
1

Applying Swarm Rule Abstraction to a Wireless
Sensor Network Domain

Peter A. Hamilton

Abstract—Rule abstraction is a powerful tool for modeling
abstract behaviors in swarm systems. The research presented
in this paper examines the application of rule abstraction to
the wireless sensor network domain. I specifically analyze the
potential of rule abstraction to accurately model and control the
connectivity, coverage, and density of a simple sensor network. In
this paper, I also present a simulation tool developed to facilitate
the discovery and creation of new abstract rules and discuss
preliminary experimental results that will hopefully lead to the
development of new abstract rules.

Index Terms—network layout, optimization, rule abstraction,
swarm, simulator, wireless sensor network

I. INTRODUCTION

Planning the optimal layout and organization of a wireless
sensor network (WSN) can be a difficult task. Specific knowl-
edge about the environment must be gathered and analyzed
before planning can begin, and depending upon the applica-
tion, the best locations for gathering data must be identified
[7]. Various network characteristics must also be taken into
consideration. For example, how much target area coverage
is required to obtain an acceptable sampling of data? How
does the physical layout affect possible weaknesses in the
network, such as energy consumption or network congestion?
These questions inspire improvements to the network layout,
but modifications may change other network characteristics,
requiring additional modifications. It is possible for an un-
ending cycle of modifications to result from this process,
complicating network design. Ideally, it would be helpful to
understand how different network characteristics are related
and how manipulating one characteristic will affect the others.

To address this problem, I propose applying a new form of
swarm intelligence, known as rule abstraction, as an organiza-
tional method for WSN design [8]. To help in the application
of rule abstraction, I have designed and implemented a WSN
simulator that integrates network and swarm functionality,
enabling user control of the swarm while facilitating analysis
of network characteristics.

II. BACKGROUND & RELATED WORK

A. Swarm Intelligence
Swarm intelligence is a field of artificial intelligence that

models the intelligent behavior observed in creature swarms
by using multiagent systems [2]. Many organisms demonstrate
swarm behavior, including various species of birds, fish, and
insects. Swarm behavior can result in unexpected yet orga-
nized emergent behaviors that make the creature swarm more
robust. For example, fish swarm in schools for protection from
predators. Ants lay pheromone trails while searching for food,

reinforcing the most traveled paths when a food source is
located, thereby guiding more workers to the source.

The agents used to model a swarm are often autonomous
and self-organizing, following a predefined set of low-level
rules that govern individual behavior. Each rule has a specific
weight factor that determines the magnitude of its influence
on an agent’s actions. As each agent follows the rule set,
the overall behavior of the swarm may coordinate to produce
more complicated emergent behaviors. A traditional example
of emergent behavior is flocking. Demonstrated by Reynolds,
flocking is produced by following three low-level rules: avoid
colliding with neighboring agents (AvoidCollision), move to-
wards the center of mass of neighboring agents (MoveToMass-
Center), and move in the direction that neighboring agents are
moving (MoveWithNeighbors) [12].

First introduced in relation to cellular robotics, swarm
intelligence has since been associated with multiagent systems
[1] [2]. Many applications and algorithms have been developed
that utilize swarm intelligence. A common example, particle
swarm optimization, is a technique where swarm agents rep-
resent problem solutions for a specific problem, searching the
problem solution space for optimal solutions and, over time,
moving towards the best solutions discovered [11].

B. Swarm Rule Abstraction

Swarm rule abstraction is a new swarm intelligence tech-
nique that seeks to represent the emergent behaviors of a
swarm system as individual rules [8]. Since emergent behav-
iors are products of individual agent interactions as the agents
follow the rule set, there is an intuitive connection between the
low-level rules, their rule weights, and the emergent behavior.
The discovery of relationships between low-level and abstract
rules can lead to a swarm rule hierarchy that can be used
in the development of additional abstract rules. An abstract
rule, while representing a simple emergent behavior, can also
accept a quantifier that specifically describes how or to what
degree the swarm should demonstrate the desired behavior.
For example, the rule FormCircle() might have a parameter
value to define what the radius of the circle should be.
FormCircle(60) would direct the swarm to form a circle of
radius 60.

Swarm rule abstraction is a fairly new approach to the
problem of efficient swarm control. The original work val-
idating and demonstrating the concept focused primarily on
simple geometric shape formation and ant colony models [8].
The FormCircle() rule was one of the first rules developed
to demonstrate the ability of top-down mapping, where the
abstract rule parameter is used to manipulate the low-level rule

2

weights to produce specific behavior. To create this mapping
process, multiple experiments were conducted, measuring the
resulting swarm behavior as the individual rule weights were
adjusted. A more robust process has recently been developed
for creating abstract rules, involving a systematic sampling of
simulation data to create a top-down mapping [9]. Due to the
novelty of swarm rule abstraction, this paper is the first to
consider applying abstract rules to the WSN domain.

C. Wireless Sensor Networks

A wireless sensor network is composed of physically
disconnected sensors that must communicate wirelessly to
collect data and coordinate activity [13]. The nature and exact
specifications of the network can vary depending upon the
application. The traditional WSN model, originally focused on
military applications, involved a random distribution of sensors
throughout the target area, in addition to one or more sink
nodes. Since the network is isolated, the sensors have limited
sensing and communication capabilities as well as limited
battery life, unless fitted with energy-generation technology
(e.g., solar panels). Transmissions are multi-hop, passing along
the most cost-effective path in the network graph from the
originating sensor to the sink. Sink nodes are typically more
powerful then the ordinary sensors and may have greater
energy capacity and better sensing and communicating equip-
ment; they may even be physically connected to other sink
nodes in the network. Sensors may be stationary or mobile, al-
lowing for dynamic configurations and layouts of the network
depending on certain events or commands. Applications of
WSNs include target detection, tracking, pursuit, and passive
area monitoring for security purposes.

In recent WSN developments, networks can be heteroge-
neous, incorporating sensors with different capabilities and
resources. The environment and surrounding topology can also
affect how the network operates: sensors at higher elevations
may be able to communicate further, while those in valleys
or surrounded by obstacles may have limited sensing range.
The motion of a sensor may be outside its control, as in the
case of cell phones passing in and out of range of various
cell towers or cars travelling along a highway. These adhoc
networks must be robust to sudden changes and must be able to
quickly coordinate sensor communications to preserve quality
of service.

Environment monitoring has also become an important
application. WSNs have been applied to monitoring wild life in
isolated regions as well as passively performing temperature,
atmospheric, and seismic data gathering. Networks have been
established to monitor glacier activity, to measure salinity and
sand bank formation in coastal regions hosting wind farms,
and to locate victims of an avalanche [13]. Urban areas have
also become testbeds for WSN applications; applications range
from tracking building power consumption to monitoring
patient activity and vital signs in hospitals [13]. As a domain
composed of multiple cooperating entities, WSNs are ideally
suited to the swarm intelligence paradigm.

D. Swarm Intelligence and Wireless Sensor Networks

Much work has been done in applying swarm intelligence
to the optimization of sensor network performance. Particle
swarm optimization has been applied to the problem of se-
lecting network configurations that maximize network lifetime
[15]. Groups of swarms have been designed to learn the
parameters of a fuzzy-logic controller used to dictate source
search strategies in an environment [4].

Ant colony models are also popular in addressing network
optimization problems. Pheromone-based routing algorithms
have been developed that allow networks to dynamically route
data packets along paths that use sensors with the most energy
resources, prolonging network lifetime and connectivity [10].
Pheromone tracing has also been used to organize mobile net-
works in dynamic event detection, task completion, and sleep
scheduling [6]. For example, if a target is detected crossing an
area of interest, the network controller determines the number
of sensors needed to adequately track and monitor it. If there
are too few sensors in range, those present drop pheromones
to attract more sensors. The pheromones accumulate over time
if the task is left uncompleted. If the task is completed, the
sensors stop laying pheromones, which disappear over time.

Applying swarm intelligence to WSN design and optimiza-
tion is not a novel idea. However, due to the increasing overlap
between the fields, there is still much research to be done and
the application of swarm rule abstraction is an appropriate
extension of swarm intelligence.

III. WSN SIMULATOR

To facilitate and demonstrate the application of swarm
rule abstraction to the WSN domain, I implemented a WSN
simulator that conducts network layout simulations. In the
background, the simulator treats the network sensors as agents
in a single swarm. Due to the novelty of swarm rule abstrac-
tion, no preexisting simulation tool exists that can support
both rule abstraction and WSNs while also providing the low-
level control needed to adjust the low-level rule weights. The
simulator is implemented in Python 2.5.1.

The simulations presented have used the traditional def-
inition of a wireless sensor network. Specifically, the net-
work is homogeneous: all sensors have the same sensing
and transmission range and all sensor agents have the same
sets of rules applied to their behavior. To simplify analysis,
the network environment is modeled as a two-dimensional
featureless Euclidean grid, with no obstacles in the environ-
ment aside from the other sensor agents; also, all possible
grid configurations are restricted to rectangular shapes, further
limiting environment complexity.

The simulator is composed of two applications: the network
parameter controller and the network layout display. The con-
troller is a GUI that allows the user to specify various network
parameters, including environment grid size, the number of
sensors in the network, the sensing/transmission range of the
sensors, and the number of time steps to run the simulation.
The display shows the movement of the swarm over time,
connecting and disconnecting sensor agents who move in and
out of transmission range of each other.

3

Figure 1. The WSN Simulation controller and display. Black dots represent
sensors while the red dot acts as the sink. Gray lines indicate connections
between sensors. Black lines indicate the boundaries of the geometric hashing
buckets.

In an attempt to optimize performance, a version of geomet-
ric hashing is used. The environment grid is split into buckets
of length and width equal to the sensing range. Sensor agents
located in one bucket can only communicate with other agents
in the same bucket or with agents in a neighboring bucket.
This limits the time needed to update the list of neighboring
sensor agents for any given agent. Worst-case performance is
still observed when all agents move into one or two buckets.

Once input is provided and the simulation begun, the
simulator applies each swarm rule to each agent’s movement,
displaying the network’s layout as it changes over time. When
the maximum time count is reached, the simulation ends,
storing the network layout and simulation parameters for later
use. The simulation can be run again or a new configuration
can be generated. For running large numbers of experiments,
a batch mode accepts a range of values for each simulation
parameter, running through all possible configurations. The
network layout is then analyzed and the results are stored in
a data file.

IV. ABSTRACT CHARACTERISTICS

I analyze three potential abstract rules for the WSN domain:
connectivity, coverage, and density. In practice, coverage and
density both rely on connectivity, allowing for optimal compu-
tation time by overlapping and reusing calculations from one
rule to another.

A. Connectivity
Connectivity represents the overall functionality of the net-

work. A sensor v is connected to the network G = (V,E),
where V is the set of vertices in the network graph and
E is the set of edges in the network graph, if ∃P s.t.
{P | {e1, e2, . . . , en} where ei ε E}, a path connecting v to
the sink. The more connected a network is, the more sensors it
has available to monitor the area and supply data. Connectivity
can also be related to the degree to which the network is par-
titioned. A single network partition implies total connectivity.

A total of n partitions, where n is the number of sensors in
the network, implies no connectivity.

Network connectivity can be computed by running a
breadth-first search (BFS) starting from the sink node, marking
each sensor found as connected. The network connectivity
percentage is just the number of connected sensors divided
by the total number of sensors in the simulation. The running
time is dominated by BFS, which is O (|V | + |E|).

B. Coverage
Coverage measures how efficiently the network monitors the

target area. A region in range of a sensor is only covered if that
sensor is itself connected to the network. Coverage is simply
the total area within sensing range of all connected network
sensors divided by the total target area. The coverage algorithm
relies on the computation of connectivity to determine which
sensors are connected, so both abstract parameters can be
measured at the same time. The algorithm used to compute
coverage considers every point in the environment grid, where
X represents the width of the grid, Y the height of the grid,
and XY the total number of grid points. Despite the use
of geometric hashing, the worst case still involves scanning
through all |V | sensors, calculating the number of sensors
in range of the current grid point. The running time of this
algorithm is therefore O (X · Y · |V |).

C. Density
Network density is the most nebulous of the three high-

level characteristics under analysis. Density can be used to
measure the uniformity of the network. It can also be thought
of as the degree of sensor distribution throughout the target
area. One method of measuring network density is to simply
compute the average number of neighbors per sensor. Another
method considers the total area covered by the network and
computes the ratio of connected sensors to area covered. I
chose to measure density in terms of coverage. Specifically, a
network is said to be M-dense if at least 50% of all grid points
are within sensing range of M connected sensors. M-denseness
provides a general idea of how distributed the network is by
revealing how evenly spread out the individual sensors are
throughout the covered area.

Computing the density estimate is implicit in computing
coverage, and therefore also takes O (X · Y · |V |). Specifi-
cally, in these experiments I measured from 1 to 10-dense.
Therefore, the time required to generate all three abstract
parameters is O (X · Y · |V |).

V. EXPERIMENTS & RESULTS

A. Low-Level Rules
The network swarm model uses the following four low-level

rules:
• AvoidCloseness models repulsion between swarm agents

according to an inverse-squared relationship. The closer
two agents are, the stronger the repulsion. The further
apart two agents are, the weaker the repulsion. This rule
is primarily responsible for agent dispersion throughout

4

the environment grid. The parameter of this rule varies
the strength of the repulsion [8].

• MoveToCenter is a conditional rule that a swarm agent
follows when it has no neighbors. By convention, the
agent will move toward the center of the environment grid
in an attempt to find and connect with other agents. Since
the network sink is always located near the center, the
swarm agent will eventually connect with other agents,
provided that the magnitude of the sensing/transmission
range is reasonable. Note that this does not imply that the
agent will be connected to the network. It is possible for
a small group of agents to connect in an isolated region
of the environment grid but not be connected to the sink.
Since these agents have neighbors, they are never pulled
to the center and may never connect. This rule is used
primarily to connect as much of the network as possible
during simulation. The parameter of this rule varies the
speed at which an isolated agent moves to the center of
the grid.

• Slowdown is a simple mechanical rule that bounds the
maximum speed an agent can attain during simulation.
If not applied, the swarm tends to cyclic instability and
never reaches equilibrium. The parameter of this rule
varies the slowdown rate. For these experiments, this
parameter value is set to 0.22.

• StayInBorders is a simulation-specific rule that prevents
the sensor agents from moving outside of the target area.
When an agent moves within a specific range of the
area border, a repulsive force is applied, pushing the
agent away from the border. If the specified range is
too large, agents are constantly pushed around and no
equilibrium is reached. If the range is too small, an agent
with high velocity can push through the repulsion and
escape the environment, forever isolated from the swarm.
The parameter of this rule varies the repulsion when in
range of the border. For our experiments, the border range
is set to 10 pixels and the parameter value to 1.0.

B. Experiment Setup

In the experimental network layouts, the AvoidCloseness
values were chosen from the set {0, 1, 10, 20, 40, 60, 80,
100} and the MoveToCenter values from {0, 0.001, 0.002,
0.003, 0.004}. The grid sizes are {300, 400, 500} and the
sensor count and range magnitude are both {50, 60, 70, 80,
90, 100}. All combinations of these parameter values were
tested with 20 runs for each configuration, each with random
initial network layouts to ensure statistically valid results. The
average of the results for each set of 20 was then calculated
along with a corresponding 95% confidence interval (CI). The
results for specific data sets are provided in Appendix A. In
each data table in Appendix A, the CIs are represented by the
offset, x, from the mean of the characteristic being measured.
To calculate the actual CI, simply add and subtract the offset
from the mean, yielding (mean− x, mean + x).

The primary goal of these experiments is to reveal the
effects of both the environment and swarm parameters on
network connectivity, coverage, and density. By demonstrating

that the swarm parameters can yield results comparable to
layouts with excessive numbers of sensors or transmission
capability, these experiments reveal the power and potential
of rule abstraction.

C. Graphs & Analysis

Due to the amount of data generated in these experiments,
only a small portion can be presented here. To simplify analy-
sis, five different data sets were selected and the corresponding
results for connectivity, coverage, and density graphed. The
first two data sets demonstrate the effects of the network and
environment parameters (grid size, no. sensors, and sensing
and transmission range) on the network while the other three
data sets reveal the effects of the swarm parameters (Avoid-
Closeness factor and MoveToCenter factor) on the network.
The parameters not listed in each data set serve as axes for
the data graphs. The data sets selected are:

• Grid Size = 300, No. Sensors = 50, AvoidCloseness
Factor = 0

• Grid Size = 500, Range = 100, AvoidCloseness Factor =
0

• Grid Size = 400, No. Sensors = 50, Range = 50
• Grid Size = 400, No. Sensors = 70, Range = 70
• Grid Size = 500, No. Sensors = 60, Range = 60

See Appendix A for the data tables corresponding to the
graphs. For full results see the project website1.

Each graph displays the magnitude of the CI offset for each
data point, in addition to the average characteristic value at
each data point. The offset magnitude is represented by a
gray-scale shading of the xy-plane underneath each point; the
darker the shade of a grid cell, the larger the magnitude of
the CI offset for the corresponding point. This additional data
depicts the consistency of the experiment results and further
reveals the effects of the swarm parameters.

1) Connectivity: For network configurations with either
larger numbers of sensors or large transmission ranges, I
intuitively expect to see improved connectivity, regardless of
the swarm rule factors. Figures 2 and 3 display examples
of this relationship. In Figure 2, there is a direct correlation
between increasing range and connectivity. A single sensor
can cover more area with increasing range, also implying that
it can communicate with more sensors. As the range increases,
more sensors have a direct connection to the sink, increasing
network connectivity. These sensors then act as intermediate
nodes in the graph, allowing sensors further removed from the
sink to connect, again increasing connectivity. In fact, once
the range reaches 80 pixels, the network is almost entirely
connected, and the corresponding CI offsets reveal that the
results are very consistent.

For Figure 3, there is a direct relationship between the
number of sensors and connectivity, similar to Figure 2. Due to
the fixed size of the grid environment and the range, the results
converge for more configurations as the number of sensors
increases. The variation in average connectivity still exists with
large numbers of sensors, though average connectivity never

1http://userpages.umbc.edu/~pete5/Projects/Honors_Thesis/

5

Figure 2. Grid size = 300 pixels, No. sensors = 50, AvoidCloseness factor =
0. The legend on the left defines the different ranges for the CI offset, x. The
legend on the right associates each plot with its corresponding MoveToCenter
factor. This scheme is used for all following data graphs.

measures below 90%. From the graph, MoveToCenter factors
of 0 and 0.001 provide the most consistent results over various
numbers of sensors.

Figure 3. Grid size = 500 pixels, Range = 100 pixels, AvoidCloseness Factor
= 0.

Figures 4, 5, and 6 demonstrate the effects of Avoid-
Closeness on connectivity performance. For Figure 4, the
performance improves as the AvoidCloseness factor increases
but general performance is poor for low MoveToCenter factor
values. The magnitude of the CI offset does not decrease as
the AvoidCloseness factor increases, unlike Figures 2 and 3.
The most consistent performance that provides near optimal
connectivity for the network configuration occurs when the
MoveToCenter factor is 0.002.

It is possible for a combination of network and swarm
parameters to create ideal performance. In Figure 5, maximum
connectivity is achieved for very low AvoidCloseness factor
values, and the corresponding CI intervals are as tight as
possible. The MoveToCenter factor does not make a difference
beyond an AvoidCloseness factor value of 10, conflicting
with the intuition that the MoveToCenter rule is primarily
responsible for improving network connectivity. However, the
performance can also be interpreted as the result of excessive

Figure 4. Grid size = 400 pixels, No. sensors = 50, Range = 50 pixels:
When both rule factors are 0, the network is simply a random configuration
with consistently poor performance.

numbers of sensors with adequate range flooding the target
area. In this case, the AvoidCloseness factor would spread the
sensors evenly around the grid, yielding consistent network
density as depicted in the corresponding density graph in
Figure 15.

Figure 5. Grid size = 400 pixels, No. sensors = 70, Range = 70 pixels. The
CI offsets are as tight as possible for most of the tests in this configuration.

The connectivity performance for a smaller network in the
largest environment is displayed in Figure 6. The poor perfor-
mance of the configuration with a MoveToCenter factor of 0
is due to the even dispersal of the sensors with no tendency
to ensure connectivity with the sink. Overall, the MoveTo-
Center factor does not affect connectivity performance. The
AvoidCloseness factor, beyond values of 10 or 20, leads to
maximum connectivity which is consistent for all remaining
factor values.

For connectivity performance, the MoveToCenter factor,
while expected to greatly influence connectivity, in general
only affects performance consistency as shown by the CI
offsets. Instead, the AvoidCloseness factor produces even dis-
persal of the sensor agents, leading to better connectivity at
low factor values, depending upon the network configuration.

6

Figure 6. Grid size = 500 pixels, No. sensors = 60, Range = 60 pixels.
The MoveToCenter factor value, aside from 0, does not change connectivity
performance. However, it does improve performance consistency, as shown
by the CI offsets.

In terms of swarm rule abstraction, the consistency over
multiple AvoidCloseness factor values, in addition to small
CIs, leads me to believe that the AvoidCloseness rule can be
used to control connectivity with acceptable accuracy.

2) Coverage: Network coverage is related to network con-
nectivity. It is usually presumed that greater connectivity leads
to greater coverage. Therefore, there should be obvious simi-
larities between the graphs for both coverage and connectivity.

Figure 7. Grid size = 300 pixels, # sensors = 50, AvoidCloseness factor =
0: The relationship between coverage and range is almost identical to Figure
2.

The plots of Figures 7 and 8 correspond to Figures 2
and 3, representing the same network configurations. The
coverage increases as both the range and the number of sensors
increases. The MoveToCenter factor does not affect coverage
performance nor coverage consistency, as both graphs show
roughly the same decrease in CI offset magnitude as the range
and the number of sensors increases.

Figure 9 is interesting due to the inconsistent CI offset
magnitudes recorded for various data points. As in Figure
4, it appears that the optimal MoveToCenter factor value is
0.002, but it is also interesting to note the rate of decline of
each plot from the initial peaks observed at an AvoidCloseness

Figure 8. Grid size = 500 pixels, Range = 100 pixels, AvoidCloseness factor
= 0.

Figure 9. Grid size = 400 pixels, No. sensors = 50, Range = 50 pixels: This
graph is virtually identical to Figure 3. The reason optimal coverage beyond
80% is not observed is because of the physical limitations of the network in
a medium-sized environment.

factor value of 10. A possible explanation for this could be
that the increase in repulsion among sensor agents overcomes
the connectivity attraction, leading segments of the network
to form small local networks that are isolated from the sink.
This phenomenon also appears in Figure 4, though Figure 9
shows tighter average consistency for greater MoveToCenter
and AvoidCloseness factor values.

In Figure 10, the maximum coverage is reached quickly,
indicating that the physical network configuration may be
more responsible than the swarm parameters.

Figure 11 is similar to previous coverage and connectivity
graphs. Overall, coverage performance is consistent as the
AvoidCloseness factor changes. Given the parameter modifica-
tions, I believe that AvoidCloseness can also be used to model
coverage, possibly in determining the necessary size of the
network needed to yield optimal coverage for specific target
areas.

3) Density: Density is dependent on both connectivity and
coverage, therefore the effects of both characteristics should
be detected in the density performance.

The relationships in Figures 12 and 13 are linear. The only
reason the density values stop increasing in Figure 12 is due

7

Figure 10. Grid size = 400 pixels, No. sensors = 70, Range = 70 pixels.
Performance matches connectivity performance in Figure 5.

Figure 11. Grid size = 500 pixels, No. sensors = 60, Range = 60 pixels.
Coverage performance is independent of the MoveToCenter factor and is
consistent for higher AvoidCloseness factor values.

to the fact that 10-dense was the maximum density level
measured in the experiments. I would expect the density to
continue increasing with the range until any individual sensor
can cover the entire target area. At this point, the density would
reach a maximum possible value, equal to the total number of
sensors in the network. Similarly in Figure 13, increasing the
number of sensors in the target area will always increase the
density, since the maximum density is dependent on the total
number of network sensors.

Figure 14 shows the first instance where the MoveToCenter
factor influences the density measure. A decrease in density
is observed as the AvoidCloseness factor increases, but it
is most pronounced when the MoveToCenter factor value is
0.001. Since density is primarily dependent on coverage, and a
decrease occurs in the corresponding coverage graph in Figure
9, a similar decrease in density is expected. MoveToCenter
values beyond 0.001 produce satisfactory average density,
though the optimal configuration in terms of both maximum
possible density and CI offset magnitude occurs when the
MoveToCenter factor value is 0.002, as in Figures 4 and 9.

The variability of average density displayed in Figure 15
is at first confusing. However, the density axis shows that

Figure 12. Grid size = 300 pixels, No. sensors = 50, AvoidCloseness factor =
0: Since the experiments only measure up to 10-dense, the linear relationship
between Density and Range is truncated. Again, swarm rule factors have no
impact on network density in this network configuration.

Figure 13. Grid size = 500 pixels, Range = 100 pixels, AvoidCloseness factor
= 0.

the variability mainly occurs between 4.5-dense and 5-dense,
which is actually pretty consistent. The CI offset magnitudes
are also small, indicating that the measures are accurate over
multiple simulations for each configuration.

For the configuration in Figure 16, the relationship is
again obvious. Higher AvoidCloseness factor values lead to
greater network dispersal throughout the environment, leading
to redundant coverage of the same areas by multiple sensors,
creating higher network density. An exact CI offset for higher
AvoidCloseness factor values is expected, since the sensor
spread throughout the target area is confined by the area
bounds and the StayInBorders rule, preserving optimal density
for the configuration even with differing AvoidCloseness factor
values.

For each network configuration, the density values measured
are very consistent, if not exact, making density the most
precise of the three network characteristics measured. It also
indicates that density is the most robust, making it resistant
to changes in the swarm parameters. This could result from
the artificial limits placed on measuring the density. However,
I do not believe this to be the case because density is tied

8

Figure 14. Grid size = 400 pixels, No. sensors = 50, Range = 50 pixels:
No satisfactory density is recorded when both swarm rule factors are 0, as
expected.

Figure 15. Grid size = 400 pixels, No. sensors = 70, Range = 70 pixels.
While there appears to be a lot of variability in the average density measures,
the density axis reveals that all values, aside from those with AvoidCloseness
= 0, are between density measures of 4.5 and 5.0.

directly to connectivity and coverage in this model, and both
generally show consistent behavior for each data set.

VI. FUTURE WORK

This work has only begun to reveal the potential for swarm
rule abstraction to model high-level network characteristics.
Ongoing work is currently focused on fully developing the
connectivity, coverage, and density rules. However, due to the
number of variable parameters available in the WSN domain,
the analysis can also be expanded to include new network
types and environments.

To simplify testing and analysis for these experiments, the
network was limited to a homogeneous set of sensors and
the network environment to a two-dimensional featureless
Euclidean grid. However, this model does not accurately repre-
sent the real world: most WSN applications employing swarm
rule abstraction would be deployed in more complicated envi-
ronments with a more varied network composition. Simulation
obstacles could be added to the environment to interact and
interfere with sensor movement and communication. I am also

Figure 16. Grid size = 500 pixels, No. sensors = 60, Range = 60 pixels. For
this configuration, the maximum density possible with available resources is
2-dense. The MoveToCenter factor affects the speed at which the maximum
is reached but is does not prevent the maximum from being reached in any
case.

interested in extending the environment to three dimensions,
allowing for variable terrain and producing hills and valleys
that may enhance or hinder network operations. Finally, I
plan on investigating how the current abstract rule models
generalize to heterogeneous networks.

In addition to modifying the problem domain, there are sev-
eral modifications and enhancements that can be made to the
WSN simulator. These updates include saving external copies
of network layout and simulation parameters, adding data load
functionality so the simulator can upload a previously created
network layout, adding GUI functionality to allow the user
to dynamically pick the swarm rules to use along with their
respective weight values, and displaying an actual test of the
network in a target-tracking scenario. The long-term goal of
this research is to develop a robust simulation application that
will be instrumental in facilitating the analysis of swarm rule
abstraction with new network types and environments.

VII. CONCLUSIONS

I have presented swarm rule abstraction and defined how
it can be applied to the wireless sensor domain, specifically
in modeling network characteristics such as connectivity, cov-
erage, and density. I have also presented a WSN simulator
that was designed specifically to assist in creating and analyz-
ing relationships between the low-level swarm rules and the
observed abstract network characteristics. I have conducted
experiments revealing the potential of rule abstraction and
presented selected findings in both graphical and tabular form.

I believe these initial results warrant additional investigation
into the applicability of swarm rule abstraction, both in further
developing rules modeling connectivity, coverage, and density,
and in modeling new rules, like network lifetime. I believe
that the contributions of this paper and research will lead to
advances in the design and control of wireless sensor networks
and I look forward to participating in this future work.

9

REFERENCES

[1] Beni, G. and Wang, J. (1989). Swarm Intelligence in Cellular Robotic
Systems. In the Proceedings of the NATO Advanced Workshop on Robots
and Biological Systems.

[2] Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelli-
gence: From Natural to Artificial Systems. Oxford-University Press.

[3] Collier, T.C. and Taylor, C. (2004). Self-Organization in Sensor Net-
works. In the Journal of Parallel and Distributed Computing. Vol. 64,
Is. 7, pp. 866-873.

[4] Cui, X., Hardin, T., Ragade, R.K., and Elmaghraby, A.S. (2004). A
Swarm-based Fuzzy Logic Control Mobile Sensor Network for Haz-
ardous Contaminants Localization. In IEEE International Conference
on Mobile Ad-hoc and Sensor Systems. pp. 194-203.

[5] Gruenwald, C., Hustvedt, A., Beach, A., and Han, R. (2007) SWARMS:
A Sensornet Wide Area Remote Managements System. In 3rd Inter-
national Conference on Testbeds and Research Infrastructure for the
Development of Networks and Communities, 2007. TridentCom 2007.

[6] Hong, J., Lu, S., Chen, D., and Cao, J. (2008). Towards Bio-Inspired
Self-Organization in Sensor Networks: Applying the Ant Colony Al-
gorithm. In 22nd International Conference on Advanced Information
Networking and Applications. pp. 1054-1061.

[7] Jourdan, D.B. (2006). Wireless Sensor Network Planning with Appli-
cation to UWB Localization in GPS-Denied Environments. Doctoral
Thesis at Massachusetts Institute of Technology.

[8] Miner, D., Hamilton, P., and desJardins, M. (2008). Learning Abstract
Rules for Swarm Systems. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence (2008).

[9] Miner, D. and desJardins, M. (2008). Learning Abstract Properties of
Swarm Systems. In Proceedings of the 8th International Conference on
Autonomous Agents and Multiagent Systems.

[10] Muraleedharan, R. and Osadciw, L.A. (2003). Sensor Communication
Network Using Swarm Intelligence. In Proceedings of the 2nd IEEE
Upstate New York Workshop on Sensor Networks.

[11] Parsopoulos, K.E. and Vrahatis, M.N. (2002). Recent Approaches to
Global Optimization Problems Through Particle Swarm Optimization.
In Natural Computing. Vol. 1, No. 2-3, pp. 235-206.

[12] Reynolds, C. (1987). Flocks, Herds, and Schools: A Distributed Behav-
ioral Model. In SIGGRAPH Comput. Graph. Vol. 21, Iss. 4, pp. 25-34.

[13] Römer, K. and Mattern, F. (2004). The Design Space of Wireless Sensor
Networks. In IEEE Wireless Communications. pp. 54-61.

[14] Selvakennedy, S., Sinnappan, S., and Shang, Y. (2007). A Biologically-
inspired Clustering Protocol for Wireless Sensor Networks. In Computer
Communications. Vol. 30, Is. 14-15, pp. 2786-2801.

[15] Zhao, C. and Chen, P. (2007). Particle Swarm Optimization for Optimal
Deployment of Relay Nodes in Hybrid Sensor Networks. In IEEE
Congress on Evolutionary Computation, 2007. pp. 3316-3320.

10

Appendix A

Table I
DATA FOR FIGURES 2, 7, AND 12.

11

Table II
DATA FOR FIGURES 3, 8, AND 13.

12

Table III
DATA FOR FIGURES 4, 9, AND 14.

13

Table IV
DATA FOR FIGURES 5, 10, AND 15.

14

Table V
DATA FOR FIGURES 6, 11, AND 16.

