knowledge in major theoretical and applied aspects of computation. Fields of specialization in CS include:

Algorithms, theory and scientific computation:
- algebraic coding theory,
- analysis of algorithms,
- combinatorial optimization,
- computational complexity,
- cryptology and cryptography,
- quantum computing

Computer networks and systems:
- computer and communication networks,
- computer security,
- distributed systems,
- mobile computing,
- network security,
- optical networking,
- wireless networking

Databases, information, and knowledge management:
- artificial intelligence,
- database systems,
- data mining
- digital libraries,
- electronic commerce,
- information retrieval,
- intelligent information systems,
- knowledge representation and reasoning,
- machine learning,
- neural networks,
- natural language processing,
- reasoning under uncertainty

Graphics, animation, and visualization:
- animation,
- interactive 3D graphics,
- physically based modeling,
- procedural modeling,
- volumetric visualization and rendering

The CSEE Department also offers a systems engineering track under the M.S. in CS program: further information on this program is available at www.umbc.edu/se.
1. Program Admission

General Policy: When seeking admission to the graduate program, applicants must satisfy all entrance requirements of the Graduate School at UMBC. Applications are not processed until all documents and fees are received. Applicants must submit official transcripts, three letters of recommendation, statement of purpose, Graduate Record Examination (GRE General Test) scores, and, for foreign students, scores for the TOEFL. Applications are available online at: www.umbc.edu/gradschool/procedures/forms.html

Students may apply for admission to either the M.S. or the Ph.D. program. Admission to the Ph.D. program is highly selective and only students with excellent credentials will be accepted. Students who plan to pursue the Ph.D. degree, but who either do not have extensive research experience during their undergraduate studies (or at work) or do not already have an M.S. in computer science are advised to apply for admission to the M.S. program.

Admission and financial assistance decisions are based on several factors including undergraduate and graduate (if applicable) academic performance, GRE and TOEFL scores, recommendation letters, the statement of purpose, prior research experience and publication history. In particular, candidates applying to the Ph.D. program should have a prior research record and also submit a credible statement of purpose clearly describing the research areas of interest and future career goals.

New students will be assigned an academic advisor who can provide advice on choice of courses, degree requirements, and other important matters during the first year. By the end of the first year, students should have a faculty member to serve as the research advisor for the M.S. or Ph.D. research.

1.1 Application Deadlines

The application review process will begin by February 1 for admission to the Fall semester and by October 1 for admission to the following Spring semester. Favorable consideration will be given to applications received early in each review cycle. It is the policy of the department to admit students based solely on their academic and research performance.

<table>
<thead>
<tr>
<th>APPLICATION DEADLINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic applicants (U.S. citizens and permanent residents) not seeking financial support</td>
</tr>
<tr>
<td>Fall semester - June 1</td>
</tr>
<tr>
<td>Spring semester - November 1</td>
</tr>
<tr>
<td>Domestic students seeking departmental financial support; and all international students</td>
</tr>
<tr>
<td>Fall semester - January 1</td>
</tr>
<tr>
<td>Spring semester - July 1 of the prior calendar year</td>
</tr>
</tbody>
</table>

Revised 1/28/2014
1.2 GRE Requirements and Waiver Requests

The Graduate Record Examinations (GRE) provide the department with standardized data for comparing applicants from many parts of the world with very different backgrounds. Thus, the GRE scores are required for most applicants. In some situations, the GRE is not needed for the department to make an admissions decision and a GRE waiver may be granted.

These are the qualifications for requesting a GRE waiver:

a) you are an MS or a PhD applicant and you have, or are about to receive, a BS degree with a cumulative GPA of 3.5 or higher from an accredited US institution; or

b) you are a PhD applicant and you have completed an MS degree from an accredited US institution.

Please take note of the following points:

• Students requiring departmental financial assistance may not request a GRE waiver.

• You must submit a GRE Waiver Request by March 1 for admission in the Fall semester or by September 1 for admission in the Spring semester.

• Qualifying for a GRE Waiver Request does not imply approval of the request. Your request will be granted if the Computer Science Graduate Admissions Committee agrees that GRE scores are not needed to make an admission decision in your case.

• UMBC students in the Computer Science BS/MS program do not need to take the GRE unless they are applying for financial support. These students should indicate that they are in the BS/MS program in their application. They do not need to submit a GRE Waiver Request.

How to submit a GRE Waiver Request:

The GRE Waiver Request form is available on the CSEE website:

Submit the completed GRE Waiver Request form with your resume and a transcript from the US institution of your BS or MS degree to Ms. Keara Fliggins via email at <fliggins@umbc.edu> or by fax at 410-455-3969.

If your resume and transcript have already been submitted to the UMBC Graduate School for your application, please indicate this on the request form. Unofficial transcripts are acceptable for the GRE Waiver Request.
You will be notified by email regarding the decision on your request.

1.3 Prerequisites for Admission

An applicant to the graduate program in computer science is expected to have a strong background in computer science and mathematics courses. Applicants are expected to have taken the equivalent of the following UMBC courses:

- CMSC 203 Discrete Structures
- CMSC 313 Computer Organization & Assembly Languages
- CMSC 331 Principles of Programming Languages
- CMSC 341 Data Structures
- CMSC 411 Computer Architecture
- CMSC 421 Principles of Operating Systems
- CMSC 441 Algorithm Design and Analysis
- MATH 151 Calculus I
- MATH 152 Calculus II
- MATH 221 Introduction to Linear Algebra
- At least one more advanced course in mathematics.

And at least one course from the following list:
- CMSC 435 Computer Graphics
- CMSC 451 Automata Theory & Formal Languages
- CMSC 455 Numerical Computations
- CMSC 461 Database Management Systems
- CMSC 471 Artificial Intelligence
- CMSC 481 Computer Networks
2 Financial Assistance

Financial aid is available on a competitive basis to a limited number of qualified graduate students in the form of graduate teaching assistantships (TAs) and graduate research assistantships (RAs). Preference for TAs is given to first-year Ph.D. applicants. Graduate RAs are often available to students actively engaged in M.S. thesis or Ph.D. dissertation research and are awarded and renewed subject to availability of funds and satisfactory research progress. Students are encouraged to apply directly to nationally awarded fellowship programs.

Starting Fall 2004, students who have been supported on departmental TA-ships for three or more semesters and who seek the M.S. degree are required to take the thesis option (except for Ph.D. students who have passed the comprehensive examination/portfolio within the specified time limits).

Financial assistance decisions are based on several factors including academic performance, GRE and TOEFL scores, recommendation letters, statements of purpose, research experience and publication history.

The following is the recommended priority order in awarding teaching assistantships to incoming students:

1. Priority will be given to students with excellent academic credentials from reputed universities, a strong publication record, high GRE scores, strong support letters, who have already earned an M.S. degree in computer science and demonstrate a genuine wish to pursue the Ph.D. degree.

2. Students with excellent academic credentials from reputed universities, high GRE scores, strong support letters, a B.S degree in computer science and a desire to pursue either M.S. or Ph.D. degree. If a student with a B.S. degree expresses interest in the Ph.D. program, the application has to be backed up by strong research participation as an undergraduate (with publications desirable).

For students from US universities, a minimum GPA of 3.4, strong GRE scores and support letters are required to be considered for a TA.

3. Students who have any CMSC or other prerequisite courses unfulfilled will generally not be admitted with TA support, except for exceptionally qualified students.

Note: International students must pass the LRC Oral Test by the beginning of their second semester.

2.1 Departmental Financial Aid for Continuing Students

Continued departmental support as a TA depends upon several factors. The minimum prerequisites to be eligible for TA support are: strong academic performance, strong TA performance if the student had been a TA/grader, meeting the required milestones, and a strong letter of support from the research advisor. There is also an upper limit on the number of semesters a student may be supported by the department (see Notes below).

The following is the priority order for continuing students:
1. Ph.D. students who have passed their Preliminary Examinations and are within the specified time limits.

2. Ph.D. students who have passed their Comprehensive Examination/portfolio, but have not yet taken their Prelims and are within the specified time limit.

3. Ph.D. students who have not yet passed their Comprehensive Examination/portfolio. This will apply to students in their second year; strong academic performance, satisfactory TA performance and evidence of research will be considered.

4. M.S. students will be supported in their second year only if TA-ships are available after all eligible Ph.D. students have been supported.

Notes:

1. For Ph.D. students, departmental TA-ships will be limited to a total of eight semesters of support (whether as full-TA, half-TA or grader). Requests for an additional two semesters may be considered, but support will be provided only to exceptionally qualified students in such cases.

Ph.D. students will not be eligible for TA support past their fifth year in the CMSC graduate program.

Other comments:

- If a Ph.D. student was supported by the department while the student was in the M.S. program, those semesters will count towards the maximum limit.
- The semester in which a student independently teaches a course does not count towards the maximum, and up to two semesters will be allowed in this category.

2. For M.S. students, departmental TA-ships will be limited to four semesters of support (whether full-TA, half-TA or grader) in compliance with priority #4 above.

3. In any given category, if there are more students than available lines, a combination of factors will be used in granting support, including publication history/research record, academic excellence, a strong letter of support from the advisor, excellence in past TA performance, and qualifications and knowledge for the course we need.

2.2 TA Responsibilities

1. It is your responsibility to be fully familiar with the course material and all the assignments. You may have to spend time and effort in learning the material. As graduate students in computer science, you are expected to know (or otherwise learn) the material for the core and mainstream undergraduate courses. The department does its best in matching background knowledge and prior experience of students to their respective TA/grader assignments.

Students are expected to be available to assist with course/lab development. Inadequate prior knowledge of the course material is not an excuse for incompetent
performance as a TA/grader.

2. **Students supported as full-time TAs in their first year should complete at least 15 valid graduate-level credits that can count towards their degree.** At least 2 core courses (i.e. CMSC 611, 621, 641) or 1 core/1 breadth (Breath: CMSC 626, CMSC 635, CMSC 655, CMSC 661, CMSC 651, CMSC 671, CMSC 681) course must be completed with a grade of B or better in the first year. This applies to both Ph.D. and M.S. students.

3. **Please note that TA renewal is not automatic every semester.** It is based on satisfactory academic and TA performance and other factors (this is also stated in your offer letters).

4. Students who receive an “academic warning” status for poor academic performance might lose their teaching assistantship in the semester that they are so classified. Students who receive an “academic probation” status will lose their teaching assistantship immediately.

5. Tuition remission will not exceed the minimum number of credits required for the degree (either Ph.D. or M.S.) and will be granted only to courses that will count towards the degree.

6. Except under special circumstances, M.S. students with no TA experience must have grader experience to be considered for a TA.

7. TAs are required to be on campus by January 15 for Spring semester and by August 10 for the Fall semester. Exceptions have to be requested in writing at least 3 weeks before these due dates.

8. If you feel that you are being overworked as a TA or grader, please inform the Graduate Program Director immediately. Please maintain a history of hours worked per week.

The following table describes the various tasks that a TA and a grader are expected to perform:

<table>
<thead>
<tr>
<th>Duties</th>
<th>TA</th>
<th>Grader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade projects, homework, etc.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hold office hours</td>
<td>Yes, for questions related to course lectures or grading</td>
<td>Yes, but only for questions related to grading</td>
</tr>
<tr>
<td>Prepare project or homework solutions</td>
<td>Yes</td>
<td>If an intrinsic part of understanding the grading for a particular subject</td>
</tr>
<tr>
<td>Proctor exams</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Generate homework questions</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Run labs, help sessions</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Give prepared lectures</td>
<td>Only under unusual circumstances</td>
<td>No</td>
</tr>
</tbody>
</table>
3 Requirements for the M.S. Degree in Computer Science

Summary of Requirements for the M.S. Degree in Computer Science

<table>
<thead>
<tr>
<th>24 credits of graduate coursework (with the thesis option) or 30 credits of graduate coursework (with the non-thesis option):</th>
</tr>
</thead>
<tbody>
<tr>
<td>- including the four required breadth courses with B’s or better (12 credits total)</td>
</tr>
<tr>
<td>- containing no regular graduate course taken with pass/fail grading</td>
</tr>
<tr>
<td>- containing at most 3 credits of some combination of CMSC 699, CMSC 791, and CMSC 696</td>
</tr>
<tr>
<td>- containing at most 6 credits transferred from another university with prior approval</td>
</tr>
<tr>
<td>- containing at most 6 credits of non-CMSC courses with prior approval</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A minimum overall GPA of 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 credits of Masters Thesis Research (CMSC 799) (with the thesis option) or 3 credits of Research Project (CMSC 698) with the non-thesis option</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Successfully completing and defending the thesis with the thesis option or Successfully completing and obtaining approval on the scholarly paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completing the program within a maximum of five years</td>
</tr>
</tbody>
</table>

| Completing each of the milestones according to the timeline specified in Section 3.3 M.S. Timeline/Milestones) |

For the M.S. degree in computer science, the student must earn a minimum of thirty (30) credit hours with thesis option or thirty-three (33) credit hours with non-thesis option.

The time limit for completing the degree is five years from starting the graduate program at UMBC.

The thesis option requires a minimum of eight (8) graduate-level courses (24 credit hours) and six (6) credit hours of thesis (CMSC 799). The thesis must be supervised by an approved CSEE graduate faculty member as the thesis advisor; and must, upon completion of the research, be defended with an oral presentation and accepted by the student’s M.S. thesis committee. A bound copy of the thesis must be submitted to the department.

The non-thesis option in the student’s field requires a minimum of ten (10) graduate level courses (30 credit hours) and three (3) credit hours of CMSC 698 (Research Project) work resulting in a scholarly paper that must be approved by the advisor and read by another faculty member. A copy of the scholarly paper must be submitted to the department.

Revised 1/28/2014
3.1 M.S. Program Guidelines

Breadth courses provide a uniform background and are a minimum requirement for graduate students. **There are four required breadth courses.** Each student must take and receive a grade of “B” or better in each of the following three courses: CMSC 611 (Computer Architecture), CMSC 621 (Advanced Operating Systems), and CMSC 641 (Design and Analysis of Algorithms).

In addition, each student must take one of the following courses and receive a grade of “B” or better: CMSC 626 (Principles of Computer Security), CMSC 635 (Advanced Computer Graphics), CMSC 651 (Automata Theory and Formal Languages), CMSC 655 (Numerical Computation), CMSC 661 (Principles of Database Systems), CMSC 671 (Principles of Artificial Intelligence), or CMSC 681 (Advanced Computer Networks).

Beyond the four breadth courses, the thesis student must take six credits of CMSC 799 (Master’s Thesis) and a minimum of twelve additional course credits. For students with non-thesis option, at least eighteen additional course credits and three credits of CMSC 698 (Research Project) are required. Each field of specialty may specify courses that can be used to satisfy this requirement.

1. At most 3 total credits of CMSC 699 (P/F) or CMSC 791 (P/F) or CMSC 696 (P/F) will be allowed.

2. A student may request to take a **maximum of six credits of coursework outside the department.** These courses must be at the graduate level and be approved by the student’s advisor and the Graduate Program Director prior to registration.

 Requests for approval of non-CMSC course credits (at most 6 credits) should be submitted before registering for the non-CMSC course. The request form should be signed by the student’s research advisor.

3. A regular graduate-level course taken for pass/fail (P/F) credit may not be counted towards the degree.

4. At most six **graduate-level credits** taken at another approved university may be **transferred** to count towards the M.S. degree, provided that the credits have not been used for another degree. Credit transfer must be approved by the Director of the Graduate program. To request a credit transfer, submit the Graduate School’s **Course Transfer Request** form along with required documentation (see the Forms webpage of the CMSC graduate program).

5. All transfer course approvals and non-CMSC course credit approvals should be obtained before submitting the Graduate School’s **Fulfillment of Course Requirements for Master’s Degree** form to the CSEE Dept.

6. Students are required to maintain a minimum GPA of 3.0 (this is also a Graduate School requirement). Students who fail to maintain the minimum GPA may be subject to academic probation and in the case of repeated poor academic performance, be subject to dismissal from the graduate program.

7. A graduate-level course that counts towards the M.S. degree may be repeated at most
once, if necessary. No more than three graduate-level courses (that count towards the M.S. degree) may be repeated.

8. Leave of absence (LOA) will be granted at most three times during the entire M.S. degree. The LOA Request form should be submitted before the end of the add/drop period. Requests submitted after that period may not be approved. Please consult your research advisor before submitting this form.

9. Students admitted to the B.S./M.S. program at UMBC: Up to nine graduate credits taken as an undergraduate can count towards the M.S. degree. Once you enroll in the M.S. program, please check with the Graduate Program Director to ensure that the courses taken as an undergraduate will be eligible for the M.S. degree.

3.2 TA Support and M.S. Thesis

A M.S. student who has been supported by the department as a regular 20-hr TA for at least three semesters is required to complete a Master's Thesis for the degree. The student should register for at least 3 credits of M.S. Thesis (CMSC 799) in the third semester and submit a thesis abstract by the end of their third semester (as part of evidence that they plan to pursue the thesis option).

This implies that renewal of TA support in the second year of the M.S. program will be for a semester at a time.

For a Ph.D. student who does not have a prior M.S. degree in computer science and has been supported by the department as a regular 20-hr TA for at least three semesters, the following options apply:

1. If the student has passed the comprehensive examination/portfolio within the specified time limit, the student can apply for a M.S. degree with either the thesis or non-thesis option.

2. If the student has failed the comprehensive examination/portfolio within the specified time limit and desires to take the terminal M.S. degree, then the student must follow the M.S. with thesis option.

3.3 M.S. Timeline/Milestones

The following list presents the milestones and deadlines for M.S. students currently in the CMSC graduate program.

1. **File the Research Advisor Form:** Select a research advisor by the second semester in residence and submit the form by April 15th (for students starting in the Fall semester) or Nov 15 (for students starting in the Spring semester).

 Part-time students: File the form in the semester (by April 15 or Nov 15) in which the student has completed 15 credits towards the M.S. degree.

2. **File the CMSC Program of Study Form:** By April 15 (for Fall starts) or Nov. 15 (for Spring starts) of the second semester (applies to full-time students). The Program of Study will list all courses taken so far and courses planned through graduation. This

Revised 1/28/2014
form should be signed by the student’s research advisor. This form is different from the Graduate School’s *Fulfillment of Course Requirements for Master’s Degree* form that is typically filed in the semester you plan to graduate.

Please note that satisfactory evidence of research, strong academic performance and positive TA evaluations are some of the prerequisites for continued departmental TA support in the second year.

Part-time students: File this form in the semester (by April 15 or Nov 15) in which the student has completed 15 credits towards the M.S. degree.

3. **Research Abstract:** For both the thesis and non-thesis options, submit a 1-page research abstract describing the topic, the problem that is planned to be addressed and the expected methodology of study. This should be filed by Jan. 31st for Spring graduation, May 31st for Summer graduation, and Sept. 30th for Fall graduation.

4. **Progression and Graduation Forms:** Follow all the Graduate School requirements for applying for the M.S. degree as well as departmental guidelines:

M.S. Thesis Option
1. *Research Advisor* form
2. *CMSC Program of Study* form
3. *M.S. Thesis/Project Abstract* form
4. *Fulfillment of Course Requirements* form
5. *Application for Diploma* form
6. *Nomination of Members for Final Examination Committee* form
7. *Certificate of Completion of M.S. Degree Requirements* form
8. *Certificate of Completion of M.S. Thesis* form
9. Submit unbound copy of thesis to Graduate School and bound copy to the department

M.S. Non-Thesis Option
1. *Research Advisor* form
2. *CMSC Program of Study* form
3. *M.S. Thesis/Project Abstract* form
4. *Fulfillment of Course Requirements* form
5. *Application for Diploma* form
6. *Scholarly Paper Approval* form
7. *Certificate of Completion of M.S. Degree Requirements* form
8. Submit an unbound copy of scholarly paper to the department

Important Note: If deadlines are not strictly met, you risk delaying your defense dates.

Revised 1/28/2014
3.5 M.S. in Computer Science with Systems Engineering Track

The Masters of Science in computer science program offers a systems engineering track (MSCS-SE). The curriculum is designed to provide depth of knowledge in computer science and prepare engineers and IT professionals in industry to design systems from beginning to end using a methodical systems engineering process. This includes the knowledge of how to network subsystems to achieve a desired total system performance and how to manage the process of incorporating systems into larger systems to achieve interoperability. The track is designed to teach the knowledge and skills required of the systems engineer or computer scientist to successfully guide a system's development.

The Master Science in computer science with the systems engineering track is a non-thesis program. Students must earn 33 credit hours that include the CMSC/ENEE 698 Systems Engineering Project course. In the project course the student performs an industry-based SE project and writes a related technical-report/scholarly-paper that must be approved by the department. Normally, two faculty members must approve the Project course scholarly paper, but in this case, to encourage local industry and government partnership, the scholarly paper can be approved by the student's advisor and an industry/government mentor approved by the department. The program curriculum is comprised of:

A. Five required CMSC courses:
 1. CMSC 611 – Advanced Computer Architecture
 2. CMSC 621 – Advanced Operating Systems
 3. CMSC 641 – Design and Analysis of Algorithms
 4. CMSC 661 – Principles of Database Systems
 5. CMSC 681 – Advanced Computer Networks

B. Five required Systems Engineering courses:
 1. Either CMSC 615 – Intro to Systems Engineering and System Architecting or ENEE 660 – Systems Engineering Principles
 2. ENEE 661 – System Architecture and Design
 3. Either ENEE 662 – System Modeling, Simulation and Analysis or CMSC 625 – Modeling and Simulation of Computer Systems
 4. CMSC 618/ENEE 663 – System Implementation, Integration and Test
 5. CMSC 698/ENEE 698 – Systems Engineering Project

C. One elective. The suggested electives are:

Revised 1/28/2014
• CMSC 645 – Advanced Software Engineering
• CMSC 671 – Artificial Intelligence
• CMSC 683 – Computer Network Architecture
• CMSC 628 – Mobile Computing
• CMSC 691/ENEE 664 – Special topics in Systems Engineering
4. Requirements for the Ph.D. Degree in Computer Science

The following table summarizes the requirements for the Ph.D. degree in computer science:

<table>
<thead>
<tr>
<th>Summary of Requirements for the Ph.D. Degree in Computer Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 credits of graduate coursework</td>
</tr>
<tr>
<td>- including the breadth requirements (12 credits total)</td>
</tr>
<tr>
<td>- containing no regular graduate course taken with pass/fail grading</td>
</tr>
<tr>
<td>- containing at most 6 credits of some combination of CMSC 696, CMSC 699, CMSC 800, and CMSC 898</td>
</tr>
<tr>
<td>- containing at most 9 credits of non-CMSC courses with prior approval</td>
</tr>
<tr>
<td>A minimum GPA of 3.0</td>
</tr>
<tr>
<td>Passing the Comprehensive Examination / Portfolio</td>
</tr>
<tr>
<td>Passing the Preliminary Examination and Admission to Candidacy</td>
</tr>
<tr>
<td>18 credits of Dissertation Research (CMSC 899) taken after Admission to Candidacy, taken over at least two semesters (Summer semesters typically do not count)</td>
</tr>
<tr>
<td>Completing and successfully defending the Dissertation</td>
</tr>
<tr>
<td>A minimum of three years of full-time graduate study or its equivalent, with at least one year of full-time study completed at UMBC</td>
</tr>
<tr>
<td>Completing each of the milestones according to the timeline specified in Section 4.5 Ph.D. Timeline/Milestones</td>
</tr>
</tbody>
</table>

Many of the items listed in the above table are governed by further rules and specific time requirements. These details are specified in the appropriate subsection.

4.1 Coursework Requirements

Each student must satisfy the minimum course requirements for their field of specialty — eleven courses totaling 33 credits, excluding the department’s research seminar and doctoral dissertation research credits.

Of the 33 graduate-level course credits required for the Ph.D. degree:

(a) Breadth Requirements: Each student must take and receive a grade of “B” or better in each of the following three courses: CMSC 611 (Computer Architecture), CMSC 621
(Advanced Operating Systems), and CMSC 641 (Design and Analysis of Algorithms). In addition, the student must take at least one additional course from the following list and receive a grade of “B” or better: CMSC 626 (Principles of Computer Security), CMSC 635 (Advanced Computer Graphics), CMSC 651 (Automata Theory and Formal Languages), CMSC 655 (Numerical Computation), CMSC 661 (Principles of Database Systems), CMSC 671 (Principles of Artificial Intelligence), or CMSC 681 (Advanced Computer Networks).

(b) At most 6 credits total of CMSC 699 (P/F) and/or CMSC 696 (P/F) and/or CMSC 800 (P/F) and/or CMSC 898 (P/F) can be counted, of which at most 3 credits of CMSC 696 will be counted.

(c) No regular graduate course taken pass/fail (P/F) will be counted towards the 33 credits.

(d) CMSC 899 credits cannot be counted towards the 33 credits. Students may register for dissertation research credits (CMSC 899) after admission to candidacy. The Graduate School requires that students who are admitted to candidacy must register for six CMSC 899 credits every semester until graduation. Under special circumstances, a student may request leave of absence during candidacy, by filling out a form obtained from the Graduate School website. A minimum of 18 credits of CMSC 899 are required for graduation; the 18 credits must be taken over at least two semesters.

(e) Requests for obtaining course-equivalency approvals from other universities should be submitted before submitting the Ph.D. program of study. Students with graduate courses from other universities should submit the Course Equivalency Request form soon after joining UMBC, preferably before their second semester.

Note: Such courses, if approved, are not officially transferred (i.e. they will not show up on your transcript), but will be counted towards the required Ph.D. course credits.

(f) Requests for approval of non-CMSC course credits (at most nine credits) should be submitted before registering for the non-CMSC course. There is a form available for this request and should be signed by the student’s research advisor.

(g) Students are required to maintain a minimum GPA of 3.0 (this is also a Graduate School requirement). Students who fail to maintain the minimum GPA may be subject to academic probation and may be subject to dismissal from the Graduate Program in the case of repeated poor academic performance.

COMPREHENSIVE PORTFOLIO

The comprehensive portfolio is intended to evaluate the understanding of core material and the readiness of doctoral students to pursue research. It consists of the following components:

1. Course performance
2. Research statement
3. Curriculum vita
4. An independently produced report

Revised 1/28/2014
5. Two letters of support, one from the research mentor, one from another CSEE faculty member.
The CMSC Graduate Committee will make its decision about the student’s continuation in the Ph.D.
program based on evaluation of these materials. The student must submit the final portfolio before
the end of the fourth semester for full-time students, or the end of the fifth semester for part-time
students. Templates for the student research statement and faculty letters of support are available on
the CSEE website. While it is expected that the portfolio will be strong across all areas, the portfolio
will be evaluated as a whole, with excellent performance in one area offsetting lower performance in
another area.

Course Performance

Demonstrated strong performance in graduate coursework is important for the foundation
of knowledge needed to conduct research in computer science. It is recommended that
Ph.D. students achieve a minimum of three As and one B in the core courses plus one from
the following list of electives: CMSC 626, 635, 651, 655, 661, 671, 681. The core courses are
CMSC 611, 621, and 641.

Should the student’s GPA in the selected four courses fall below the recommended 3.75, this
performance in coursework may be offset in the review of the overall portfolio with
evidence that reflects one or more of the following areas: high levels of achievement in
advanced coursework, strength in the written report, demonstrated superior proficiency in
preliminary research, or other evidence of potential research excellence provided by the
faculty or the student in the portfolio. Students may also repeat courses if necessary to gain
sufficient proficiency in these core areas.

For Transfer Students:

1. **For the core courses:** You may submit a request for course equivalency for courses taken
 at other universities (with a minimum grade of B or equivalent). If the course syllabi,
 exams/projects, and evaluation criteria are comparable to the UMBC course, we will
 consider the grade in that course in the evaluation of the course requirement portion of
 the portfolio.

2. **For non-core courses:** The current standard policy as outlined elsewhere in the
document applies.

Written Report

The ability to analyze and synthesize ideas is critical for success in a doctoral program. All
students must submit a written report on a topic approved by the research mentor. This can
be a report from an independent study or independent project course, or it may come from
preliminary research conducted by the student. The student must write the report independently.
The report should demonstrate understanding of materials from more than
one subfield in computer science and related disciplines. The student is encouraged but not
required to include original results in the report.

The report can be up to 10 pages, single-spaced. It should be in double-column format with
the font for the main text no smaller than 10pt. You may follow the format instruction of any
major Computer Science conference for other formatting specifics. As an example, the LaTex
style file and Microsoft Word template for IJCAI are provided at the graduate website.

Revised 1/28/2014
Submission Details

1. The completed portfolios must be submitted by January 31 or August 31.

2. **Preliminary:** Full-time students must submit a preliminary portfolio at the beginning of their 3rd semester in the Ph.D. program at UMBC. Part-time students must submit a preliminary portfolio at the beginning of their 4th semester in the Ph.D. program at UMBC. The preliminary portfolio is not required to include the written report. The support letter from the research mentor is required; additional letters are optional. Feedback will be provided on the preliminary portfolio so that students can strengthen the final submission.

3. **Final:** Full-time students must submit the final portfolio at the beginning of their 5th semester at UMBC. Part-time students must submit the final portfolio at the beginning of their 6th semester.

4. The Graduate Committee will provide one of three decisions on the final portfolio: Pass, Deficient (certain conditions will be imposed for continuation in the program), or Fail.

5. The final portfolio can be submitted ahead of schedule. Submission dates are January 31st and August 31st.

4.3 Preliminary Examination (Prelim) and Candidacy

Each student must select a dissertation advisor and a dissertation preliminary examination committee and must pass a two-part preliminary examination. In the first part, the student will present and defend his or her dissertation proposal to the Prelim Committee. In the second part, the Committee examines the student orally on his or her research area(s) to assess his or her ability to successfully complete the proposed research.

Notes:

1. The committee must consist of at least four members, of whom three (including the Chair) must hold regular Graduate faculty status. It is also recommended that the committee have at least one member outside the student’s graduate program.

2. The intent is that there will be significant overlap between members of the Ph.D. Final Dissertation Committee and the Preliminary Examination Committee.

3. The *Ph.D. Preliminary Exam Scheduling Form* must be submitted at least thirty (30) calendar days prior to the examination date. A preliminary examination held without prior submission of this form will be considered invalid and the Application for Candidacy will not be processed.

Ph.D. Candidacy: After passing the prelim and completing the course requirements, the Graduate Program Committee recommends to the Graduate School that the student be admitted to Ph.D. candidacy. The student should submit the relevant Application for Candidacy form to the department for approval and forwarding to the Graduate School. A student who has passed the preliminary exam and has finished 30 graduate credits may
apply for candidacy in the semester that they are registered for the 11th course; the application must be submitted before the 10th day of the semester.

4.4 Dissertation Research

Each student will conduct and report on a significant original research project under the guidance of his or her dissertation advisor. This research must be completed and defended within four years of admission to candidacy. Students must be admitted to candidacy at least two full sequential semesters before the date on which the doctoral degree is to be conferred.

The doctoral dissertation must be an original and substantive contribution to knowledge in the student’s major field, and must demonstrate the student’s ability to carry out a program of research and to report the results in accordance with standards observed in the recognized scientific journals related to that field.

Residency Requirements: A minimum of three years of full-time graduate study or its equivalent is required. At least one year of full-time study must be completed at UMBC.

4.5 Ph.D. Timeline/Milestones

The following list presents the milestones and deadlines for CMSC Ph.D. students. Failure to meet any of the deadlines could result in penalties including, but not limited to: loss of financial support, academic probation, and/or dismissal from the program.

1. Determine Coursework: Evaluate the course requirements and take appropriate courses in consultation with your temporary or research advisor.

 If you already have an M.S. degree from elsewhere, determine which courses can be counted towards the Ph.D. degree course requirements and apply for formal course-equivalency credits.

2. Research Experience Evidence: By the end of the second semester in residence (May 31 for students who started in the Fall and Dec 31 for Spring starts), the student should submit: (i) a research statement outlining the student's research activities in the first year; and (ii) a statement of support from a faculty member potentially interested to be the student's research advisor. The research experience can be obtained by registering for at least 3 credits of CMSC 699 with a faculty member and/or working on research publications.

 Satisfactory evidence of research, strong academic performance and positive TA evaluations are some of the prerequisites for continued departmental TA support in the second and subsequent years.

3. Portfolio: Successfully pass the portfolio by the end of the fourth semester in residence (fifth semester for part-time students). You are allowed at most two attempts within this specified time limit. For those who started prior to Fall 2005 and plan to take the examination model, these examinations are typically offered in the week before classes start.
4. **File the Research Advisor Form:** Select a research advisor by the fourth semester in residence and submit the form by April 15th (for students starting in the Fall semester) or Nov 15 (for students starting in the Spring semester).

5. **File the CMSC Program of Study Form:** By April 15 (for Fall starts) or Nov. 15 (for Spring starts) of the fourth semester in residence (applies to full-time students) or after completing 15 credits of CMSC coursework (part-time students). The *Program of Study* will list all courses taken so far and courses planned through graduation. This form should be signed by the student’s research advisor. Course equivalency requests for graduate courses taken elsewhere should have been submitted and approved before submitting the Ph.D. program of study.

 Note: If there are changes to your program of study after you have filed it, then you should file the updated program of study with the Dept. for approval.

6. **Research Progress Form:** After passing the comprehensive exam or final comprehensive portfolio, file a *Research Progress* form by April 15th each year until graduation.

 This report is for the period covering April 1st of the preceding year until March 30th of the current year. This includes a CV, research projects involved in, publications submitted or accepted, conferences attended/presented, awards received, etc. The progress form will also include a brief statement from the research advisor on the student's research progress.

7. **Preliminary Examination/Admission to Candidacy:** Successfully pass the Ph.D. Preliminary exam by the end of the fourth year (fifth year for part-time students) after starting the Ph.D. program. **The preliminary examination may be attempted only after passing the final portfolio.** The *Preliminary Exam Committee Nomination* form should be filed at least 30 days prior to the prelim exam. The *Preliminary Examination Scheduling Form* must be submitted to the Graduate Program Director at least 30 days prior to the examination date.

 After completing the 33 credits of graduate coursework required for the Ph.D. degree and passing the Ph.D. Preliminary Examination, apply to the Graduate School for *Admission to Candidacy*. A revised *Program of Study* must be submitted if there are any changes to the original program of study submitted in Step 4 above.

 Once admitted to candidacy, the student must register for 6 credits of CMSC 899 each semester until graduation, unless leave of absence is requested (see above).

 Now you have attained the so-called *All But Dissertation (ABD)* stage.

8. **Research Progress Form:** Continue to file the *Research Progress* form by April 15th each year until graduation (see above for description).

9. **Final Dissertation Defense:** Successfully pass the Ph.D. dissertation defense after at least two semesters and within four years of passing the Preliminary exam.
10. **Graduate School Forms**: Follow all the Graduate School requirements for applying for the Ph.D. degree:

 (a) *Nomination of Members for the Final Doctoral Examination Committee* (at least six months prior to final Ph.D. examination)

 (b) Announcement of Ph.D. Dissertation Defense (ten working days prior to Ph.D. defense date)

 (c) *Certification of Completion of Doctoral Dissertation* form

 (d) *Application for Diploma* form

Important note: If the above deadlines are not strictly met, you risk delaying your defense dates.
5 What I Wish I Had Known: Advice from Fellow Students

This section contains recommendations and information on a variety of topics regarding the CS graduate program. It was written for students by students, and contains information that enhances and supports material elsewhere in this program handbook. These recommendations are only guidelines, and do not reflect additional program requirements.

5.1 Forms and Deadlines

Advance Form Due Dates by 1-2 Weeks: Most graduate school forms require the signature of the CS Graduate Program Director before they can be submitted. Often times, obtaining this signature may take up to a week, so to avoid the graduate school forms being late, you must advance all due dates by 1-2 weeks. These due dates are listed on the graduate school website: www.umbc.edu/gradschool.

We also recommend advancing the due dates of the CSEE department forms by 1 week, however, you can submit them closer to the deadline provided that you have already obtained all other signatures.

5.2 Research and Lab Rotations

Start Research Immediately: We highly recommend that students work on research projects beginning with their first semester. You may get formal credit for these research projects by registering for CMSC 699 Independent Study/Research. We also highly recommend taking the CMSC 691B Basic Research Methods course to jumpstart your research.

Rotate through Several Labs: Many other graduate programs contain a research rotation that rotates first or second year Ph.D. students through two or three different research labs. This research rotation provides an invaluable chance to see how different labs work, interact with several professors, and gain exposure to a variety of areas. Although there is not a formal “research rotation” in place for the CS graduate program, we recommend taking 2-3 semesters of CMSC 699 and working with a different professor (in different labs) during at least 2 of those independent studies.

Although this limits the length of the independent study projects to a single semester, you will find the exposure helpful in your future research and in selecting an advisor. The knowledge of multiple CS subfields also encourages your research to be interdisciplinary. You may also learn about other lab’s research and work your way into a lab by attending the regular lab meetings, which are generally open to visitors. We recommend you attend several labs’ meetings early in your graduate career.
Stay Current in the Field: We also highly recommend attending several department research colloquia each semester and browsing journal publications through the UMBC library’s Research Port website to stay current with other CS research. We also recommend beginning to review conference and journal publications as soon as possible. Your advisor has many organizations asking them to review publications, and you should keep asking your advisor to let you review several publications each semester. This is a great way to learn about the publication process, learn how to get your research published, and enhance your curriculum vitae.

5.3 Socializing

Build a Social Network: It is vital to build yourself a social network in the department and with other researchers in your field. Your contacts (especially with people outside the department) are very important for fostering research collaboration. Contacts within your department are important for immediate feedback on your research and for support during your graduate career.

Work in a Social Environment: It is very important for full-time students, especially Ph.D. students, to work on-campus and in the department. This also gives yourself and others opportunities to work together to understand concepts, and solve class or research problems. Such impromptu collaboration cannot be planned. Students that work in a social environment have a much higher success rate than those who work in isolation.

Serve on Committees: The more you “stick your neck out” and get your name around, the more likely that a faculty member will recommend you to serve on department committees (such as the Promotions and Tenure committee, the Graduate committee, hiring committees, etc.), which will improve your curriculum vitae.

Attend Department Social Events: Attending department social events is another good way of making contacts within the department. It is also a good way of breaking the isolation of research.

Attend Conferences: The primary way to make contacts with other researchers in your field is by attending conferences. The Graduate Student Association provides funds for graduate students to attend conferences. Additionally, many conferences have student scholarships that you can apply to for travel funding. We recommend that students attend conferences whenever they have the chance, and spend a good portion of their time at the conference meeting researchers in their area.

5.4 Fellowships and Internships

Apply for Fellowships: Fellowships provide a much more flexible method of funding than department assistantships and are highly prestigious. During the first several years of your graduate study, you are eligible to apply to many of the fellowship programs. We
recommend that you keep applying for fellowships as long as you are eligible.

Do Internships: Internships provide a great way to gain practical on-the-job experience, make industry contacts for future employment, and earn extra money. There are many internships in computer science that are available for either the summer months or longer periods of time extending into the semester.

Most TA-ships do not extend into the summer, so summer internships provide funding for the summer and allow you to save money for the school year.

Apply Early to Internships: If you are interested in a summer internship, you should apply for it the previous Fall semester. For most government internships that may require security clearance, you need to begin applying one year in advance.

5.5 Progress Checklists

Use the CMSC Program Checklists: The CS department website includes checklists for each CS graduate program to track your progress. Print out and keep the appropriate progress checklist up-to-date – it will save you stress and help you graduate on-time!
6 Facilities and Special Resources

The department’s computing facilities include Sun and Silicon Graphics workstations, SGI Crimson and SPARC servers, and high performance graphics workstations (SGI Indigo2, Onyx Reality Engine2). The Office of Information Technology has over 400 workstations for general student use and several high-end machines including a Silicon Graphics Challenge XL 20 processor system. UMBC’s Imaging Research Center also provides high-end graphics support including production quality input/output devices and production software (Wavefront, Softimage, and Alias).

Center for Information Security and Assurance

Cyber Defense Lab
Contact: Dr. Alan Sherman

The Cyber Defense Lab focuses on research related to computer systems security, cryptology, intrusion detection, and electronic commerce. It provides an isolated environment where students are provided a unique opportunity to research topics that would ordinarily be considered too dangerous to network and system resources to be investigated in other computer labs.

CORAL (COgnition, Robotics, And Learning) Laboratory
Contact: Dr. Tim Oates

Research in the Cognition, Robotics, and Learning (CORAL) lab seeks to understand how artificial systems can acquire grounded knowledge from sensori-motor interaction with their environment that enables cognitive activities, such as natural language communication and planning.

URL: http://www.coral-lab.org
The DIADIC Research Laboratory
Contact: Dr. Hillol Kargupta

The DIADIC Research laboratory’s research is primarily focused in the area of distributed computation for data analysis and modeling. Their research explores data mining algorithms, systems, and applications for environments where data, computing resources, and users are distributed.

URL: http://www.cs.umbc.edu/~hillol/Kargupta/diadic.html

Data & Resource Engineering And Management (DREAM) Lab
Contact: Dr. Konstantinos Kalpakis

The mission of the DREAM Lab is to design algorithms and develop system architectures for the engineering of data systems and the management of distributed computing system resources. Research themes include managing and mining spatio-temporal multimedia scientific datasets, data replication and query processing, resource management in distributed systems, sensor networks, streaming datasets, and system security.

The eBiquity Group
Contacts: Drs. Tim Finin, Anupam Joshi, Yun Peng, and Yelena Yesha

The eBiquity Group includes three laboratories, LAIT, LIST and EBIQUITY, and studies the interactions between mobile and pervasive computing, the semantic web, cognitive systems and security. It includes over 20 students conducting research and pursuing graduate or undergraduate degrees. Research is characterized by fundamental advances in underlying areas -- distributed systems, wireless networking, databases technology, multiagent systems, knowledge representation and reasoning, machine learning, and security -- explored and evaluated through their application to problems that matter. The eBiquity groups’ research is supported by corporate and government sponsors and partners that include NSF, DARPA, NASA, NIST, DoD, IBM, HP, Fujitsu, Nokia, and AetherSystems.

URL: http://ebiquity.umbc.edu/

MAPLE (Multi-Agent Planning and LEarning) Laboratory
Contact: Dr. Marie desJardins

The Multi-Agent Planning and Learning Lab at UMBC is devoted to exploring artificial intelligence and developing AI solutions to real-world problems. Our interests and current projects span both the theoretical and practical aspects of artificial intelligence.

Our research reaches outside of multiagent systems, planning, and machine learning to include cognitive science, computational sociology, bioinformatics, and human-computer interaction.

Revised 1/28/2014
VANGOGH Laboratory
Visualization, Animation, Non-Photorealistic Graphics, Object-Modeling, and Graphics Hardware
Contacts: Drs. Penny Rheingans, and Marc Olano
The VANGOGH laboratory provides a specialized environment for research in computer graphics. The pillars of the lab are understanding of data using visualization and interactive graphics using graphics hardware. Between these two areas, the VANGOGH lab fosters research in realistic and non-realistic artistic graphics, procedural shading, computer animation, object modeling and representation, and design and use of graphics hardware. Research in the VANGOGH laboratory has been supported by ARDA, NSA and NSF.
URL: www.cs.umbc.edu/gavl.
7. Listing of CMSC Graduate Courses

CMSC 601 Research Skills for Computer Science
Credits: 3
In this course, students will learn basic skills that are essential to becoming a successful researcher. The objective of the course is to teach research skills in a systematic fashion, early in a student's graduate program. The core of the course is a structured, supervised research project on a topic of the student's choice. Additional lecture topics include writing skills, research methodology, experimental design, career options, professional ethics and academic integrity, and oral and written presentation techniques.
Pre-requisite: Graduate Standing in Computer Science.

CMSC 603 Advanced Discrete Structures
Credits: 3
Introduction to the fundamental concepts and techniques of discrete mathematics that are essential for the study of computer science. The main goal of this course is to develop mathematical skills and sophistication for proving theorems, solving problems, and counting and approximating values. Topics include sets; elementary logic; numbers; functions and relations; summations; generating functions; elementary number theory; elementary probability, statistics, and combinatorics (e.g. Burnside’s Lemma); introduction to algebraic systems, including groups; and applications of these topics in computer science.
Prerequisites: MATH 152, MATH 221, and at least one math course beyond linear algebra.

CMSC 611 Advanced Computer Architecture
Credits: 3
Memory system design, pipeline structures, vector computers, scientific array processors, multiprocessor architecture. Within each topic, the emphasis is on fundamental limitations: memory bandwidth, interprocessor communication, processing bandwidth, and synchronization.
Prerequisite: CMSC 411 or permission of instructor.

CMSC 615 Introduction to Systems Engineering
Credits: 3
The course provides an introduction to Systems Engineering for students with a background in information technology. It introduces Systems Engineering activities, artifacts and milestones as well as key Systems Engineering-related references and tools. Although the course focuses principally on Requirements Elaboration and Analysis, Design Synthesis and Architecture Modeling (DOD Architecture Framework, Structured Analysis, UML and

CMSC 618 Implementation, Integration and Test
Credits: 3
Same as: ENEE 663 – System Implementation, Integration and Test

CMSC 621 Advanced Operating Systems
Credits: 3
A detailed study of advanced topics in operating systems including: synchronization mechanisms, virtual memory, deadlocks, distributed resource sharing, computer security, and modeling of operating systems.
Prerequisite: CMSC 421 or permission of instructor.

CMSC 625 Modeling and Simulation of Computer Systems
Credits: 3
Performance evaluation methods, Markovian queuing models, open networks of queues, closed product form queuing networks, simulation and measurement of computer systems, benchmarking, and workload characterization.
Prerequisite: CMSC 411 or CMSC 421, or permission of instructor.

CMSC 626 Principles of Computer Security
Credits: 3
This course will provide an introduction to computer security, with specific focus on the computing aspects. Topics covered will include: Basics of computer security including an overview of threat, attack and adversary models; social engineering; essentials of cryptography; traditional computing security models; malicious software; secure programming; Operating system security in practice; trusted operating system design; public policy issues including legal, privacy and ethical issues; network and database security overview.

Prerequisite: CMSC 421 or permission of instructor

CMSC 627 Wearable Computing

Revised 1/28/2014
Credits: 3
This course covers fundamental concepts, methodologies, algorithms and the research challenges related to wearable computing, including the following: Emotional Design, Convergent Design Processes, Wearability Considerations, Wearable Sensors Networks, Wearable Networks, Physiological Wearable Sensors, Innovation processes, Marketing and business considerations, Human Aware Computing, Context Awareness, Wearable Communities, Future Mobility and Wearable Systems Applications.
Pre-requisite: Graduate Standing in Computer Science or permission of instructor.

CMSC 628 Introduction to Mobile Computing
Credits: 3
This course will introduce students to the techniques and research issues involved with mobile computing, which deals with access to the networked information and computation resources from wirelessly connected palmtop/laptop type devices. Topics covered deal with both networking (MAC protocols, ad-hoc routing, mobile IP) and data management (proxy based systems, mobile DBMS, mobile transactions, sensor networks and stream data) issues.

CMSC 631 Principles of Programming Languages
Credits: 3
A comparison of three types of modern programming languages: assertive, functional, and logic based. Fundamental semantic methods, including operational, axiomatic, and denotational semantics and corresponding techniques for program verification, including Hoare’s logic, Dijkstra’s predicate transformers, and denotational methods.
Prerequisite: CMSC 331 or permission of instructor.

CMSC 634 Computer Graphics
Credits: 3
An introduction to the fundamentals of interactive computer graphics. Topics include graphics hardware, line drawing, area filling; clipping, two-dimensional and three-dimensional geometrical transforms, three-dimensional perspective viewing, hidden surface removal, illumination, color and shading models.
Pre-requisite: Graduate Standing in Computer Science or permission of instructor.

CMSC 635 Advanced Computer Graphics
Credits: 3
A study of advanced topics in computer graphics emphasizing algorithms for display of 3D objects including: wire frame representation, polygon mesh models, shading algorithms,
parametric representation of curves, hidden surface elimination, fractals, and ray tracing. Other topics include: advanced topics from the computer graphics literature, page description languages, CORE, GKS, PHIGS, CGI, the X window system, X window intrinsics, Motif and widget programming.

Prerequisite: CMSC 435 or permission of instructor.

CMSC 636 Data Visualization

Credits: 3

This course addresses the theoretical and practical issues in creating visual representations of large amounts of data. It covers the core topics in data visualization: data representation, visualization toolkits, scientific visualization, medical visualization, information visualization, and volume rendering techniques. Additionally, the related topics of applied human perception and advanced display devices are introduced. Open to computer science students with a background in computer graphics or students in data-intensive fields who are familiar with the use of the computer for data collection, storage, or analysis.

Prerequisites: CMSC 435, CMSC 634, or permission of instructor.

CMSC 641 Design and Analysis of Algorithms

Credits: 3

Fundamental algorithms, mathematical tools for analyzing algorithms, and strategies for designing algorithms. Topics include graph algorithms (including network flow), parallel algorithms, and algorithms for selected combinatorial tasks. Tools include asymptotic notations, recurrences, amortized analysis, and probabilistic analysis. Strategies include divide and conquer, greedy, dynamic programming, time space tradeoff, and randomization. Introduction to NP completeness.

Prerequisite: CMSC 441 or permission of instructor.

CMSC 643 Quantum Computation

Credits: 3

The course begins with a brief overview of those topics in quantum mechanics and mathematics needed for the understanding of quantum computation. It will then focus on quantum algorithms, covering such topics as quantum superposition and quantum entanglement, quantum decoherence, quantum teleportation, quantum Turing machines, Shor’s Algorithm, Grover’s algorithm, Hallgren’s algorithm, quantum information theory, quantum data compression, quantum cryptographic protocols, quantum error-correcting codes, implementation issues. Various research level problems will be discussed.

Prerequisite: CMSC 641 or CMSC 651 or permission of instructor.

CMSC 644 Information Assurance

Revised 1/28/2014
Credits: 3
Selected recent research topics in information assurance, such as social engineering, buffer overflow, malicious code, spyware, intrusion detection, firewalls, denial of service, information warfare, computer forensics, recovery and response, enterprise security, clandestine channels and emissions security, security analysis, security models and formal techniques, best practices, and national policy for information assurance.

CMSC 645 Advanced Software Engineering
Credits: 3
Modern approaches to software development: Requirements analysis, system design techniques, formal description techniques, implementation, testing, debugging, metrics, human factors, quality assurance, cost estimation, maintenance, and tools.
Prerequisite: CMSC 445 or permission of instructor.

CMSC 651 Automata Theory and Formal Languages
Credits: 3
Formal languages and their corresponding classes of automata: regular languages and finite automata, context free languages and pushdown automata, context sensitive languages and linear bounded automata, recursively innumerable sets, and Turing machines. Also, pumping lemmas, closure properties, and decision problems for various classes of languages. Other sorts of automata may be studied, including multi headed automata, probabilistic automata, and Petri nets.
Prerequisite: CMSC 451 or permission of instructor.

CMSC 652 Cryptography and Data Security
Credits: 3
Conventional and public key cryptography. Selected crypt systems, including DES and RSA. Digital signatures, pseudo-random number generation, cryptographic protocols, and cryptanalytic techniques. Applications of cryptography to electronic commerce.
Prerequisites: CMSC 441 and MATH 221 or permission of instructor.

CMSC 653 Coding Theory and Applications
Credits: 3
An introduction to the theory of error correcting codes with an emphasis on applications and implementations. Shannon’s theorems, bounds on code weight distributions, linear codes, cyclic codes, Hamming and BCH codes, linear sequential circuits, encoding/decoding algorithms. Other topics may be drawn from Goppa, ReedSolomon, QR codes, nonlinear codes, and convolutional codes.
Prerequisite: CMSC 203 or MATH 221, or permission of instructor.
CMSC 655 Numerical Computations
Credits: 3
Numerical algorithms and computations in a parallel processing environment. The architecture of supercomputers, vectorizing compilers and numerical algorithms for parallel computers.
Prerequisites: CMSC 411 and Math 221, or permission of instructor.

CMSC 656 Symbolic and Algebraic Processing
Credits: 3
Applications and Foundations of Symbolic Algebra. Applications and examples are studied using at least one large symbolic algebra package. Symbolic algebra combines elements of AI, analysis of algorithms, and abstract algebra. Foundations include problems of representation, canonical and normal forms, polynomial simplification, Buchberger’s algorithm, g.c.d. in one and several variables, panic methods, and formal methods for integration.
Prerequisites: CMSC 203 and CMSC 341 or permission of instructor.

CMSC 657 Networks and Combinatorial Optimizations
Credits: 3
Graph theoretic concepts, unimodular matrices, transportation problems, minimum cost network flows, maximal flows in networks, shortest path algorithms, spanning three problems, multi-commodity flows and decomposition algorithms, assignment and matching problems, computational complexity of algorithms, and other special topics such as matroid theory and nonlinear network minimization.
Prerequisite: CMSC 641 or permission of instructor.

CMSC 661 Principles of Database Systems
Credits: 3
Advanced topics in the area of database management systems: data models and their underlying mathematical foundations, data base manipulation and query languages, functional dependencies, physical data organization and indexing methods, concurrency control, crash recovery, data base security, and distributed data bases.
Prerequisite: CMSC 461 or permission of instructor.

CMSC 665 Introduction to Electronic Commerce
Credits: 3
Revised 1/28/2014
This course focuses on the use of electronic means to pursue business objectives. Special emphasis is placed on the student’s ability to do research into existing and emerging technology and to clearly summarize and present his/her findings. The first part of the course is devoted to enabling technologies including an introduction to business models for e-commerce and basic infrastructure, an overview of networking technologies and their impact on e-commerce, and discussions on database technologies and Web-database connectivity. The second part of the course concentrates on the issues that are not solely technical such as trust management, privacy and personalization, selling information products and copy protection, and the digital divide.

CMSC 666 Electronic Commerce Technology

Credits: 3

This course is designed to prepare students to be e-commerce developers. It introduces the students to the changing and competitive landscape of e-commerce technology, products, and solutions. The course begins with an introduction to WWW technology, an overview of Web applications and services, and discussions on networking technologies with the view towards mobile and wireless commerce and object orientation and Web programming. It also covers Java language and relational databases, database-web connectivity, inter-process communications in a distributed environment concentrating on Java RMI and CORBA technologies, JavaScript, dynamic HTML, XML and its applications, component programming with JavaBeans, and WebServer servlet architecture. The second part of the course explores the theoretical underpinnings of decision support systems, provides an overview of Web mining and commercial decision support products for E-Commerce, and introduces the student to agent technology and agent-driven e-commerce.

CMSC 671 Principles of Artificial Intelligence

Credits: 3

A study of topics central to artificial intelligence, including logic for problem-solving, intelligent search techniques, knowledge representation, inference mechanisms, expert systems, and AI programming.

Prerequisite: CMSC 471 or permission of instructor.

CMSC 673 Introduction to Natural Language Processing

Credits: 3

Natural language processing (NLP) was the first non-numerical application of computing over 50 years ago. The ultimate goal of NLP is to enable computers to communicate with people the same way as people communicate among themselves; that is, using a natural language like English. To do so, the computers must be able to understand and generate texts. The course will introduce the students to the fundamental problems, basic methods and the most important application of NLP.

Prerequisite: CMSC 313, knowledge of LISP or permission of instructor.

Revised 1/28/2014
CMSC 675 Introduction to Neural Networks
Credits: 3
A comprehensive study of fundamentals of neural networks. Topics include feedforward and recurrent networks, self organizing networks, and thermodynamic networks; supervised, unsupervised, and reinforcement learning; and neural network application in function approximation, pattern analysis, optimization, and associative memories.

CMSC 676 Information Retrieval
Credits: 3
This course is an introduction to the theory and implementation of software systems designated to search through large collections of text. This course will have two main thrusts. The first is to cover the fundamental of IR: retrieval models, search algorithms, and IR evaluation. The second is to give a taste of the implementation issues through the construction and use of a text search engine.
Prerequisite: CMSC 341

CMSC 677 Agent Architecture and Multi-Agent Systems
Credits: 3
Fundamental techniques for developing intelligent agents and multi-agent systems, including cognitive, logic-based, reactive, and belief-desire-intention architectures; inter-agent communication languages and protocols; distributed problem solving, planning and constraint satisfaction methods; distributed models and rational behavior; and learning and adaptation in multi-agent systems.
Prerequisite: CMSC 671 or permission of instructor.

CMSC 678 Machine Learning
Credits: 3
This course will cover fundamental concepts, methodologies, and algorithms related to machine learning, including the following: decision trees, perceptrons, logistic regression, linear discriminant analysis, linear and non-linear regression, basis functions, support vector machines, neural networks, genetic algorithms, reinforcement learning, naive Bayes and Bayesian networks, bias/variance theory, ensemble methods, clustering, evaluation methodologies, and experiment design.
Prerequisite: CMSC 471 or 671, or permission of the instructor

CMSC 679 Robotics
Credits: 3

Revised 1/28/2014
This course will cover fundamental concepts, methodologies, and algorithms related to autonomous mobile robotics, touching on mechanical, motor, sensory, perceptual, and cognitive aspects of the problem of building robots that move about and decide what to do on their own. Specific topics covered include legged and wheeled location, kinematic models and constraints, mobile robot maneuverability, motion control, sensors and sensing, perception, localization, belief representations, map representations, probabilistic map-based localization, autonomous map building, planning, reacting, and navigation architectures.

Prerequisite: CMSC 471 or 671, or permission of the instructor

CMSC 681 Advanced Computer Networks

Credits: 3

In-depth coverage of fundamental and advanced concepts in computer networking: Protocol design, verification and testing; Medium access protocols for next generation networks; Error detection and correction schemes; Distributed routing algorithms concepts and mathematical analysis; switching architectures, Quality-of-service architectures; admission control and scheduling algorithms; flow and congestion control; multicast architectures and protocols; network security; data compression.

Prerequisite: CMSC 481 or approval of instructor.

CMSC 682 Networking Technologies

Credits: 3

Topics in networking technologies, including ISDN, ATM/B-ISDN, frame relay, SDS, routing protocols, IP security, mobile-IP, network management, IP switching, IP/ATM integration and wireless protocols.

Prerequisite: CMSC 681 or permission of instructor.

CMSC 683 Computer Network Architecture

Credits: 3

This course deals with various aspects of computer network architectures including architectural design, routing and transport protocols, gateway design, flow control and congestion control mechanisms, network security, Internet Architecture and protocols, and converged networks and architectures.

Prerequisite: CMSC 481 or CMSC 621 or permission from instructor.

CMSC 685 Optical Network Architectures and Protocols

Credits: 3

Revised 1/28/2014
Optical wavelength division multiplexed (WDM) Networks: basic optical devices, optical LANs and multiple access protocols, optical switching architectures, optical WANs and wavelength routed networks, virtual topology design, routing protocols and algorithms, wavelength conversion, protection and restoration mechanism, grooming, test beds; protocol performance analysis tools.

Prerequisite: CMSC 681 or permission of instructor.

CMSC 687 Introduction to Network Security

Credits: 3

The objective of this course is to teach the fundamental concepts, architectures and protocols related to network security. Topics covered include: Overview of network security; Basics of cryptography; Threat models; Authentication and Authorization Mechanisms and Standards; Public Key Infrastructure; Electronic Mail Security; Network layer security; Transport layer and web security; Packet Filtering, Firewalls, Intrusion Detection, and Virtual Private Networks; Recent topics in Network Security.

Prerequisite: (CMSC 341 and CMSC 481) or permission of instructor

CMSC 691 Special Topics in Computer Science

Credits: 1-3

A set of CMSC 691 courses, on various Computer Science specialized topics, are typically offered each semester.

CMSC 696 Independent Study for Interns and Co-op Students

Credits: 1-3

One-on-one instruction of the student on practical aspects based on internship/co-op activities. A technical report, that describes the activities conducted, relevance to theoretical concepts learned in other coursework and lessons gained, is required at the end of the course. The course grade will be based on the technical report. The report will be submitted to the CMSC Graduate Program Director by the last day of final exams.

Variable credit. For each student, credit established based on level of effort required from student and length of internship/co-op.

Prerequisite: Must have completed at least 6 graduate level CMSC credits at UMBC.

The course may be repeated, but credit towards the degree will be based on following policy:

(i) A combined TOTAL of 3 Credits between CMSC 696/CMSC 699 may be applied toward the M.S. degree in Computer Science.
(ii) A Combined TOTAL of 6 Credits between CMSC 696/CMSC 699/CMSC 800/CMSC 898 may be applied towards the Ph.D. degree in Computer Science.

CMSC 698 Research Project in Computer Science
Credits: 1-3
Individual project on a topic in computer science. The project will result in a scholarly paper, which must be approved by the student’s advisor and read by another CSEE faculty member. Required of non-thesis M.S. students.
NOTE: May be taken for repeated credit up to a maximum of three credits.
Prerequisite: Completion of breadth courses or consent of the advisor.

CMSC 699 Independent Study in Computer Science
Credits: 1-3
Independent Study work will consist of individualized research work with a faculty member.

CMSC 721 Theory of Processes
Credits: 3
Formal approaches to the theory of communicating systems of processes, and logical systems for reasoning about them. Specific systems may include Milner’s calculus of communicating systems (CCS), Hoare’s communicating sequential processes (CSP), and Kahn’s applications of fixpoint theory to communicating processes.
Prerequisite: CMSC 621 or CMSC 631 or CMSC 681, or permission of instructor.

CMSC 731 Semantics of Programming Languages
Credits: 3
The fundamentals of axiomatic and denotational semantics, together with their corresponding techniques for program specification and verification. Axiomatic methods include Hoare’s logic and Dijkstra’s predicate transfer-MES. Denotational methods include fixpoint theory and an introduction to the lambda calculus. Denotational methods are used to prove the soundness of selected axiomatic proof rules.
Prerequisite: CMSC 631 or permission of instructor.

CMSC 741 Theory of NP Completeness
Credits: 3
An in-depth study of the classes P and NP, along with the concepts of reducability and completeness. NP complete problems are surveyed, and reduction techniques are examined in greater detail. An important goal is to develop skill at proving problems NP complete.

Revised 1/28/2014
Prerequisite: CMSC 641 or permission of instructor.

CMSC 742 Parallel Algorithms and Complexity
Credits: 3
Models of parallel computation and methods for the representation of parallel algorithms are presented. Measures of parallel complexity, and techniques for analyzing algorithms with respect to these new measures, and parallel complexity classes, such as NC, are studied.
Prerequisite: CMSC 641 or permission of instructor.

CMSC 743 Quantum Information Science
Credits: 3
This course will begin with a brief review of quantum mechanics. It will then focus on quantum communication and quantum information, covering such topics as quantum noise and decoherence, quantum process tomography. Quantum error correction, quantum entropy, the Holevo bound, quantum data compression, quantum information over quantum channels, entanglement as a physical resource, and advanced quantum cryptographic protocols. Various research-level problems will be discussed.
Prerequisite: CMSC 641; or 643; or 651; or 656; or permission of instructor.

CMSC 751 Theory of Computation
Credits: 3
Formal models of computation, such as Turing machines, RAM models, and loop languages are all shown to compute the class of partial recursive functions, leading to the Church Turing thesis. Basic recursive function theory, including universal functions, undecidable problems, and properties of recursive and r.e. sets. Basic concepts of first-order logic and their relationship to recursion theory. Topics in advanced recursion theory may include abstract complexity theory, oracles, the arithmetic hierarchy, and priority methods.
Prerequisite: CMSC 651 or permission of instructor.

CMSC 761 Theory of Relational Databases
Credits: 3
An in-depth study of relational data base theory. Topics include first-order logic, relational calculus and algebra, query languages, query optimization, functional and multi-valued dependencies, normal forms, and concurrency control.
Prerequisite: CMSC 661 or permission of instructor.

CMSC 771 Heuristics and Knowledge Representation

Revised 1/28/2014
Credits: 3
An in-depth study of two topics central to artificial intelligence: heuristics and knowledge representation. Topics in heuristics will include the use of heuristics in problem solving, heuristic search techniques, the admissibility of heuristic search algorithms, performance analysis of heuristic methods, and heuristics for game playing. Topics in knowledge representation will include predicate calculus, frame representations, semantic nets, and inheritance.

Prerequisite: CMSC 671 or permission of instructor.

CMSC 781 Distributed Computing
Credits: 3
Topics central to the design of distributed computing systems including distributed synchronization and resource sharing, concurrency control in distributed databases, distributed simulations, languages for distributed computing, proof techniques for distributed systems, and distributed operating systems.

Prerequisites: CMSC 621 and CMSC 681, or permission of instructor.

CMSC 791 Graduate Seminar
Credits: 3

CMSC 799 Master’s Thesis Research
Credits: 1-6
This course is for students in the CMSC Master’s Program engaged in master’s thesis research; may be taken for repeated credits, but only a maximum of 6 credit hours applied toward M.S. thesis option requirements.

Prerequisite: Open only to CMSC thesis option students.

CMSC 800 Graduate Research
Credits: 1-6
Note: This course is for Ph.D. students involved in graduate-level research but cannot register for CMSC 899.

Prerequisite: Open only to CMSC graduate students who have passed the Ph.D. comprehensive exam/portfolio.

CMSC 891 Advanced Special Topics in Computer Science
Credits: 3
CMSC 898 Pre-Candidacy Doctoral Research

Credits: 1-3

This is for graduate students who have finished all coursework but have not yet been admitted to candidacy.

CMSC 899 Doctoral Dissertation Research

Credits: 6

This is the dissertation research course for Ph.D. students who have been admitted to candidacy; may be taken for repeated credits (minimum of 2 semesters required), but only a maximum of 18 credit hours are applied towards Ph.D. requirements. Ph.D. students admitted to candidacy are required to register for six credits of CMSC 899 every semester until graduation, unless requesting leave of absence.
1. Computer Science Faculty

Nilanjan Banerjee
Assistant Professor
Embedded and distributed systems for mobile, pervasive and sustainability based computing: renewable energy driven mobile and sensor systems and health diagnostic systems; mobile system usability; mobile networking; experimental mobile testbed design
nilanb@umbc.edu

Jian Chen
Assistant Professor
Information and scientific visualizations; 3D user interfaces and interaction techniques.
jichen@umbc.edu

Richard Chang
Associate Professor
Computational complexity theory, structural complexity, analysis of algorithms
chang@umbc.edu

Marie desJardins
Professor
Machine learning, intelligent planning and scheduling, multiagent systems, artificial intelligence, adaptive tutoring
mariedj@cs.umbc.edu

Timothy Finin
Professor
Artificial intelligence, knowledge representation and reasoning, knowledge and database systems, natural language processing, intelligent agents
finin@umbc.edu

Milton Halem
Research Professor
Scientific computing, high performance computing, distributed and parallel computing
halem@umbc.edu

Anupam Joshi
Professor
Networked/distributed and mobile computing, data/web mining, multimedia databases, computational intelligence and multi-agent systems, scientific computing
ajoshi@umbc.edu

Revised 1/28/2014
Konstantinos Kalpakis
Associate Professor & Graduate Program Director
Digital libraries, electronic commerce, databases, multimedia, parallel and distributed computing, and combinatorial optimization
kalpakis@umbc.edu

Hillol Kargupta
Professor
Distributed and ubiquitous data mining, gene expression, genetic algorithms and evolutionary systems, intelligent agent based software systems, artificial intelligence, biological models of computation, optimization
hillol@cs.umbc.edu

Samuel J. Lomonaco
Professor
Quantum computation, algebraic coding theory, cryptography, numerical and symbolic computation, analysis of algorithms, applications of topology to physics, knot theory and 3-manifolds, algebraic and differential topology, differential geometry, Lie groups
lomonaco@umbc.edu

Charles K. Nicholas
Professor
Electronic document processing, software engineering, and intelligent information systems
nicholas@umbc.edu

James T. Oates
Professor
Artificial intelligence, machine learning, robotics, and natural language processing
oates@cs.umbc.edu

Marc Olano
Associate Professor
Software and hardware for interactive computer graphics, procedural shading, realistic and non-realistic rendering
olano@cs.umbc.edu

Yun Peng
Professor
Artificial intelligence, neural network computing, and medical applications
ypeng@cs.umbc.edu

Dhananjay Phatak
Associate Professor

Revised 1/28/2014
Computer networks, computer arithmetic algorithms and VLSI implementations, network security, neural networks, digital and analog VLSI design and CAD

phatak@cs.umbc.edu

John T. Pinkston
Emeritus Professor
Information assurance and security, computer system security and intrusion detection, information theory, coding theory, antennas, and statistical communication theory

pinkston@umbc.edu

Penny Rheingans
Professor
Visualization of data with potential uncertainty, multivariate visualization, dynamic interaction, computer graphics and animation, and the application of perceptual principles to computer graphics and visualization.

rheingan@cs.umbc.edu

Janet Rutledge
Associate Professor and Vice Provost and Dean of the Graduate School
Modeling and compensating for the effects of sensorineural hearing loss and other communication disorders

jrutledge@umbc.edu

Alan T. Sherman
Associate Professor
Discrete algorithms, cryptology, VLSI layout algorithms

sherman@umbc.edu

Deepinder P. Sidhu
Professor
Computer networks, distributed systems, distributed and heterogeneous databases, parallel and distributed algorithms, computer and communication security, distributed artificial intelligence, high-performance computing

sidhu@umbc.edu

Yaacov Yesha
Professor
Parallel computing, computational complexity, algorithms, source coding, speech and image compression

yayesha@umbc.edu

Yelena Yesha
Professor
Distributed systems, database systems, digital libraries, electronic commerce, performance modeling, design tools for optimizing availability in replicated database

Revised 1/28/2014
systems, efficient and highly fault tolerant mutual exclusion algorithms, and analytical performance models for distributed and parallel systems

yeyesha@umbc.edu

Mohamed Younis
Associate Professor
Wireless networks, distributed real-time systems, fault tolerant computing, compiler-based analysis, embedded operating systems

younis@cs.umbc.edu