Announcing the IA-64 Architecture

Hans Mulder
Lead Architect
Intel Corporation

Jerry Huck
Manager and Lead Architect
Hewlett Packard Co.

Introduction by: Albert Yu
Senior Vice President and General Manager
Microprocessor Products Group
Intel Corporation
Agenda

- Introduction
- IA-64 Architecture Announcement
- IA-64 - Inside the Architecture
- Features for E-business
- Features for Technical Computing
- Summary
IA-64: A New Computing Era

- Most significant architecture advancement since 32-bit computing with the 80386
 - 80386: multi-tasking, advances from 16 bit to 32 bit
 - Merced: explicit parallelism, advances from 32 bit to 64 bit

- Application Instruction Set Architecture Guide
 - Complete disclosure of IA-64 application architecture

- Result of the successful collaboration between Intel and HP
Creating Complete IA-64 Solutions

Intel 64 Fund

Enterprise Technology Centers

High-end Platform Initiatives

Development Systems

Application Solution Centers

Operating Systems

Intel Developer Forum

Tools

Software Enabling Programs

Industry wide IA-64 development
IA-64 starts with Merced processor
IA-64 Architecture Announcement
IA Changing the Face of High End Computing

“Vertical Market Structure”
- Limited Compatibility
- Few Choices
- Proprietary business

“Horizontal Market Structure”
- Highly Interoperable
- Many Choices
- Volume economics

Unifying high end computing with a common infrastructure
Merced Industry Rollout

1999

Intel 64 Fund

Merced Prototype Systems

Production Solutions

2000

IA-64 Architecture
Public Release

Beta OSs and apps

Prototypes to ISVs

Open source software enabling

Key apps running on simulator

Compilers/Development tools shipping

OEM board / systems development

IA-64 application architecture an integral part of a comprehensive plan
IA-64 Application Architecture

- Application instructions and opcodes
 - Instructions available to an application programmer
 - Machine code for these instructions

- Unique architecture features & enhancements
 - Explicit parallelism and templates
 - Predication, speculation, memory support, and others
 - Floating-point and multimedia architecture

- IA-64 resources available to applications
 - Large, application visible register set
 - Rotating registers, register stack, register stack engine

- IA-32 & PA-RISC compatibility models

Details now available to the broad industry
Today’s Architecture Challenges

- **Performance barriers:**
 - Memory latency
 - Branches
 - Loop pipelining and call / return overhead

- **Headroom constraints:**
 - Hardware-based instruction scheduling
 - Unable to efficiently schedule parallel execution
 - Resource constrained
 - Too few registers
 - Unable to fully utilize multiple execution units

- **Scalability limitations:**
 - Memory addressing efficiency

IA-64 addresses these limitations
IA-64 Mission

- Overcome the limitations of today’s architectures
- Provide world-class floating-point performance
- Support large memory needs with 64-bit addressability
- Protect existing investments
 - Full binary compatibility with existing IA-32 instructions in hardware
 - Full binary compatibility with PA-RISC instructions through software translation
- Support growing high-end application workloads
 - E-business and internet applications
 - Scientific analysis and 3D graphics

Define the next generation computer architecture
IA-64 Architecture: Explicit Parallelism

Fundamental design philosophy enables new levels of headroom
IA-64 : Explicitly Parallel Architecture

128 bits (bundle)

Instruction 2
41 bits

Instruction 1
41 bits

Instruction 0
41 bits

Template
5 bits

Memory (M) Memory (M) Integer (I) (MMI)

● IA-64 template specifies
 – The type of operation for each instruction
 – MFI, MMI, MII, MLI, MIB, MMF, MFB, MMB, MBB, BBB
 – Intra-bundle relationship
 – M / MI or MI / I
 – Inter-bundle relationship
● Most common combinations covered by templates
 – Headroom for additional templates
● Simplifies hardware requirements
● Scales compatibly to future generations

Basis for increased parallelism
Full Binary IA-32 Instruction Compatibility

- IA-32 instructions supported through shared hardware resources
- Performance similar to volume IA-32 processors

Preserves existing software investments
High Performance Computing
Applications

E-business servers
- Large number of users
- Large databases
- High availability
- Secure environment

Workstations and high performance technical computing
- Digital content creation
- Design engineering (EDA, MDA, etc)
- Scientific / financial analysis

IA-64 architecture optimized for these high growth applications
E-Business Environment

IA-64 focus area

E-business is compute-intensive requiring security and support for large databases
IA-64 for High Performance Databases

- Number of branches in large server apps overwhelm traditional processors
 - IA-64 predication removes branches, avoids mispredicts

- Environments with a large number of users require high performance
 - IA-64 uses speculation to reduce impact of memory latency
 - Significant benefit to large databases with many cache accesses
 - 64-bit addressing enables systems with very large virtual and physical memory
Middle Tier Application Needs

- Mid-tier applications (ERP, etc.) have diverse code requirements
 - Integer code with many small loops
 - Significant call / return requirements (C++, Java)

- IA-64’s unique register model supports these various requirements
 - Large register file provides significant resources for optimized performance
 - Rotating registers enables efficient loop execution
 - Register stack to handle call-intensive code

IA-64 resources enable optimization for a variety of application requirements
IA-64’s Large Register File

- **Integer Registers**: 63 elements, 32 Static, 96 Stacked, Rotating
- **Floating-Point Registers**: 81 elements, 32 Static, 96 Rotating
- **Branch Registers**: 63 elements
- **Predicate Registers**: 16 elements

Large number of registers enables flexibility and performance
Software Pipelining via Rotating Registers

- Software pipelining - improves performance by overlapping execution of different software loops - execute more loops in the same amount of time

Sequential Loop Execution

Software Pipelining Loop Execution

- Traditional architectures need complex software loop unrolling for pipelining
 - Results in code expansion --> Increases cache misses --> Reduces performance

- IA-64 utilizes rotating registers to achieve software pipelining
 - Avoids code expansion --> Reduces cache misses --> Higher performance

IA-64 rotating registers enable optimized loop execution
Traditional Register Models

Procedure A calls procedure B
Procedures must share space in register
Performance penalty due to register save / restore

IA-64 significantly improves upon this

Eliminate the need for save / restore by reserving fixed blocks in register
However, fixed blocks waste resources
Traditional Register Stacks

- **Procedures**
 - A
 - B
 - C
 - D

- **Register**
 - A
 - B
 - C
 - D

- Eliminate the need for save / restore by reserving fixed blocks in register
- However, fixed blocks waste resources

IA-64 Register Stack

- **Procedures**
 - A
 - B
 - C
 - D

- **Register**
 - A
 - B
 - C
 - D

- IA-64 able to reserve variable block sizes
- No wasted resources

IA-64 combines high performance and high efficiency
IA-64 Security Performance for E-Business

IA-64 Security Performance

RSA Algorithm – Estimated performance*

Achieved thru 64-bit Integer Multiply-Add

Pentium® Pro Processor

Future 32-bit Processor

Merced Processor

IA-64 delivers secure transactions to more users

*Intel estimates

* All third party marks, brands, and names are the property of their respective owners
Delivery of Streaming Media

- Audio and video functions regularly perform the same operation on arrays of data values
 - IA-64 manages its resources to execute these functions efficiently
 - Able to manage general register’s as 8x8, 4x16, or 2x32 bit elements
 - Multimedia operands/results reside in general registers

- IA-64 accelerates compression / decompression algorithms
 - Parallel ALU, Multiply, Shifts
 - Pack/Unpack; converts between different element sizes.

- Fully compatible with IA-32 MMX™ technology, Streaming SIMD Extensions and PA-RISC MAX2

IA-64 resources and parallelism enables efficient delivery of rich web content
Technical Computing Environment

- Rendering
- Editing
- 3D Animation

- Verification
- Synthesis
- DRC

- FEA
- Modeling
- Hi-end CAE

- Equity
- Treasury
- Risk Analysis

- CFD
- GIS
- Molecular

DCC EDA MDA Finance Scientific Analysis

High performance floating-point is key
IA-64 for Scientific Analysis

- Variety of software optimizations supported
 - Load double pair: doubles bandwidth between L1 & registers
 - Full predication and speculation support
 - NaT Value to propagate deferred exceptions
 - Alternate IEEE flag sets allow preserving architectural flags
 - Software pipelining for large loop calculations

- High precision & range internal format: 82 bits
 - Mixed operations supported: single, double, extended, and 82-bit
 - Interfaces easily with memory formats
 - Simple promotion/demotion on loads/stores
 - Iterative calculations converge faster
 - Ability to handle numbers much larger than RISC competition without overflow

High performance & High precision
IA-64 Floating-Point Architecture

- **128 registers**
 - Allows parallel execution of multiple floating-point operations

- **Simultaneous Multiply - Accumulate (FMAC)**
 - 3-input, 1-output operation: \(a \times b + c = d \)
 - Shorter latency than independent multiply and add
 - Greater internal precision and single rounding error

Resourced for scientific analysis and 3D graphics
IA-64 3D Graphics Capabilities

- Many geometric calculations (transforms and lighting) use 32-bit floating-point numbers
- IA-64 configures registers for maximum 32-bit floating-point performance
 - Floating-point registers treated as 2x32 bit single precision registers
 - Able to execute fast divide
 - Achieves up to 2X performance boost in 32-bit data floating-point operations
- Full support for Pentium® III processor Streaming SIMD Extensions (SSE)

IA-64 enables world-class GFLOPs performance

* estimated
Memory Support for High Performance Technical Computing

- Scientific analysis, 3D graphics and other technical workloads tend to be predictable & memory bound
- IA-64 data pre-fetching of operations allows for fast access of critical information
 - Reduces memory latency impact
- IA-64 able to specify cache allocation
 - Cache hints from load / store operations allow data to be placed at specific cache level
 - Efficient use of caches, efficient use of bandwidth

Reduces the memory bottleneck
IA-64 Features

<table>
<thead>
<tr>
<th>Function</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit Parallelism: compiler / hardware synergy</td>
<td>• Maximizes headroom for the future</td>
</tr>
<tr>
<td>Register Model: large register file, rotating registers, register stack engine</td>
<td>• World-class performance for complex applications</td>
</tr>
<tr>
<td>Floating Point Architecture: extended precision calculations, 128 registers, FMAC, SIMD</td>
<td>• Enables more complex scientific analysis</td>
</tr>
<tr>
<td>Multimedia Architecture: parallel arithmetic, parallel shift, data arrangement instructions</td>
<td>• Faster digital content creation and rendering</td>
</tr>
<tr>
<td>Memory Management: 64-bit addressing, speculation, memory hierarchy control</td>
<td>• Efficient delivery of rich Web content</td>
</tr>
<tr>
<td>Compatibility: full binary compatibility with existing IA-32 instructions in hardware, PA-RISC through software translation</td>
<td>• Increased architecture & system scalability</td>
</tr>
</tbody>
</table>

Benefits

- Maximizes headroom for the future
- World-class performance for complex applications
- Enables more complex scientific analysis
- Faster digital content creation and rendering
- Efficient delivery of rich Web content
- Increased architecture & system scalability
- Preserves investment in existing software

Function

- Executes more instructions in the same amount of time
- Able to optimize for scalar and object oriented applications
- High performance 3D graphics and scientific analysis
- Improves calculation throughput for multimedia data
- Manages large amounts of memory, efficiently organizes data from/to memory
- Existing software runs seamlessly
IA-64 Details Made Public

- IA-64 Application ISA Guide (AIG)
 - Application instructions and machine code
 - Application programming model
 - Unique architecture features & enhancements

- Provides understanding of IA-64 for the broad industry
 - Features and benefits for key applications
 - Insight into techniques for optimizing IA-64 solutions

- IA-64 AIG and other developer information available 5/26
 - http://developer.intel.com/design/ia64/index.htm
 - http://www.hp.com/go/ia64

Continuing to fuel IA-64 developer momentum
Supporting IA-64 Solutions

- **Hardware**
 - Processors, Chipsets, Platforms
- **Operating Systems and Infrastructure**
 - Multiple Operating Systems (Win64, Unix, Open Source)
 - BIOS and Drivers
- **Industry Enabling**
 - Software Development (Development tools, Porting Centers)
 - Investments (IA-64 Fund, Other)
 - IA-64 Application Architecture (Public Unveiling)

IA-64 application architecture an integral part of a comprehensive plan
Summary

- IA-64 represents the most significant architecture development since 80386
- IA-64 advances beyond the capabilities of traditional architectures
 - Compiler / hardware synergy, massive resources, headroom
- IA-64 provides features to benefit the high-end applications of the future
 - E-business
 - Technical computing
- Today’s architecture unveiling is an additional element of the comprehensive IA-64 industry program

IA-64 begins with Merced