
Honors Thesis

Bounded Query Functions With Limited Output Bits II

Dalibor Zelený

University of Maryland, Baltimore County

May 29, 2007

Abstract

We solve some open questions in the area of bounded query function classes with limited output bits.
In particular, we demonstrate a collapse of the Polynomial Hierarchy to ΣP

3 as a consequence of both

PF
NP‖[4]
3 ⊆ PF

NP[3]
3 and PF

NP‖[5]
2 ⊆ PF

NP[3]
2 . We also generalize the result for the former condition, and

discuss some limitations of our generalization.

1 Introduction

The study of bounded query classes gives some insight into the structure of the Polynomial Hierarchy.
One way of studying bounded query classes is via the comparison of different oracle access mechanisms. An
oracle Turing machine can ask its queries one at a time, and use answers to previous queries to determine
the next query. We refer to such queries as serial or adaptive. If, instead, the Turing machine asks all its
queries at once, and receives all the answers at once, we call the queries parallel.

The class of languages decided by deterministic polynomial time Turing machines that make k serial
queries to an NP oracle is called PNP[k], and if the deterministic polynomial time Turing machines make
l parallel queries instead, we get the class PNP‖[l]. We can replace P with PF to get classes of functions
that are computed by the Turing machines mentioned earlier. If we add a subscript to PF, for example

PF
NP‖[4]
3 , we get classes of functions whose outputs have a limited length. We give precise definitions of

these complexity classes in the next section.
Our work is motivated by some earlier results. Beigel [2] shows that PNP[k] = PNP‖[2k−1]. This is

equivalent to saying that PF
NP[k]
1 = PF

NP‖[2k−1]
1 . Beigel, Kummer, and Stephan [3] show that this equality

doesn’t hold for any number of output bits. If we disregard the number of output bits, Beigel, Kummer,
and Stephan [3] show that PFNP[k] = PFNP‖[2k−1] implies P = NP. Chang and Squire [7] demonstrate a

collapse of the Polynomial Hierarchy to ΣP
3 for the special case when PF

NP[3]
2 = PF

NP‖[3]
2 , and generalize

this result. Their generalization leaves some open questions, some of which we resolve in this paper.

We show that PF
NP‖[5]
2 ⊆ PF

NP[3]
2 and PF

NP‖[4]
3 ⊆ PF

NP[3]
3 both cause a collapse of the Polynomial

Hierarchy to ΣP
3 . We also generalize the proof of the collapse of PH to ΣP

3 for the case PF
NP‖[4]
3 ⊆ PF

NP[3]
3 ,

and get a generalization that encompasses more cases than the one done by Chang and Squire [7].
We gain this improvement by modifying the proof technique used by Chang and Squire [7]. Just

like they did, we find a function Q that can be computed using a PF
NP‖[l]
m machine, and assume it can

be computed by some PF
NP[k]
m machine. We use this assumption to get a ≤

P/poly
m -reduction from BLl to

coBLl, which causes a collapse of the Boolean Hierarchy, which, in turn, causes a collapse of the Polynomial
Hierarchy [10, 12]. We also use the advisees technique—which was first used by Amir, Beigel, and Gasarch
[1]—to find one incorrect value of χSAT

k , which yields a polynomial time algorithm for satisfiability [3] that
will be necessary to complete the reduction from BLl to coBLl.

1

Before we present our proofs, we cover some necessary definitions, notations and results in Section
2. After that, in Section 3, we solve the two open questions posed by Chang and Squire, and make a
generalization in Section 4. Finally, we discuss some limitations of our work in Section 5.

2 Preliminaries

We present some definitions necessary for the understanding of bounded query functions. The reader
should be familiar with basic complexity classes such as P, PF, NP, and P/poly. Knowledge of the NP-
complete language SAT and polynomial-time many-one reductions (≤P

m-reductions) is also assumed. We
also assume that the reader is familiar with oracle Turing machines and some complexity classes utilizing
them, such as PNP and the Polynomial Hierarchy (PH). The reader can find these definitions in [9, 11].
Some other definitions are given later in this section.

First, we introduce some notation. If x is a string, we will use |x| to denote the length of the string.
For a set S, we will use ‖S‖ to denote the cardinality of S. We use the notation 〈x1, . . . , xk〉 to denote a
k-tuple of strings. We use χSAT (and χSAT

k in the multivalued case) for the characteristic function of SAT.
Also, unless stated otherwise, all logarithms have base 2.

There are two main ways how an oracle Turing machine can ask its queries. The queries can be asked
in a series. We call such queries serial or adaptive (these two terms will be used interchangably). Another
way is to ask all the queries all at once (in parallel), in which case we call the queries parallel.

When a Turing machine uses adaptive queries, it uses answers to all previous queries, as well as the
input string, to determine the next query. The computation of an oracle Turing machine that uses adaptive
queries can be viewed as a tree. We call this tree the oracle query tree. The oracle query tree induced by

the computation of a PF
NP[2]
2 machine (one that computes a function with a two-bit output and makes

two adaptive queries to its SAT oracle) is shown in Figure 1.
Chang and Squire [7] order outputs in the oracle query tree induced by the computation of an oracle

Turing machine M on input x. The ordering of the outputs for the oracle query tree in Figure 1 would be
〈00, 11, 10, 11〉. This ordering is called the output sequence of M on input x. In general, an output in leaf 1
comes before the output in leaf 2 in the output sequence if the query where paths to the two leaves split is
answered “no” on the path to leaf 1 and “yes” on the path to leaf 2. We borrow the notation from [7] and
use OUT(M,x) = 〈00, 11, 10, 11〉 to denote that the output sequence of M on input x is 〈00, 11, 10, 00〉.

Consider the output sequence of an oracle Turing machine that makes adaptive queries. A subsequence
of its output sequence consisting of a string of all zeros followed by a string of all ones, or vice versa, is
called a mind change. In Figure 1, the first and second leaf form a mind change, and also the second and
the fourth leaf form a mind change. If we chain these two together, we can say that the machine makes
two mind changes or that there is a chain of two mind changes in the output sequence of M on input x.

An oracle Turing machine that uses parallel access to its oracle will compute all its oracle queries and
a truth table. It will ask the queries at once and get the answers at once. It will then consult the truth
table to determine its next course of action.

Now that we have compared the two basic oracle access mechanisms, we can define complexity classes
that will be the objects of our study.

Definition 1 (Bounded Query Function Classes) Let k, l,m be positive integers. We define the fol-
lowing complexity classes:

PFNP[k] is the class of functions that can be computed by a polynomial-time Turing machine with an NP
oracle using at most k serial oracle queries.

PFNP‖[l] is similar to PFNP[k], but all oracle queries have to be made at once (in parallel) and all the
answers will be received at once.

2

q in SAT?
31

q in SAT?

q in SAT?
2

yes

yes yesnono

no

00 11 10 00

mind changes

Start here

Figure 1: The oracle query tree induced by the computation of a PF
SAT[2]
2 machine. On the path that

outputs 11, the machine does some computations and then asks whether q2 is a satisfiable boolean formula.
The SAT oracle says that it is not. The machine uses this answer in its computation and eventually
computes another oracle query, q1. The oracle says that the query is satisifiable. The machine uses this
answer and continues computing until it outputs 11. The two arrows also indicate the two mind changes
made by this machine.

PF
NP[k]
m is a class of functions that output m bits and make at most k serial queries to an NP oracle.

A similar definition can be made for function classes that make parallel queries and have a limited
amount of output bits.

The language BLk is commonly used as the ≤P
m-complete language for the k-th level of the Boolean

Hierarchy. Individual levels of the Boolean Hierarchy, as well as some of their complete languages, can be
found for example in [6]. Even more information about the Boolean Hierarchy can be found in [4, 5]. The
complete languages contain k-tuples of boolean formulas that satisfy the predicates shown below.

• BL1 = SAT

• BL2k = {〈x1, . . . , x2k〉 | 〈x1, . . . , x2k−1〉 ∈ BL2k−1 ∧ x2k ∈ SAT}

• BL2k+1 = {〈x1, . . . , x2k+1〉 | 〈x1, . . . , x2k〉 ∈ BL2k ∨ x2k+1 ∈ SAT}

• coBLk = {〈x1, . . . , xk〉 | 〈x1, . . . , xk〉 /∈ BLk}

We can expand the definitions above to get a concrete example of a ≤P
m-complete language for the fourth

level of the Boolean Hierarchy. The language BL4 is a set of 4-tuples of boolean formulas 〈x1, x2, x3, x4〉
that satisfy the predicate [(x1 ∈ SAT ∧ x2 /∈ SAT) ∨ x3 ∈ SAT] ∧ x4 /∈ SAT. We can see that a 4-tuple
〈x1, x2, x3, x4〉 is in BL4 if the rightmost satisfiable formula in 〈x1, x2, x3, x4〉 has an odd index. This holds
for any BLk. The complement of BL4 is the language coBL4 that contains 4-tuples of boolean formulas
that satisfy the predicate [(x1 /∈ SAT ∨ x2 ∈ SAT) ∧ x3 /∈ SAT] ∨ x4 ∈ SAT.

We call a k-tuple 〈F ′
1, . . . , F

′
k〉 of boolean formulas nested if there exists an index i such that F ′

1, . . . , F
′
i

are all satisfiable and F ′
i+1, . . . , F

′
k are all unsatisfiable. We can convert any k-tuple 〈F1, . . . , Fk〉 of boolean

formulas into a nested one by letting F ′
j =

∨

r≥j Fr. Notice that the rightmost satisfiable formula in
〈F1, . . . , Fk〉 has an odd index if and only if the rightmost satisfiable formula in 〈F ′

1, . . . , F
′
k〉 has an odd

index. Hence, 〈F1, . . . , Fk〉 ∈ BLk ⇐⇒ 〈F ′
1, . . . , F

′
k〉 ∈ BLk.

3

We define ODDSAT
k to be the language of k-tuples of boolean formulas such that an odd number of

formulas in the k-tuple is satisfiable. Notice that for nested k-tuples 〈F ′
1, . . . , F

′
k〉, 〈F

′
1, . . . , F

′
k〉 ∈ BLk ⇐⇒

〈F ′
1, . . . , F

′
k〉 ∈ coBLk.

We define a function Q43 ∈ PF
NP‖[4]
3 that takes 4-tuples of boolean formulas to bit strings of length 3.

The first bit of the function Q43 will be 1 if 〈F1, F2, F3, F4〉 ∈ BL4, and 0 otherwise. For nested inputs,
we will also require the value of Q43 for nested sequences 〈F ′

1, F
′
2, F

′
3, F

′
4〉 to be 111 or 000. We are not

interested in the exact values of Q43 in all cases. Table 1 summarizes the cases we are interested in. We
will use this function later in our proof. We will assume that it can be computed by a PF

NP[3]
3 machine

and show that this will let us reduce BL4 to coBL4, a key step in our proofs.

Fi ∈ SAT?
F1 F2 F3 F4 Q43

0 0 0 0 000
1 0 0 0 111
1 1 0 0 000
1 1 1 0 111
1 1 1 1 000

0 1 0 0 010
0 1 1 0 100
0 1 1 1 011

1 0 1 0 101
1 0 1 1 010

0 0 1 0 110
0 0 1 1 001

Table 1: The values of Q43(〈F1, F2, F3, F4〉) for some combinations of satisfiabilities of the four formulas.
The only restriction on values of Q43 for other combintations of satisfiabilities of the four formulas is that
the first bit of Q43 indicate whether 〈F1, F2, F3, F4〉 ∈ BL4.

We present two more results we will use in our proofs. The first one is a modification of a lemma used
by Chang and Squire [7]. The second one is a special case of a result about enumerability proved by Beigel,
Kummer, and Stephan [3, Lemma 4.2]. We don’t prove either of those. We prove a more general version
of Lemma 2 later as Lemma 9, and we refer the reader to [3] for a proof of Theorem 3.

Lemma 2 Let 〈F ′
1, F

′
2, F

′
3, F

′
4〉 be a nested 4-tuple of boolean formulas. Suppose that a PF

NP[3]
3 machine

M computes Q43 and that OUT(M, 〈F ′
1, F

′
2, F

′
3, F

′
4〉) doesn’t contain 〈000, 111, 000, 111, 000〉 as a subse-

quence. Then we can compute in polynomial time a 4-tuple 〈G1, G2, G3, G4〉 of boolean formulas such that
〈F ′

1, F
′
2, F

′
3, F

′
4〉 ∈ BL4 ⇐⇒ 〈G1, G2, G3, G4〉 ∈ coBL4.

Theorem 3 If there exists a function f ∈ PF that outputs k bits, and χSAT
k (〈x1, . . . , xk〉) 6= f(〈x1, . . . , xk〉)

for any k-tuple 〈x1, . . . , xk〉 of boolean formulas, then P = NP.

3 Proofs of Open Problems

We prove that PF
NP‖[4]
3 ⊆ PF

NP[3]
3 implies the collapse of the Polynomial Hierarchy to its third level.

The proof is similar to the one in [7], but uses a different definition of advisees and uses it to eliminate one
possibility for χSAT

2 (〈H1,H2〉).

Theorem 4 PF
NP‖[4]
3 ⊆ PF

NP[3]
3 =⇒ PH = ΣP

3

4

Proof: It is easy to see that Q43 can be computed by a polynomial time Turing machine N that makes
at most 4 parallel queries to an NP oracle. We assume that it is also computable by a polynomial time
Turing machine M that makes at most 3 serial queries to an NP oracle, and show that in that case it
is possible to reduce BL4 to coBL4 using a polynomial-time many-one reduction with polynomial advice.
By Kadin [10], this implies that SAT ∈ NP/poly, which causes a collapse of the Polynomial Hierarchy by
Yap [12]. To complete the proof, it is necessary to construct a polynomial-time many-one reduction with
polynomial advice that reduces BL4 to coBL4. In other words, the proof is completed by showing that if

Q43 ∈ PF
NP[3]
3 , BL4≤

P/poly
m coBL4.

Suppose that a PF
NP[3]
3 machine M can compute Q43. We use this fact to give a ≤

P/poly
m reduction h

from BL4 to coBL4. The reduction h gets a 4-tuple of boolean formulas 〈F1, F2, F3, F4〉 as input. First, it
will construct the nested version of the input, 〈F ′

1, F
′
2, F

′
3, F

′
4〉.

Let H1,H2 be boolean formulas. We define the set ADVISEES(〈H1,H2〉) as the set of 4-tuples of
boolean formulas 〈x1, x2, x3, x4〉 such that at least one of the following holds:

1. χSAT
2 (〈H1,H2〉) = 11 and OUT(M, 〈H1 ∧F ′

1,H2∧F ′
2, F

′
3, F

′
4〉) doesn’t contain 〈000, 111, 000, 111, 000〉

as a subsequence.

2. χSAT
2 (〈H1,H2〉) = 10 and at least one of the elements of OUT2 = {000, 111, 101, 010} is not present

in OUT(M, 〈H1 ∧ F ′
1,H2 ∧ F ′

2, F
′
3, F

′
4〉).

3. χSAT
2 (〈H1,H2〉) = 01 and at least one of the elements of OUT1 = {000, 010, 100, 011} is not present

in OUT(M, 〈H1 ∧ F ′
1,H2 ∧ F ′

2, F
′
3, F

′
4〉).

4. χSAT
2 (〈H1,H2〉) = 00 and at least one of the elements of OUT0 = {000, 110, 001} is not present in

OUT(M, 〈H1 ∧ F ′
1,H2 ∧ F ′

2, F
′
3, F

′
4〉).

Notice that h can compute OUT(M, 〈H1 ∧ F ′
1,H2 ∧ F ′

2, F
′
3, F

′
4〉) in polynomial time because there are

only a constant number of computation paths M can take.
Suppose a 4-tuple 〈F ′

1, F
′
2, F

′
3, F

′
4〉 is an advisee of 〈H1,H2〉. For each of the four cases, we describe how

to construct in polynomial time a 4-tuple 〈G1, G2, G3, G4〉 of boolean formulas such that 〈F1, F2, F3, F4〉 ∈
BL4 ⇐⇒ 〈G1, G2, G3, G4〉 ∈ coBL4.

1. If χSAT
2 (〈H1,H2〉) = 11, we can use Lemma 2 to get the desired 4-tuple of boolean formulas.

2. There are four possibilities when χSAT
2 (〈H1,H2〉) = 10.

(a) If 000 is missing in the output sequence, at least one of F1, F2, F3, F4 is satisfiable. This is because
if all were unsatisfiable, M would have to output 000 because it computes Q43. However, 000
is not in the output sequence of M, so M cannot output it. This means that 〈F1, F2, F3, F4〉 ∈
BL4 ⇐⇒ (F2 ∨ F4) /∈ SAT ∨ (F3 ∈ SAT ∧ F4 /∈ SAT). We rewrite this as F4 /∈ SAT ∧ (F3 ∈
SAT ∨ F2 /∈ SAT). We can fit this in the normal form for coBL4 and let G1 = F2, G2 = F3,
G3 = F4, G4 = FALSE. We can use K-map simplification to make this conclusion. Figure 2
illustrates the thought process.

(b) If 111 is missing in the output sequence, χSAT
4 (〈F1, F2, F3, F4〉) 6= xx00 where xx is not 00. It

cannot be the case, then, that (F1 ∨ F2) ∈ SAT and (F3 ∨ F4) /∈ SAT. If it were, we would
have χSAT

4 (〈H1 ∧ F ′
1,H2 ∧ F ′

2, F
′
3, F

′
4〉) = 1000, which would require M to output 111 that is

missing in OUT(M, 〈H1 ∧F ′
1,H2 ∧F ′

2, F
′
3, F

′
4〉). It follows that 〈F1, F2, F3, F4〉 ∈ BL4 ⇐⇒ F3 ∈

SAT ∧ F4 /∈ SAT, and we let G1 = TRUE, G2 = F3, G3 = F4, G4 = FALSE. Once again, we
can use K-maps to see that.

(c) If 101 is missing in the output sequence, χSAT
4 (〈F1, F2, F3, F4〉) 6= xx10, so it is not the case that

F3 ∈ SAT and F4 /∈ SAT. Hence, 〈F1, F2, F3, F4〉 ∈ BL4 ⇐⇒ F1 ∈ SAT∧ (F2 ∨F4) /∈ SAT. We
let G1 = TRUE, G2 = F1, G3 = F2 ∨ F4, G4 = FALSE.

5

00 01 11 10

00 0 0 0 1

01 0 0 0 0

11 0 0 0 0

10 1 1 1 1

(a) K-map for BL4.

00 01 11 10

00 D 0 0 1

01 0 0 0 0

11 0 0 0 0

10 1 1 1 1

00 01 11 10

00 D 0 0 1

01 0 0 0 0

11 0 0 0 0

10 1 1 1 1

(b) We know that χSAT
4 (〈F1, F2, F3, F4〉) is not 0000, so we

replace that field in the K-map with a “don’t care”. The two
highlighted (in boldface and with larger font) groups cover
all the ones.

Figure 2: Using k-maps to find formulas 〈G1, G2, G3, G4〉 such that 〈F1, F2, F3, F4〉 ∈ BL4 ⇐⇒
〈G1, G2, G3, G4〉 ∈ coBL4. Columns correspond to values of χSAT

2 (〈F1, F2〉), rows correspond to values
of χSAT

2 (〈F3, F4〉). We see that 〈F1, F2, F3, F4〉 ∈ BL4 if and only if (F3 ∈ SAT ∧ F4 /∈ SAT) ∨ (F1 ∈
SAT ∧ F4 /∈ SAT).

(d) If 010 is missing in the output seqeunce, it cannot be the case that F4 ∈ SAT, which means that
〈F1, F2, F3, F4〉 ∈ BL4 ⇐⇒ F3 ∈ SAT∨ (F1 ∈ SAT∧F2 /∈ SAT). This means that G1 = TRUE,
G2 = F1, G3 = F2, G4 = F3.

3. There are four possibilities when χSAT
2 (〈H1,H2〉) = 01.

(a) If 000 is missing in the output sequence, χSAT
4 (〈F1, F2, F3, F4〉) 6= x000. That means that at

least one of F2, F3, F4 is satisfiable. Hence, 〈F1, F2, F3, F4〉 ∈ BL4 ⇐⇒ F3 ∈ SAT ∧ F4 /∈ SAT.
Then let G1 = TRUE, G2 = F3, G3 = F4, G4 = FALSE.

(b) If 010 is missing in the output sequence, that means that χSAT
4 (〈F1, F2, F3, F4〉) 6= x100, so it

cannot be the case that F2 ∈ SAT and F3 ∨F4 /∈ SAT. Then 〈F1, F2, F3, F4〉 ∈ BL4 ⇐⇒ (F3 ∈
SAT ∧F4 /∈ SAT)∨ (F1 ∈ SAT∧ F4 /∈ SAT). This is equivalent to saying that 〈F1, F2, F3, F4〉 ∈
BL4 ⇐⇒ F4 /∈ SAT ∧ ((F1 ∨ F3) ∈ SAT), and we let G1 = TRUE, G2 = F3, G3 = F4,
G4 = FALSE.

(c) If 100 is missing in the output sequence, it follows that χSAT
4 (〈F1, F2, F3, F4〉) 6= xx10, so it

cannot be the case that F3 ∈ SAT and F4 /∈ SAT. In that case, 〈F1, F2, F3, F4〉 ∈ BL4 ⇐⇒
F1 ∈ SAT∧ (F2 ∨F4) /∈ SAT. Hence, we let G1 = TRUE, G2 = F1, G3 = F2 ∨F4, G4 = FALSE.

(d) If 011 is missing in the output sequence, it cannot be the case that F4 ∈ SAT. Then 〈F1, F2, F3, F4〉 ∈
BL4 ⇐⇒ F3 ∈ SAT ∨ (F1 ∈ SAT ∧ F2 /∈ SAT), and we let G1 = TRUE, G2 = F1, G3 = F2,
G4 = F3.

4. There are three possiblilities when χSAT
2 (〈H1,H2〉) = 00.

(a) If 000 is missing in the output sequence, χSAT
4 (〈F1, F2, F3, F4〉) 6= xx00, so it is not the case

that F3 ∨ F4 /∈ SAT. Then 〈F1, F2, F3, F4〉 ∈ BL4 ⇐⇒ F4 /∈ SAT, so we let G1 = F4, and
G2 = G3 = G4 = FALSE.

(b) If 110 is missing in the output sequence, it follows that χSAT
4 (〈F1, F2, F3, F4〉) 6= xx10, so it

cannot be the case that F3 ∈ SAT and F4 /∈ SAT. In that case, 〈F1, F2, F3, F4〉 ∈ BL4 ⇐⇒
F1 ∈ SAT∧ (F2 ∨F4) /∈ SAT. Hence, we let G1 = TRUE, G2 = F1, G3 = F2 ∨F4, G4 = FALSE.

(c) If 001 is missing in the output seqeunce, it cannot be the case that F4 ∈ SAT. Then 〈F1, F2, F3, F4〉 ∈
BL4 ⇐⇒ F3 ∈ SAT ∨ (F1 ∈ SAT ∧ F2 /∈ SAT), and we let G1 = TRUE, G2 = F1, G3 = F2,
G4 = F3.

Let 〈H1,H2〉 and 〈F1, F2, F3, F4〉 be given. Furthermore, suppose that 〈F1, F2, F3, F4〉 is not an advisee
of 〈H1,H2〉. Then it must be the case that

6

1. χSAT
2 (〈H1,H2〉) = 11 implies that 〈000, 111, 000, 111, 000〉 appears as a subsequence in OUT(M, 〈H1∧

F ′
1,H2 ∧ F ′

2, F
′
3, F

′
4〉). We say that the presence of 〈000, 111, 000, 111, 000〉 in the output sequence

is an indicator of 11 as the value of χSAT
2 (〈H1,H2〉), or simply the indicator of 11. Note that

the presence of 〈000, 111, 000, 111, 000〉 in OUT(M, 〈H1 ∧ F ′
1,H2 ∧ F ′

2, F
′
3, F

′
4〉) does not imply that

χSAT
2 (〈H1,H2〉) = 〈1, 1〉. It merely indicates a possibility

2. χSAT
2 (〈H1,H2〉) = 10 implies that all elements of OUT2 = {000, 111, 101, 010} are present in OUT(M, 〈H1∧

F ′
1,H2 ∧F ′

2, F
′
3, F

′
4〉). The presence of all elements of OUT2 in OUT(M, 〈H1 ∧F ′

1,H2 ∧F ′
2, F

′
3, F

′
4〉) is

an indicator of 10.

3. χSAT
2 (〈H1,H2〉) = 01 implies that all elements of OUT1 = {000, 010, 100, 011} are present in OUT(M, 〈H1∧

F ′
1,H2 ∧F ′

2, F
′
3, F

′
4〉). The presence of all elements of OUT1 in OUT(M, 〈H1 ∧F ′

1,H2 ∧F ′
2, F

′
3, F

′
4〉) is

an indicator of 01.

4. χSAT
2 (〈H1,H2〉) = 00 implies that all elements of OUT0 = {000, 110, 001} are present in OUT(M, 〈H1∧

F ′
1,H2 ∧F ′

2, F
′
3, F

′
4〉). The presence of all elements of OUT0 in OUT(M, 〈H1 ∧F ′

1,H2 ∧F ′
2, F

′
3, F

′
4〉) is

an indicator of 00.

Notice that for any pair of 〈H1,H2〉 and 〈F1, F2, F3, F4〉, it cannot be the case that OUT(M, 〈H1 ∧
F ′

1,H2∧F ′
2, F

′
3, F

′
4〉) contains 〈000, 111, 000, 111, 000〉 as a subsequence and also contains all of the elements

of all of the three sets OUTi. This is because there are only eight computation paths in the oracle query
tree of M, and M would have to output 000 or 111 on five of them, which would leave us with only three
paths for the remaining six bit strings of length 3.

We define INCORRECT(H1,H2, F1, F2, F3, F4) to be a bit string of length 2 whose indicator is not
present in OUT(M, 〈H1 ∧ F ′

1,H2 ∧ F ′
2, F

′
3, F

′
4〉). If more than one indicator is not present, we pick an

arbitrary bit string of length 2 whose indicator is not present in the output sequence. Notice that
if 〈F1, F2, F3, F4〉 is not an advisee of 〈H1,H2〉, the indicator of the correct value of χSAT

2 (〈H1,H2〉)
is present in OUT(M, 〈H1 ∧ F ′

1,H2 ∧ F ′
2, F

′
3, F

′
4〉), so if 〈F1, F2, F3, F4〉 is not an advisee of 〈H1,H2〉,

INCORRECT(H1,H2, F1, F2, F3, F4) 6= χSAT
2 (〈H1,H2〉).

We now construct polynomial advice that will let us reduce BL4 to coBL4 using a ≤
P/poly
m reduction.

We assume that an OR of 4 formulas of length n has length at most 9n, and that an OR of 2 formulas of
length n has length at most 5n. We make this assumption because the formulas we will deal with will be
ORs of either 2 or 4 (or less) formulas. The construction starts with sets S0 consisting of all 4-tuples of
boolean formulas of length at most 9n and T0 consisting of all 2-tuples of boolean formulas of length at
most 5n, and proceeds in steps, starting with step 0. We describe the i-th step of the construction.

Step i : For each 〈H1,H2〉 ∈ Ti, find Ai(〈H1,H2〉) = ADVISEES(〈H1,H2〉)∩Si. There are two cases to
consider.

1. There is a 2-tuple 〈H1,H2〉 ∈ Ti such that ‖Ai‖ ≥ ‖Si‖/32. We pick one such tuple 〈H1,H2〉, and
put 〈H1,H2〉 and χSAT

2 (〈H1,H2〉) in the advice. We also remove 〈H1,H2〉 from Ti to form Ti+1, and
remove Ai(〈H1,H2〉) from Si to get Si+1.

If ‖Si+1‖ ≤ 16, we put all 4-tuples 〈x1, x2, x3, x4〉 ∈ Si+1 and χSAT
4 (〈x1, x2, x3, x4〉) in the advice.

After that, we terminate the advice construction, and indicate in the advice that the construction
terminated in case 1. We let S = Si+1 and T = Ti+1.

2. For all 2-tuples 〈H1,H2〉 ∈ Ti, ‖Ai‖ < ‖Si‖/32. This means that for all 〈H1,H2〉 ∈ Ti, Probx∈Si [x ∈
ADVISEES(〈H1,H2〉)] < 1/32. Then there exists a sequence s with a polynomial number of 4-tuples
〈x1, x2, x3, x4〉 ∈ Si such that for all 2-tuples 〈H1,H2〉 ∈ Ti, we have INCORRECT(H1,H2, x1, x2, x3, x4) =
χSAT

2 (〈H1,H2〉) for less than 1/4 of the 4-tuples in s. We put 〈x1, x2, x3, x4〉 and χSAT
2 (〈x1, x2, x3, x4〉)

in the advice for each element of the polynomial-size sequence s and terminate the advice construc-
tion. We indicate in the advice that its construction terminated in case 2. We let S = Si and
T = Ti.

7

We show that the polynomial sequence s of elements of Si mentioned in the previous paragraph exists.
First note that ‖T‖ ≤ 210n. For all elements 〈H1,H2〉 ∈ T we have Probx∈S [x ∈ ADVISEES(〈H1,H2〉)] <
1/32 by construction. We show that there exists a sequence of 44n + 4 4-tuples in S such that for
all 〈H1,H2〉 ∈ T , we have INCORRECT(H1,H2, x1, x2, x3, x4) = χSAT

2 (〈H1,H2〉) for at most 11n of
those 4-tuples.

Let 〈H1,H2〉 be given. Suppose we pick uniformly at random 44n + 4 elements 〈x1, x2, x3, x4〉 of S
and compute INCORRECT(H1,H2, x1, x2, x3, x4) for each of them. We are interested in an upper
bound on the probability that INCORRECT(H1,H2, x1, x2, x3, x4) = χSAT

2 (〈H1,H2〉) for 11n + 1 or
more of the elements we picked.

The following theorem can be found in [8] as Theorem C.2.

Theorem 5 The probability that at least k out of n Bernoulli trials are successful is at most
(

n
k

)

pk,
where p is the probability of success for an individual trial.

Using Theorem 5, we see that the probability that INCORRECT(H1,H2, x1, x2, x3, x4) = χSAT
2 (〈H1,H2〉)

for 11n + 1 or more of the elements we picked is at most

(

44n + 4

11n + 1

)(

1

32

)11n+1

≤ 244n+4

(

1

2

)55n+5

=

(

1

2

)11n+1

.

Then the probability that for a particular sequence of 44n + 4 elements of S there exists a 2-tuple
〈H1,H2〉 such that INCORRECT(H1,H2, x1, x2, x3, x4) = χSAT

2 (〈H1,H2〉) for at least 11n+1 4-tuples
〈x1, x2, x3, x4〉 in that sequence is at most

210n

(

1

2

)11n+1

= 210n−11n−1 =

(

1

2

)n+1

<
1

2
for all n ≥ 1.

This implies that there exists a sequence of 4-tuples from S of length 44n + 4 such that for every
〈H1,H2〉 /∈ T , INCORRECT(H1,H2, x1, x2, x3, x4) = χSAT

2 (〈H1,H2〉) for at most 11n of the 4-tuples
in that sequence.

We now show how to use the advice to reduce BL4 to coBL4 in polynomial time. Our goal is to
construct a 4-tuple 〈G1, G2, G3, G4〉 of boolean formulas such that 〈x1, x2, x3, x4〉 ∈ BL4 if and only if
〈G1, G2, G3, G4〉 ∈ coBL4.

Assume that a PF
NP[3]
3 machine M computes Q43. We can assume without loss of generality that all

formulals in 〈x1, x2, x3, x4〉 have the same length, n. On input 〈x1, x2, x3, x4〉:

1. Construct the nested version of 〈x1, x2, x3, x4〉, 〈x
′
1, x

′
2, x

′
3, x

′
4〉.

2. For each 2-tuple 〈H1,H2〉 in the advice, compute OUT(M, 〈H1∧x′
1,H2∧x′

2, x
′
3, x

′
4〉). If 〈x′

1, x
′
2, x

′
3, x

′
4〉

turns out to be an advisee of some 〈H1,H2〉 in the advice, we can construct 〈G1, G2, G3, G4〉 using
the method we discussed earlier.

3. If advice construction terminated in case 1 of the construction and we didn’t constrcut 〈G1, G2, G3, G4〉
in the previous step, this means that 〈x1, x2, x3, x4〉 is in the advice together with χSAT

4 (〈x1, x2, x3, x4〉).
In that case we output a trivial 〈G1, G2, G3, G4〉 (G1 = G2 = G3 = G4 = TRUE if 〈x1, x2, x3, x4〉 ∈
BL4 and G1 = G2 = G3 = TRUE, G4 = FALSE if 〈x1, x2, x3, x4〉 /∈ BL4).

4. If advice construction terminated in case 2 of the construction, we first check if at least one of the
elements in the 4-tuple 〈x1, x2, x3, x4〉 is in the advice string as one of the formulas. If it is, we also
know whether it’s satisfiable or not, and we have enough information to construct 〈G1, G2, G3, G4〉.

8

5. If none of the previous four cases apply, we use the advice string to decide the membership of each
of x1, x2, x3, x4 in SAT in polynomial time using Theorem 3. All we need to show is that our advice
enables us to compute a function f(〈y1, y2〉) that outputs 2 bits and f(〈y1, y2〉) 6= χSAT

2 (〈y1, y2〉) for
any boolean formulas y1, y2 of length at most 5n.

Either 〈y1, y2〉 is in the advice string together with its characteristic function, or it had less than
‖S‖ advisees in S at the end of advice construction. In the former case, we know χSAT

2 (〈y1, y2〉) and
can pick any arbitrary value that’s not χSAT

2 (〈y1, y2〉) as f(〈y1, y2〉). In the latter case, we compute
INCORRECT(y1, y2, F1, F2, F3, F4) for each 4-tuple in the advice. By construction, any value that
appears as the output of INCORRECT for at least 1/4 of the 4-tuples in the advice cannot be the
correct value of χSAT

2 (〈y1, y2〉, so we pick any such value as f(〈y1, y2〉). Since the advice has polynomial
length and we can compute indicators in polynomial time, we can compute f in polynomial time.

This completes the proof. �

Now we turn our attention to the other open problem proposed by Chang and Squire [7]. We will show

that the containment PF
NP‖[5]
2 ⊆ PF

NP[3]
2 also implies a collapse of the Polynomial Hierarchy. This proof

will be even more similar to the one done by Chang and Squire [7] than the one we just did.

Theorem 6 PF
NP‖[5]
2 ⊆ PF

NP[3]
2 =⇒ PH = ΣP

3

Proof Sketch: We will modify the proof of Theorem 4. We will define the first bit of the function
Q52(〈x1, x2, x3, x4, x5〉) to be 1 if 〈x1, x2, x3, x4, x5〉 ∈ BL5 and 0 otherwise. The second bit will indicate

whether 〈x1, x2, x3, x4, x5〉 ∈ ODDSAT
5 . This function is computable by a PF

NP‖[5]
2 machine N. We will

assume that it is also computable by a PF
NP[3]
2 machine M. Since this function is different from the one

used in the proof of Theorem 4, we have to rephrase Lemma 2.

Lemma 7 Suppose that a PF
NP[3]
2 machine M can compute Q52 for nested inputs 〈F ′

1, F
′
2, F

′
3, F

′
4, F

′
5〉. If

its output sequence on input 〈F ′
1, F

′
2, F

′
3, F

′
4, F

′
5〉 doesn’t contain 〈00, 11, 00, 11, 00, 11〉 as a subsequence,

there exists a 5-tuple 〈G1, G2, G3, G4, G5〉 of boolean formulas computable in polynomial time such that
〈F ′

1, F
′
2, F

′
3, F

′
4, F

′
5〉 ∈ BL5 ⇐⇒ 〈G1, G2, G3, G4, G5〉 ∈ coBL5.

Instead of using 2-tuples 〈H1,H2〉 of boolean formulas, we will have single boolean formulas H as
advisors of 5-tuples of boolean formulas. We will say that 〈x1, x2, x3, x4, x5〉 of boolean formulas is an
advisee of H if at least one of the following happens.

1. H ∈ SAT and OUT(M, 〈H ∧ F ′
1, F

′
2, F

′
3, F

′
4, F

′
5〉) doesn’t contain 〈00, 11, 00, 11, 00, 11〉 as a subse-

quence.

2. H /∈ SAT and OUT(M, 〈H ∧ F ′
1, F

′
2, F

′
3, F

′
4, F

′
5〉) contains 〈00, 11, 00, 11, 00, 11〉 as a subsequence.

We show how construct a 5-tuple 〈G1, G2, G3, G4, G5〉 that belongs to coBL5 if and only if 〈F1, F2, F3, F4, F5〉 ∈
BL5, where 〈F1, F2, F3, F4, F5〉 is an advisee of H.

1. If H ∈ SAT is an advisor of 〈F1, F2, F3, F4, F5〉, we use Lemma 7.

2. If H /∈ SAT is an advisor of 〈F1, F2, F3, F4, F5〉, we notice that the output sequence of M on input 〈H∧
F ′

1, F
′
2, F

′
3, F

′
4, F

′
5〉 contains at most two terms that are neither 00 nor 11. Without loss of generality

assume there are two of them, and call them a and b. Notice that Q52(〈H∧F ′
1, F

′
2, F

′
3, F

′
4, F

′
5〉) cannot

be 11 because if the rightmost satisfiable formula in Q52(〈H ∧ F ′
1, F

′
2, F

′
3, F

′
4, F

′
5〉) has an even index,

then, since 〈F ′
1, F

′
2, F

′
3, F

′
4, F

′
5〉 is nested, 〈H ∧ F ′

1, F
′
2, F

′
3, F

′
4, F

′
5〉 /∈ ODDSAT

5 . Now there are three
cases to consider.

9

(a) If a = b = 10, we know that 〈H ∧ F ′
1, F

′
2, F

′
3, F

′
4, F

′
5〉 /∈ ODDSAT

5 because all leaves of the oracle
query tree induced by the computation of M on input 〈H ∧ F ′

1, F
′
2, F

′
3, F

′
4, F

′
5〉 that hold the

right value of Q52 have 0 as its second bit, which means that the rightmost satisfiable formula
in 〈H1,H2,H3,H4,H5〉 doesn’t have an even index. This means that 〈F1, F2, F3, F4, F5〉 ∈ BL5

if and only if at least one of F1, F3, F5 is satisfiable. We let G1 = G2 = G3 = TRUE, G4 =
F1 ∨ F3 ∨ F5, and G5 = FALSE.

(b) If a = b = 01, it must be the case that F4 /∈ SAT ∨ F5 ∈ SAT because 10 is not present in
the output sequence. Then 〈F1, F2, F3, F4, F5〉 ∈ BL5 if and only if [F1 ∈ SAT ∧ (F2 ∨ F4) /∈
SAT]∨F3 ∈ SAT, and we let G1 = TRUE, G2 = F1, G3 = F2 ∨F4, G4 = F3, and G5 = FALSE.

(c) If a = 10 and b = 01 or vice versa, 01 appears only once in the output sequence of M on
input 〈H ∧ F ′

1, F
′
2, F

′
3, F

′
4, F

′
5〉. The machine M asks queries q1, q2, and q3 on the computation

path of on which 01 is output. For simplicity, call this path p. Some of the queries on path
p are answered “yes”, some “no”. We take all the “yes” queries and AND them together to
get a boolean formula τ , and OR all the “no” queries together to get a boolean formula ϕ.
The machine M will follow path p if τ ∈ SAT and ϕ /∈ SAT. Notice that if p is the path
that M takes, 〈H ∧ F ′

1, F
′
2, F

′
3, F

′
4, F

′
5〉 ∈ ODDSAT

5 , which means 〈F1, F2, F3, F4, F5〉 /∈ BL5, so
〈F1, F2, F3, F4, F5〉 ∈ BL5 only if p is not the path that M takes on input 〈F1, F2, F3, F4, F5〉.
If p is not the path that M takes, we’re in case (a), and 〈F1, F2, F3, F4, F5〉 ∈ BL5 if and
only if F1 ∨ F3 ∨ F5 ∈ SAT. Then 〈F1, F2, F3, F4, F5〉 ∈ BL5 if and only if (τ /∈ SAT ∨ ϕ ∈
SAT) ∧ (F1 ∨ F3 ∨ F5) ∈ SAT, which happens if and only if (τ /∈ SAT ∧ (F1 ∨ F3 ∨ F5) ∈
SAT) ∨ (ϕ ∧ (F1 ∨ F3 ∨ F5)) ∈ SAT. We let G1 = TRUE, G2 = F1 ∨ F3 ∨ F5, G3 = τ ,
G4 = ϕ ∧ (F1 ∨ F3 ∨ F5), and G5 = FALSE.

The advice is constructed the same way as in the proof of Theorem 4. It is used differently, however.
Instead of elminating one value of χSAT

2 (〈H1,H2〉) as we did in the proof of Theorem 4, we will use
the idea of Chang and Squire [7], and notice that if H is not an advisor of 〈F1, F2, F3, F4, F5〉, H ∈
SAT if and only if OUT(M, 〈H ∧ F ′

1, F
′
2, F

′
3, F

′
4, F

′
5〉) contains 〈00, 11, 00, 11, 00, 11〉 as a subsequence. The

polynomial-length sequence of 5-tuples in the advice will, instead, have the property that if H is not
in the advice, H will be satisfiable if and only if for a three-fourths’ majority of 5-tuples in the advice,
OUT(M, 〈H ∧ F ′

1, F
′
2, F

′
3, F

′
4, F

′
5〉) contains 〈00, 11, 00, 11, 00, 11〉 as a subsequence. An argument similar to

the one made in the previous proof can be made to show that such polynomial-size set of 5-tuples exists.
�

4 Generalization

The technique used in the proof of Theorem 4 in the previous section can be generalized to prove the
following theorem.

Theorem 8 For all k, l and m such that 1 < m ≤ k < l ≤ 2k − 1, if l > 2k − 2m + 1 then PF
NP‖[l]
m ⊆

PF
NP[k]
m ⇒ PH = ΣP

3 .

Proof: We need to make a few modifications to the proof of Theorem 4 from the previous section.
The necessary modifications are listed below.

1. Define a function Q similar to Q43.

2. Generalize Lemma 2.

3. Generalize the definition of ADVISEES() using Q and the PF
NP[k]
m machine M that can compute it.

4. Show how to reduce BLl to coBLl when some l-tuple of boolean formulas is an advisee.

10

5. Revise the construction of the advice.

6. Argue that if advice construction terminates in case 2, that is, with some l-tuples that neither have
an advisor in the advice nor are in the advice themselves, we can still, given an l-tuple of formulas
〈x1, . . . , xl〉, eliminate one possibility for χSAT

l (〈x1, . . . , xl〉).

We carry out these steps in the order listed. We start with a generalization of the function Q43. We
define the function Q to be a function mapping l-tuples 〈F1, . . . , Fl〉 of boolean formulas to binary strings
of length m. If an l-tuple 〈F1, . . . , Fl〉 of boolean formulas is nested, all bits of the output are the same and
indicate whether 〈F1, . . . , Fl〉 ∈ BLl. For non-nested inputs, Q outputs the last m bits of χSAT

l (〈F1, . . . , Fl〉).
The second part can be done because l > m, and we do it because we want Q to be onto, as we see later. It

is also easy to see that Q ∈ PF
NP‖[l]
m . Finally, let s be a bit string of length m. Notice that all non-nested

k-tuples 〈F1, . . . , Fl〉 for which χSAT
m (〈Fl−m+1, . . . , Fl〉) = s will map to the same string of length m under

Q, which is another desired property of Q.
We show that Q is an onto mapping. Pick a bit string s of length m. We will find a non-nested l-tuple of

boolean formulas F such that Q(F) = s. There exists an m-tuple 〈F1, . . . , Fm〉 of boolean formulas such that
χSAT

m (〈F1, . . . , Fm〉) = s. We append this m-tuple at the end of an (l−m)-tuple 〈FALSE, . . . ,FALSE〉. Now
F = Q(〈FALSE, . . . ,FALSE, F1, . . . , Fm〉) is an l-tuple of boolean formulas that maps to s if F is non-nested,
which happens if at least one of the formulas in 〈F1, . . . , Fm〉 is satisfiable. If all formulas in 〈F1, . . . , Fm〉
are unsatisfiable, F is a nested l-tuple of unsatisfiable boolean formulas. Then Q(F) = s = 00 . . . 0 because
F /∈ BLl.

Lemma 9 (Generalization of Lemma 2) Let 〈F ′
1, . . . , F

′
l 〉 be a nested l-tuple of boolean formulas. Suppose

that a PF
NP[k]
m machine M computes Q and that OUT(M, 〈F ′

1, . . . , F
′
l 〉) doesn’t contain as a subsequence a

sequence of length l + 1 with a chain of l mind changes starting with a string of all zeros. Then we can
compute in polynomial time an l-tuple 〈G1, . . . , Gl〉 of boolean formulas such that 〈F ′

1, . . . , F
′
l 〉 ∈ BLl ⇐⇒

〈G1, . . . , Gl〉 ∈ coBLl.

Proof: A special case of the proof was sketched in [7]. We give a proof for the general case.
Nodes in the oracle query tree correspond to queries made by M. If a query is answered “no”, M will

take the path that goes to the left child of the query that was answered “no”. Otherwise it will take the
path that goes right. We will label the queries using an inorder traversal of the oracle query tree. The
leftmost query will be called q1; the rightmost one, q2k−1. We will label each leaf in the oracle query tree
with the index of the query with the highest index that was answered “yes” on the path to that leaf.

Figure 3 demonstrates this notation using a PF
NP[3]
2 machine as an example.

q
3

q
5

q
6

q
7

q
1

q
2

q
4

00 11 10 0110 00 0010
00 00 11 11 00 00 00

Output:
Changed:

no yes

no yes

0 1 2 3 4 5
00
6 7Label:

Figure 3: We label leaves of the oracle query tree induced by the computation of a PF
NP[3]
2 machine based

on the index of the highest query that was answered “yes” on the path to that leaf. If a query is answered
“yes”, the machine follows the path that goes to the right from the node representing that query. Otherwise
it follows the path that goes left. Since only outputs 00 and 11 make sense on nested inputs, we change
outputs other than those to the “nearest” output that is 00 or 11, breaking ties arbitrarily.

11

Figure 3 also shows outputs made by the PF
NP[3]
2 machine. However, M can output only all-zero or

all-one strings on nested inputs. Therefore, without loss of generality, we can make any output that is
neither all zeros nor all ones the same as the all-zero or all-one output that’s in the nearest leaf, breaking
ties arbitrarily. This is also demonstrated in Figure 3. We can do this because we know that M will not
follow any path leading to an output that is neither all zeros nor all ones. This also doesn’t affect the
length of the longest chain of mind changes. As a consequence, we now have blocks of all-zero or all-one
strings in the modified leaves of the oracle query tree.

Define ϕi to be the AND of all queries qj that are answered “yes” on the path to leaf i. We define
ϕ0 = TRUE because all queries on the path to leaf 0 are answered “no”. Finally, we define

φi =
∨

j≥i

ϕj .

To give some examples, consider the oracle query tree in Figure 3. We will have ϕ7 = q4 ∧ q6 ∧ q7,
ϕ6 = q4 ∧ q6, ϕ5 = q4 ∧ q5, φ6 = (q4 ∧ q6 ∧ q7) ∨ (q4 ∧ q6), and φ5 = (q4 ∧ q6 ∧ q7) ∨ (q4 ∧ q6) ∨ (q4 ∧ q5).

Notice that 〈F ′
1, . . . , F

′
l 〉 ∈ BLl only if M outputs a string of all ones. We can also say that 〈F ′

1, . . . , F
′
l 〉 ∈

BLl only if M follows a path where we set the output to be all ones (even though it may have been something
else originally).

Recall that there is no chain of l mind changes starting with an all-zeros string in the output sequence
of M. Suppose that all chains of l mind changes in the output sequence of M start with an all-ones string.
Also recall that all strings in the output sequence that were not all-zero or all-one were changed to the
nearest all-zero or all-one string. This creates l + 1 “clusters” of identical strings in the output sequence
of M. Then 〈F ′

1, . . . , F
′
l 〉 ∈ BLl if M follows a path that leads to some cluster of all-one strings. Suppose

that the first leaf in a cluster of all-one strings has index i and that the last leaf in that cluster has index
I. Then M takes a path leading to that cluster if φi ∈ SAT and φI+1 /∈ SAT. In Figure 3, the machine M
will follow a path that leads to the only cluster of all-one outputs if φ2 ∈ SAT and φ4 /∈ SAT. If i = 0, we
drop the φi ∈ SAT requirement, and if I = 2k − 1, we drop the φI+1 /∈ SAT requirement.

There are ⌈l/2⌉−1 clusters of all-one strings for which neither i = 0 nor I = 2k −1. The first cluster of
all-one strings has i = 0. If l is even, there is also an additional cluster of all-one strings with I = 2k−1. We
give each cluster (from left to right) a number j ∈ {0, 1, . . . , ⌈l/2⌉ − 1} if l is odd and j ∈ {0, 1, . . . , ⌈l/2⌉}
if l is even, and call ij the leftmost leaf in cluster j and Ij the rightmost leaf in cluster j.

If l is odd, 〈F ′
1, . . . , F

′
l 〉 ∈ BLl if

φI0+1 /∈ SAT ∨ (φi1 ∈ SAT ∧ φI1+1 /∈ SAT) ∨ · · · ∨ (φi⌈l/2⌉−1
∈ SAT ∧ φI⌈l/2⌉−1+1),

which can be rewritten as
(

[

(φI0+1 /∈ SAT ∨ φi1 ∈ SAT) ∧ φI1+1 /∈ SAT
]

∨ · · · ∨ φi⌈l/2⌉−1
∈ SAT

)

∧ φI⌈l/2⌉−1+1 (1)

because 〈φ0, . . . , φ2k−1〉 is nested. If l is even, we get that 〈F ′
1, . . . , F

′
l 〉 ∈ BLl if

[(

[

(φI0+1 /∈ SAT ∨ φi1 ∈ SAT) ∧ φI1+1 /∈ SAT
]

∨ · · · ∨ φi⌈l/2⌉−1
∈ SAT

)

∧ φI⌈l/2⌉−1+1

]

∨ φi⌈l/2⌉
. (2)

But then if l is odd, 〈F ′
1, . . . , F

′
l 〉 ∈ BLl if and only if 〈φI0+1, φi1 , φI1+1, . . . , φi⌈l/2⌉−1

, φI⌈l/2⌉−1+1〉 ∈ coBLl.
Similarly, if l is even, 〈F ′

1, . . . , F
′
l 〉 ∈ BLl if and only if 〈φI0+1, φi1 , φI1+1, . . . , φi⌈l/2⌉−1

, φI⌈l/2⌉−1+1, φi⌈l/2⌉
〉 ∈

coBLl. Hence, we let G1 = φI0+1, G2 = φi1 , and so on until Gl = φI⌈l/2⌉−1+1 if l is odd and Gl = φi⌈l/2⌉
if l

is even.
If the longest chain of mind changes is shorter than l, we remove parts of the expressions in (1) or (2)

and the formulas G1, . . . , Gl can still be constructed. �

Fix an l-tuple 〈H1, . . . ,Hl〉 of boolean formulas. Let χSAT
l (〈H1, . . . ,Hl〉) = t and let s1, . . . , sr be

all possible strings that can be output by Q on inputs 〈F ′
1 ∧ H1, . . . , F

′
l ∧ Hl〉 where 〈F ′

1, . . . , F
′
l 〉 is the

12

nested version of some l-tuple 〈F1, . . . , Fl〉. The presence of all the strings s1, . . . , sr in OUT(M, 〈F ′
1 ∧

H1, . . . , F
′
l ∧ Hl〉) is an indicator that χSAT

l (〈H1, . . . ,Hl〉) = t. As in the previous section, the indicator
that χSAT

l (〈H1, . . . ,Hl〉) = 11 . . . 1 is the occurrence of a chain of l mind changes, starting with 00 . . . 0, in
OUT(M, 〈F ′

1 ∧ H1, . . . , F
′
l ∧ Hl〉). We say that 〈F1, . . . , Fl〉 is an advisee of 〈H1, . . . ,Hl〉 if the indicator of

the true value of χSAT
l (〈H1, . . . ,Hl〉) is not present in OUT(M, 〈F ′

1 ∧ H1, . . . , F
′
l ∧ Hl〉) in its entirety.

Now we need to show how to find an l-tuple 〈G1, . . . , Gl〉 of boolean formulas such that 〈F1, . . . , Fl〉 ∈
BLl ⇐⇒ 〈G1, . . . , Gl〉 ∈ coBLl, given that 〈F1, . . . , Fl〉 is an advisee of 〈H1, . . . ,Hl〉. Fix a nested l-tuple
〈x′

1, . . . , x
′
l〉 and suppose that Q(〈x′

1 ∧H1, . . . , x
′
l ∧Hl〉) = s is not in OUT(M, 〈F ′

1 ∧H1, . . . , F
′
l ∧Hl〉). Let

j be the largest integer such that Hj ∧ x′
j is satisfiable, and let J be the smallest integer greater than j

such that Hj ∈ SAT. Table 2 illustrates the definitions of j and J .

Index (i) 1 2 3 4 5 6 7 8

x′
i ∈ SAT? 1 1 1 1 1 0 0 0

Hi ∈ SAT? 1 0 0 1 0 0 1 1

Table 2: Examples of the definitions of j and J from the paragraph above. The highest integer such that
Hj ∧ x′

j is 4. The leftmost integer greater than j such that HJ ∈ SAT is 7. Hence, we have j = 4, J = 7.

Suppose that j doesn’t exist for any 〈F1, . . . , Fl〉. Then χSAT
l (〈H1, . . . ,Hl〉) = 00 . . . 0, and 〈H1, . . . ,Hl〉

cannot be an advisor for any l-tuple of formulas. If it were, M wouldn’t compute Q because the indicator
that χSAT

l (〈H1, . . . ,Hl〉) = 00 . . . 0 is the singleton set {00 . . . 0} and M has to be able to output the correct
value of Q. Hence, we can assume that j always exists.

First assume that J exists. Notice that J 6= 1 because that would make i ≤ 0, which cannot happen.
Recall that we defined s = Q(〈x′

1 ∧ H1, . . . , x
′
l ∧ Hl〉) for some k-tuple 〈x′

1, . . . , x
′
l〉 and used the tuple

〈x′
1, . . . , x

′
l〉 to define j and J . Since s is not in OUT(M, 〈F ′

1 ∧ H1, . . . , F
′
l ∧ Hl〉, it must be the case

that either Fj ∨ · · · ∨ FJ−1 /∈ SAT or that FJ ∨ · · · ∨ Fl ∈ SAT. Assume that s does not appear in
OUT(M, 〈F ′

1 ∧ H1, . . . , F
′
l ∧ Hl〉). Suppose that Fj ∨ · · · ∨ FJ−1 ∈ SAT and FJ ∨ · · · ∨ Fl /∈ SAT. Then

because 〈F ′
1, . . . , F

′
l 〉 is nested, we must have F ′

j ∈ SAT. By definition of j and because we assume that all of
FJ , . . . , Fl are unsatisfiable, Hj+1∧F ′

j+1, . . . ,Hl∧F ′
l are all unsatisfiable. Also, we have Hi∧F ′

i ∈ SAT ⇐⇒
Hi∧x′

i ∈ SAT for all i ∈ {l−m+1, . . . , l} by the choice of j and J , and because 〈x′
1, . . . , x

′
l〉 and 〈F ′

1, . . . , F
′
l 〉

are nested. Then Q(〈H1∧F ′
1, . . . ,Hl∧F ′

l 〉) = Q(〈H1∧x′
1, . . . ,Hl∧x′

l〉) = s. This is a contradiction because
M computes Q and s is not in the output sequence of M on input 〈H1∧F ′

1, . . . ,Hl ∧F ′
l 〉, so M can’t output

s. Hence, either Fj ∨ · · · ∨ FJ−1 /∈ SAT or FJ ∨ · · · ∨ Fl ∈ SAT.
Therefore, the index of the rightmost satisfiable formula in 〈F1, . . . , Fl〉 is either less than j or at least

J , which means that the membership of 〈F1, . . . , Fl〉 in BLl does not depend on the satisfiability of all
formulas in 〈F1, . . . , Fl〉. This is sufficient for a reduction from BLl to coBLl, which is what we show next.

Now we find a reduction for the general case when j < l and when J exists and is greater than 1. Since
either Fj ∨ · · · ∨ FJ−1 /∈ SAT or FJ ∨ · · · ∨ Fl ∈ SAT holds, it must be the case that 〈F1, . . . , Fl〉 ∈ BLl if
and only if

∨

i odd
i<j

[

(Fi ∈ SAT) ∧
(

∧

r even
i<r≤l

(Fr /∈ SAT)
)]

(3)

or
(

∧

r even
J≤r≤l

(Fr /∈ SAT)

)

∨

(

∨

i odd
J+1<i≤l

[

(Fi ∈ SAT) ∧
(

∧

r even
i<r≤l

(Fr /∈ SAT)
)]

)

. (4)

Assume that j, J and l are all even. We will deal with all other possibilities later. We notice that both
(3) and (4) hold only if Fl /∈ SAT. Then at least one of (3) and (4) holds only if Fl /∈ SAT and if at least

13

one of the two statements below is true.

∨

i odd
i<j

[

(Fi ∈ SAT) ∧
(

∧

r even
i<r≤l−2

(Fr /∈ SAT)
)]

(5)

(

∧

r even
J≤r≤l−2

(Fr /∈ SAT)

)

∨

(

∨

i odd
J+1<i≤l

[

(Fi ∈ SAT) ∧
(

∧

r even
i<r≤l−2

(Fr /∈ SAT)
)]

)

(6)

Notice that (6) is true if Fl−1 ∈ SAT. We can then say that at least one of (3) and (4) holds if Fl /∈ SAT
and if either (5) holds or the condition below holds.

(Fl−1 ∈ SAT) ∨

(

∧

r even
J≤r≤l−2

(Fr /∈ SAT)

)

∨

(

∨

i odd
J+1<i≤l−2

[

(Fi ∈ SAT) ∧
(

∧

r even
i<r≤l−2

(Fr /∈ SAT)
)]

)

(7)

Then 〈F1, . . . , Fl〉 ∈ BLl if and only if [Fl /∈ SAT ∧ (Fl−1 ∈ SAT ∨ ((5) holds ∨ (7) holds))]. We can
further expand the condition (5) holds ∨ (7) holds to conclude that 〈F1, . . . , Fl〉 ∈ BLl if and only if
Fl /∈ SAT ∧ (Fl−1 ∈ SAT ∨ · · · ∧ (FJ+3 ∈ SAT ∨ X) · · ·) where X is true if

(

∨

i odd
i<j

[

(Fi ∈ SAT) ∧
(

∧

r even
i<r≤J+2

(Fr /∈ SAT)
)]

)

∨

(

∧

r even
J≤r≤J+2

(Fr /∈ SAT)

)

. (8)

We can further rewrite (8) as

(

(

∨

r even
j≤r≤J+2

Fr

)

/∈ SAT

)

∧

(

Fj−1 ∈ SAT∨
[

Fj−2 /∈ SAT∧ · · · ∧ ((F1 ∈ SAT)∨ (TRUE /∈ SAT)) · · ·
]

)

(9)

Putting this all together, we get 〈F1, . . . , Fl〉 ∈ BLl if and only if

Fl /∈ SAT ∧ (Fl−1 ∈ SAT ∨ · · · ∧ (FJ+3 ∈ SAT ∨ (9) holds) · · ·).

This is a statement about membership in coBLl. Hence, we have a reduction from BLl to coBLl. We can
make a similar argument for other combinations of parities of j, J and l, and also when J doesn’t exist at
all.

We have l > 2k − 2m + 1. A PF
NP[k]
m machine M has 2k computation paths, which means that its

output sequence has 2k terms. If the output sequence of M contained indicators of all possible values
of χSAT

l (〈H1, . . . ,Hl〉) on input 〈H1 ∧ x′
1, . . . ,Hl ∧ x′

l〉, it would have to output all strings of length m
because Q is onto and every bit string of length m belongs to at least one indicator (take 〈x′

1, . . . , x
′
l〉 =

〈TRUE, . . . ,TRUE〉; then χSAT
l (〈H1 ∧ x′

1, . . . ,Hl ∧ x′
l〉) = χSAT

l (〈H1, . . . ,Hl〉)). Its output sequence would
have to have at least l + 1 + 2m − 2 > 2k − 2m + 1 + 1 + 2m − 2 = 2k terms, which can’t happen. The l + 1
comes from the chain of l mind changes indicating χSAT

l (〈H1, . . . ,Hl〉) = 11 . . . 1, the remaining 2m − 2 are
the remaining bit strings of length m that are not present in the indicator of 11 . . . 1. This implies that
the indicator of at least one value of χSAT

l won’t be present in its entirety in the output sequence of M on
any input.

We have to modify the construction of the advice. We now put an l-tuple of boolean formulas from Ti

(the set of potential advisors that have not been put in the advice yet) into the advice if Ti is an advisor

for at least 2−l−2l+1

‖Si‖ elements of Si (recall that Si is the set of l-tuples of boolean formulas for which we
have not found an advisor yet during the construction of the advice). When advice construction terminates

in case 2, all elements of Ti will advise less than 2−l−2l+1

‖Si‖ l-tuples in Si.

14

When advice construciton terminates in case 1, we get a reduction using the argument presented earlier.
Suppose advice construction terminates in case 2 and that we fix an l-tuple 〈H1, . . . ,Hl〉 of boolean

formulas in Ti. We can find the probability that at least 1
2(2l−1)

q(n) out of q(n) randomly picked l-tuples

from Si are advisees of 〈H1, . . . ,Hl〉. This also gives us an upper bound on the probability that at least
q(n)/2l out of q(n) randomly picked l-tuples from Si are advisees of 〈H1, . . . ,Hl〉. Also suppose that pl(n) is
the maximum length of an OR of l boolean formulas of length n. We can pick q(n) so that the probabilistic
argument in the proof of Theorem 4 still goes through, i.e., we can find a sequence of q(n) l-tuples from Si

such that if 〈H1, . . . ,Hl〉 /∈ Ti, OUT(M, 〈H1 ∧ x′
1, . . . ,Hl ∧ x′

l〉) doesn’t contain the indicator of the correct
value of χSAT

l (〈H1, . . . ,Hl〉) for less than q(n)/2l of those l-tuples 〈x1, . . . , xl〉. This will ensure that for at
least one of the incorrect values of χSAT

l (〈H1, . . . ,Hl〉), the indicator of this value will not be present in
OUT(M, 〈H1 ∧ x′

1, . . . ,Hl ∧ x′
l〉) in at least q(n)/2l cases. We will pick this indicated value as an incorrect

value of χSAT
l (〈H1, . . . ,Hl〉), and get a polynomial time algorithm for satisfiability.

Now we have all the machinery that’s necessary to complete the proof of Theorem 8. The algorithm

that gives a reduction resembles the one given for the special case PF
NP‖[4]
3 ⊆ PF

NP[3]
3 presented in the

previous section. It uses a generalized version of Q43, Q, a generalized Lemma 9 in place of Lemma 2,
and a different definition of advisees, where both advisors and advisees are l-tuples of boolean formulas.
Advice construction is the same, only the fraction of Si that should be advised by a formula that’s being
added to the advice is different. If an l-tuple 〈F1, . . . , Fl〉 is an advisee of some l-tuple 〈H1, . . . ,Hl〉 in the
advice string, we have a general method to reduce BLl to coBLl. If advice construction terminates in case
2, we will have a way of eliminating one possibility for χSAT

l (〈H1, . . . ,Hl〉) in polynomial time. This will
give us a way to decide satisfiability in polynomial time, which is sufficient for a reduction from BLl to
coBLl. �

5 Summary

We have resolved two open questions posed by Chang and Squire [7]. We showed as Theorems 4 and

6 that both PF
NP‖[4]
3 ⊆ PF

NP[3]
3 and PF

NP‖[5]
2 ⊆ PF

NP[3]
2 imply a collapse of the Polynomial Hierarchy to

ΣP
3 . We also proved a more general theorem of which PF

NP‖[4]
3 ⊆ PF

NP[3]
3 =⇒ PH = ΣP

3 is a special case.
There are still some unknown cases, however. To see that, we make the following observation.

Observation 10 PF
NP‖[l]
m ⊆ PF

NP[k]
m whenever k ≥ ⌈log(l + 1)⌉ + m.

Proof Sketch: Suppose a PF
NP‖[l]
m machine M computes a function f . Let x be an input to M. Using

binary search, it takes ⌈log(l+1)⌉ queries to an NP oracle to find out how many of the queries are answered
“yes” by M’s oracle. Now we can use the census trick to find any one bit of the output made by M on
input x using one oracle query. Therefore, if we make m more queries, we can find out what each of the m
bits output by M on input x is. �

Observation 10 implies that if l < 2k−m, PF
NP‖[l]
m ⊆ PF

NP[k]
m . We also know from our generalization

that if l > 2k − 2m + 1 (and all the other conditions), PH = ΣP
3 . Notice that if k,m ≥ 2, there is a gap

between 2k−m and 2k − 2m + 1. In other words, if k,m ≥ 2, there exists an integer between 2k−m and
2k − 2m + 1. Table 3 demonstrates this claim for some pairs of k,m ≥ 2. It is not hard to see that the

claim holds for all k,m ≥ 2. We do not know what the consequences are when PF
NP‖[l]
m ⊆ PF

NP[k]
m and

2k−m ≤ l ≤ 2k − 2m + 1.
We have shown a collapse of the Polynomial Hierarchy for one case in this gap by showing that

PF
NP‖[5]
2 ⊆ PF

NP[3]
2 =⇒ PH = ΣP

3 as Theorem 6. The remaining cases in this gap remain open, how-
ever. A new technique or perhaps a modification of the current technique is necessary to generalize the
result proved in Theorem 6.

15

m\k 3 4 5 6 7 8 9

2 1 3 7 15 31 63 127
3 1 3 7 15 31 63
4 1 3 7 15 31
5 1 3 7 15
6 1 3 7
7 1 3

(a) Highest values of l that satisfy l < 2k−m

m\k 3 4 5 6 7 8 9

2 6 14 30 62 126 254 510
3 10 26 58 122 250 506
4 18 50 114 242 498
5 34 98 226 482
6 66 194 450
7 130 386

(b) Smallest values of l that satisfy l > 2k − 2m + 1

Table 3: We see that for all pairs of k,m ≥ 2 such that k > m shown in this table, the difference between

the largest value of l such that l < 2k−m and the smallest value of l such that l > 2k − 2m + 1 is at least 2.

Acknowledgements

I would like to thank Dr. Richard Chang for supervising my work on this paper, for discussing it with
me, for explaining some of the background to me, for reviewing this paper, and for his support in general.
Our discussions gave me many valuable insights that helped me when I was writing this paper.

References

[1] Amihood Amir, Richard Beigel, and William I. Gasarch. Some connections between bounded query
classes and non-uniform complexity. In Proceedings of the 5th Structure in Complexity Theory Con-
ference, pages 232–243, Washington, DC, USA, 1990. IEEE Computer Society.

[2] Richard Beigel. Bounded queries to SAT and the boolean hierarchy. Theoretical Computer Science,
84(2):199–223, 1991.

[3] Richard Beigel, Martin Kummer, and Frank Stephan. Approximable sets. Information and Compu-
tation, 120(2):304–314, 1995.

[4] Jin-Yi Cai, Thomas Gundermann, Juris Hartmanis, Lane A. Hemachandra, Vivian Sewelson, Klaus
Wagner, and Gerd Wechsung. The boolean hierarchy I: Structural properties. Society for Industrial
and Applied Mathematics Journal on Computing, 17(6):1232–1252, 1988.

[5] Jin-Yi Cai, Thomas Gundermann, Juris Hartmanis, Lane A. Hemachandra, Vivian Sewelson, Klaus
Wagner, and Gerd Wechsung. The boolean hierarchy II: Applications. Society for Industrial and
Applied Mathematics Journal on Computing, 18(1):95–111, 1989.

[6] Richard Chang and Jim Kadin. The boolean hierarchy and the polynomial hierarchy: A closer
connection. SIAM Journal on Computing, 25(2):340–354, 1996.

[7] Richard Chang and Jon Squire. Bounded query functions with limited output bits. In CCC ’01:
Proceedings of the 16th Annual Conference on Computational Complexity, page 90, Washington, DC,
USA, 2001. IEEE Computer Society.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, 2001.

[9] Lane Hemaspaandra and Mitsunori Ogihara. Complexity Theory Companion. Springer, 2002.

[10] Jim Kadin. The polynomial time hierarchy collapses if the boolean hierarchy collapses. Society for
Industrial and Applied Mathematics Journal on Computing, 17(6):1263–1282, 1988.

[11] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

16

[12] Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical Com-
puter Science, 26(3):287–300, 1983.

17

