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Abstract 
 
 I present an application of the Simple Evolutionary Algorithm for Multiobjective 

Optimization (SEAMO) to the problem of school redistricting. The application domain, 

evolutionary algorithms in general, and SEAMO in particular are outlined, the application of 

SEAMO to school redistricting is explained, and its performance is compared to other heuristic 

local search methods previously implemented in this domain. SEAMO is found to be comparable 

to these algorithms with respect to plan quality and diversity, but has the advantage that it 

optimizes all objectives simultaneously, instead of improving some at the expense of others. 

 

Introduction 

 
 This paper presents an application of evolutionary multiobjective optimization to 

the problem of school redistricting. It builds on the previous work of desJardins et al. [3], 

which presents a system designed to help school officials in Howard County, Maryland 

find and visualize possible solutions to this problem. This paper presents the results of 

implementing the Simple Evolutionary Algorithm for Multiobjective Optimization 

(SEAMO, developed by Mumford-Valenzuela [4]) in the system, and compares them to 

the results generated by the heuristic search methods already in the system. 

 

Background 

 
 This section outlines the application domain as presented by desJardins et al. [3], 

gives a general description of evolutionary multiobjective optimization, and presents the 

SEAMO algorithm as described by Mumford-Valenzuela [4]. 

 

Application Domain 

The goal of school redistricting is to assign each neighborhood (or planning 

polygon) in a county or school district to a school at the elementary, middle, and/or high 

school level. An assignment of each neighborhood in the school district to a school at one 

of these levels is called a partition or plan. There are many different criteria that school 

officials consider when creating plans. For instance, it is often desirable to minimize 

busing costs, meet school capacities, to balance distributions of socioeconomic status and 

test scores, and to allow students who live within walking distance of a school to attend 

that school. Improving one of these criteria often comes at the expense of others; for 

instance, in order to balance socioeconomic distribution, it may be necessary to bus some 

students in a wealthy neighborhood near one school to a school further away, which 

increases busing costs. Because of this, school redistricting is a multiobjective 



optimization problem. Therefore, there are a large number of possible plans that represent 

good solutions in the search space. In addition to finding good plans, it is often desirable 

to find plans that represent tradeoffs among the criteria (such plans are said to be 

qualitatively different) [3]. 

 

Evolutionary Multiobjective Optimization 

 Evolutionary algorithms (EAs) are a popular method for local search over a single 

objective, and they have been shown to quickly converge to the optimal solution [sources 

from 3]. However, when there is more than one objective (particularly when objectives 

are contradictory to one another), the search space is not well defined, so a new technique 

for searching with EAs is necessary. Evolutionary search over multiple objectives is 

known as evolutionary multiobjective optimization (EMO), and there is a relatively small 

body of work on EMO compared to single-objective evolutionary optimization [2]. 

 Both single-objective EAs and EMO algorithms use natural selection as a method 

of exploring their search space for good solutions. Given an initial set of possible 

solutions (the first generation), the processes of selection, crossover, mutation, and 

replacement are applied to produce a new generation. Selection involves choosing a 

number of solutions (two, for example) to function as parents for a new solution. 

Crossover involves combining the attributes of the parent solutions in some way to create 

a child solution. Once the child solution has been created, it is subject to the process of 

mutation, which randomly alters at least one of its features. Finally, the process of 

replacement is used to determine which of the parent and child solutions are best, and to 

use them to populate a new generation. The aim is for each generation to contain 

solutions that are better than the generation before it. Thus, by allowing the algorithm to 

continue for a large number of generations, it should be possible to produce good 

solutions. 

 The primary obstacle for moving from single-objective EAs to EMO algorithms is 

implementing the selection process. Since there are multiple objectives, it is common for 

one solution to be better than another on some objectives and worse on others. EMO 

algorithms generally use one of three methods to deal with this problem: aggregating 

functions, population-based approaches, and Pareto-based approaches [2]. 

 Aggregating functions deals with the problem by simply multiplying each 

objective by some weight and summing these values together; a higher sum indicates a 

better solution. Although clever applications of this technique have been shown to 

produce good results, there is little interest in new algorithms of this type [2]. 

 Population-based approaches involve dividing the population into sub-populations 

based on the number of objectives the problem has. Therefore, a population with M 

members in a problem with k objectives would be divided into k subpopulations, each 

with size M/k. Selection, crossover, and mutation are then run on each subpopulation, 

with only one objective used in the selection process for each. The subpopulations are 

then shuffled back together to obtain the new generation. This was the method used by 

some of the first EMO algorithms, and continues to be used in certain areas [2]. 

 Pareto-based approaches incorporate the concept of Pareto optimality. A solution 

is said to dominate another solution if it is better on at least one objective, and is not 

worse on any other objective. A Pareto-optimal (or non-dominated) solution is one that is 

not dominated by any other solution [1]. Pareto-based approaches to EMO incorporate 



the concepts of dominance and non-dominance into the selection process in some way. 

These approaches have become the most popular methods for dealing with multiple 

objectives in EAs [2]. 

 

 

SEAMO 

 The Simple Evolutionary Algorithm for Multiobjective Optimization (SEAMO) is 

a Pareto-based approach to EMO first presented by Mumford-Valenzuela [4]. Many 

EMO algorithms make use of fitness sharing, population-wide Pareto-dominance 

calculations, or other global calculations that are computationally expensive. SEAMO 

attempts to do away with these global calculations while still producing solutions that are 

both close to the Pareto front and widely and evenly spread along it. 

 In SEAMO, these objectives are reached primarily through the replacement 

strategy, which follows three rules. First, parents are typically replaced only by their own 

offspring. Second, offspring are only allowed to replace their parents if the offspring are 

superior. Finally, duplicates in the population are deleted. The first and third rules are 

used to ensure that the population remains diverse and does not converge to only one 

solution. This ensures that solutions are spread widely over the Pareto front. The second 

rule guarantees that the population can only improve, which guarantees that, given 

enough time, the algorithm will generate solutions close to the Pareto front [4]. 

 SEAMO begins with an initial population of randomly generated members of the 

search space. In each generation, it performs selection by iterating through the members 

of the population. For each member, another member is randomly selected, and these two 

solutions are used as parents in a crossover to create one child solution. The child then 

has one mutation applied to it, and is then compared with its parents. If the child 

dominates one of its parents, it replaces that parent; if the child dominates both of its 

parents, it randomly decides which parent to replace; if the child does not dominate either 

of its parents, it is discarded, unless it contains the best value seen so far on any objective. 

In this case, the child is preserved by replacing one of its parents or, in rare cases, a 

different member of the population (this is an attempt to make sure that solutions are 

spread as widely as possible along the Pareto front). Once SEAMO has run for a certain 

number of generations (or some other stopping condition is reached), it returns the entire 

set of non-dominated solutions in the population [4]. 

 SEAMO has been shown to outperform many popular EMO algorithms in some 

cases, and its performance relative to other algorithms has been shown to improve as the 

size of the search space of a problem increases [4]. 

 

Methods 

 

 This section describes the evaluation criteria used in the search, gives a 

justification for choosing SEAMO over other algorithms for this application, and outlines 

the adaptation of SEAMO to the problem of school redistricting. Finally, it briefly 

describes the search methods previously implemented in the school redistricting project 

by desJardins et al [3]. 

 

 



Evaluation Criteria 
 Each generated school plan is evaluated along five dimensions chosen to 

represent the qualities that school officials look for when choosing plans. These functions 

are school capacity (f1), socioeconomic distribution (f2), test score distribution (f3), busing 

cost (f4), and walk area usage (f5). Each function has been normalized so that its results 

fall in the range [0,1], with 0 being the ideal value. Note that these are the same 

evaluation criteria used by desJardins et al., and a more rigorous mathematical definition 

of each criteria may be found in their work [4]. 

 

 School Capacity (f1): Plans that have schools that are either significantly under-

or over-utilized (i.e., the ratio of proposed enrollment to intended enrollment is below 

90% or above 110%) are both considered poor. Thus, f1 is a function that calculates these 

ratios and assigns a high value if a ratio is outside the range [0.9, 1.1]. 

 

 Socioeconomic Distribution (f2): The percentage of students who receive free 

and reduced meals (FARM) is used as an indicator of a school’s socioeconomic 

distribution. Ideally, every school in the plan would have the same FARM percentage. 

Thus, f2 is calculated by measuring the difference between each school’s FARM 

percentage and the FARM percentage over the entire county. Each school’s value is fed 

into a penalty function, weighted by the school’s population, and combined to get the 

value for the entire plan. 

 

 Test Score Distribution (f3): Maryland State Assessment (MSA) percentages 

measure the proportion of students at a school who achieve above a certain level on 

assessment tests. As with FARM percentages, the ideal plan would have the same MSA 

percentages for each school in the county. Thus, f3 is computed the same way as f2, with 

the difference between each school’s MSA percentage and the county-wide MSA 

percentage fed into a penalty function and weighted based on the school’s population. 

 

 Busing Cost (f4): Busing costs are minimized if every neighborhood is bused to 

whichever school is closest to it. Thus, f4 is computed by calculating, for each 

neighborhood, the difference between the distance to its assigned school and the distance 

to its closest school. This value is normalized by the distance to each neighborhood 

fourth closest school, since it is almost never reasonable to bus students farther than that. 

Each polygon’s value is weighted by its population and combined into a single value for 

the entire plan. 

 

 Walk Area Usage (f5): When students are within walking distance of a school, it 

is preferable to send them to that school. This is represented in f5 by calculating the 

number of students assigned to a school within walking distance and dividing it by the 

number of students within walking distance of any school, regardless of assignment. This 

value is then subtracted from one to obtain the penalty value. 

 

Justification for SEAMO 

 SEAMO was chosen for this application for a variety of reasons. First, SEAMO’s 

stated objectives – finding a set of plans that are not only good, but as diverse as possible 



– are the same as the objectives of the school redistricting problem. Since the final 

decision making in this process is done by school officials, finding diverse plans is 

almost as important as finding good plans, since diverse plans help officials see the 

tradeoffs between different solutions. 

 SEAMO is able to find good plans with a relatively small population size 

compared to other algorithms, without resorting to fitness sharing or global dominance 

calculations. This makes it suitable for school redistricting because each solution takes up 

a considerable amount of memory and evaluating plans more than necessary can be 

computationally expensive. The school district has almost 300 neighborhoods, and each 

evaluation function must examine them all at least once. 

 SEAMO has been shown to outperform many other popular EMO algorithms as 

the size of the search space increases. This, too, makes it suitable for school redistricting, 

since the search space of this problem, for s schools and p polygons, is on the order of 

s
(p-s) 

(since polygons that contain a school must be assigned to that school). Since there are at 

least 12 schools at every level and almost 300 polygons, the search space is very large 

even if unreasonable solutions (such as those that assign non-contiguous regions to 

schools) are ignored. 

 Finally, SEAMO was chosen because it is easily extensible. Since it does not 

involve assigning weights to evaluation functions and only needs to know which solution 

dominates another, it will be easy to change or add new evaluation functions in the 

future. This is important, because several new evaluation functions, such as region 

contiguity and feeder statistics, are in development, and more are likely to be added in the 

future. Due to SEAMO’s simplicity, it should be possible to add these functions without 

altering the algorithm in any way. 

 

Adaptation of SEAMO to School Redistricting 
 The SEAMO for School Redistricting (SEAMO-SR) algorithm takes as input an 

initial plan to use as a seed plan for the first generation. A plan can be thought of as a 

group of regions, each of which contains a set of polygons assigned to one school. 

SEAMO-SR begins by generating an initial population with the seed plan. To do this, it 

creates g copies of the seed plan, where g is the population size of one generation. For 

each copy, it selects one polygon on the border between two regions. It then grows a sub-

region by starting with the selected polygon and adding new polygons adjacent to the 

current sub-region, with a probability n of stopping each time a new polygon is added. 

Thus, the expected size of a sub-region is 1 + 1 / n. All polygons in the sub-region are 

then swapped to one school chosen at random. 

 Once the initial population is generated, SEAMO-SR performs selection, 

crossover, mutation and replacement on the population for 500 generations, or until ten 

generations pass with no replacement. SEAMO-SR’s implementation of these 

evolutionary processes follows. 

 

 Selection: As in SEAMO, each member of the population is automatically 

selected to produce a child with one other, randomly selected member. Thus, in each 

generation, each member is expected to be selected for crossover twice. 



 Crossover: The child solution in SEAMO-SR is, initially, a copy of its first 

parent solution. Then, for each school in the plan, there is a probability of 0.5 that the 

second parent’s region for that school will be copied into the child. Thus, the child plan 

will typically be similar to both parents, a quality that is essential for convergence in an 

EA [4]. 

 Mutation: Each child is given a single mutation. In SEAMO-SR, mutation 

involves growing a sub-region around a border polygon and swapping it to a school 

chosen at random, in the same way that members of the initial population are generated. 

However, sub-regions in mutation stop growing with probability m. Since the members of 

the initial generation are meant to vary more from the seed plan than children are meant 

to vary from their parents, it is typically the case that n < m. 

 Replacement: Replacement in SEAMO-SR is conducted in a manner nearly 

identical to SEAMO. If a child is found to dominate one of its parents, it replaces that 

parent; if the child dominates both of its parents, it randomly chooses which one to 

replace; if the child does not dominate either parent, it is discarded. The only difference 

between replacement in SEAMO is that children with the best recorded value on any 

objective are not automatically preserved. This was omitted because plans that maximize 

any one criterion tend to be very poor, overall. 

 

 When SEAMO-SR finishes its evolutionary search, it selects all of the non-

dominated members of the final population and returns them in random order. 

 

Search Methods Previously Implemented 

 desJardins et al. implemented and compared several methods for heuristic local 

search in their previous work [4]. These methods were basic hillclimbing, biased 

hillcliming with blind bias, and biased hillclimbing with diversity bias. 

 

 Basic Hillclimbing: Given a seed plan, this method randomly chooses a polygon 

and swaps it to a random school. If this change results in a lower weighted sum of the 

evaluation criteria, it is kept, otherwise it is discarded. When no change that results in a 

lower weighted sum of evaluation criteria can be made to a plan, it is said to be a local 

minimum and is returned by the search. If more plans than one plan is desired, the process 

starts over again from the seed plan. 

 

 Biased Hillclimbing with Blind Bias: Given a seed plan, this method randomly 

chooses a polygon and swaps it to a random school. If this change results in a plan that 

dominates the original plan, the change is kept; if the original plan dominates the new 

plan, the new plan is discarded. However, if neither the new plan or the original plan 

dominates the other, the new plan is added to a list of incomparable plans. When it is not 

possible to randomly swap a polygon and produce a dominant plan, the plan reached is 

returned as a local minimum. If more plans are desired, the process begins again with a 

plan randomly selected from the incomparable list. 

 

 Biased Hillclimbing with Diversity Bias: This method is the same as biased 

hillclimbing with blind bias, but the plan selected from the incomparable list is the one 

with the greatest Euclidean distance in evaluation space from the returned plan. 
 



 Seed  n=.1, m=.2 n=.05, m=.2 n=.05, m=.1 n=.2, m=.3 n= .3, n=.2 

F1 0.709 0.535 (0.026) 0.529 (0.013) 0.563 (0.022) 0.538 (0.016) 0.548 (0.027) 

F2 0.257 0.225 (0.002) 0.232 (0.002) 0.233 (0.003) 0.227 (0.003) 0.227 (0.003) 

F3 0.236 0.213 (0.003) 0.215 (0.002) 0.218 (0.003) 0.215 (0.003) 0.215 (0.002) 

F4 0.125 0.094 (0.009) 0.097 (0.010) 0.121 (0.021) 0.095 (0.017) 0.093 (0.008) 

F5 0.104 0.070 (0.010) 0.070 (0.009) 0.098 (0.015) 0.068 (0.010) 0.072 (0.011) 

Total 1.433 1.139 (0.033) 1.145 (0.025) 1.236 (0.052) 1.145 (0.036) 1.156 (0.030) 

Diversity  0.053 (0.002) 0.051 (0.004) 0.078 (0.013) 0.068 (0.022) 0.061 (0.006) 
Table 1 – Average values of f1…f5, totals, and diversity measurements for seed plan and different 

values of n and m. Standard deviations are shown in parentheses. 

 

Empirical Results 

 
 I conducted three experiments. The first was designed to find the optimal values 

of n and m for SEAMO-SR; the second was designed to determine how long different 

values of n and m take to converge; and the third was a comparison of SEAMO-SR to the 

heuristic local search methods previously implemented by desJardins et al. [4]. 

 

Varying n and m 
Recall that n is the probability that a sub-region will stop growing when the initial 

population is being generated, and m is the probability that a sub-region will stop 

growing during mutation. Since there are few guidelines on how to set rates of mutation 

in EAs, optimal values for n and m had to be reached empirically. 

 The results of this experiment may be found in Table 1. The seed plan used was 

the current middle school plan for Howard County, Maryland. This plan was chosen 

because it uses the most recent data obtained for the school district, and because the 

middle school level is the next level that will go through the redistricting process in 

Howard County. This data was obtained by generating groups of 30 plans using SEAMO-

SR with different values of n and m, which are shown on the table. 

 The values in the “F1” through “F5” rows in Table 1 reflect the average value of 

the corresponding evaluation function across the 30 plans generated for each pair of 

values of n and m (with the exception of the “Seed Plan” column, which reflects the 

evaluation function values of the original plan). The “Total” row represents the total of 

the previous five rows. Recall that lower values are better for these rows. The “Diversity” 

row contains the average Euclidean distance between plans for each group of 30 plans. 

For this row, higher values are better. 

 These results indicate that varying n and m can have significant results on the 

quality of plans found. Setting these values too low seems to produce particularly poor 

results, as the group of plans produced with n=.05 and m=.1 had by far the worst results. 

However, even this group of plans still produced an average evaluation total significantly 

lower than the seed plan. The other groups of plans had similar evaluation totals, with the 

group produced by n=.1 and m=.2 producing the best results. Increasing or decreasing n 

or m from these values seems to cause a steady decrease in plan quality. Diversity was 

similar across all groups of plans, with the n=.05, m=.1 group having the highest 

diversity. However, this is probably due to the fact that members of this group were, in 

general, further from the Pareto front, and thus further from one another. 
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Figures 1 and 2 – Average percentage of population replaced at each generation 

for varying values of n and m. 



 Best SEAMO-SR 
Biased Hillclimbing 
with Blind Bias 

Biased Hillclimbing 
with Diversity Bias 

Basic 
Hillclimbing 

Seed 
Plan 

F1 0.535 (0.026) 0.471 (0.009) 0.637 (0.211) 0.375 (0.011) 0.709 

F2 0.225 (0.002) 0.209 (0.001) 0.197 (0.020) 0.248 (0.004) 0.257 

F3 0.213 (0.003) 0.196 (0.001) 0.180 (0.018) 0.223 (0.003) 0.236 

F4 0.094 (0.009) 0.137 (0.001) 0.290 (0.056) 0.147 (0.008) 0.125 

F5 0.070 (0.010) 0.130 (0.006) 0.306 (0.063) 0.126 (0.012) 0.104 

Total 1.139 (0.033) 1.144 (0.011) 1.611 (0.197) 1.121 (0.020) 1.433 

Diversity 0.053 (0.002) 0.024 (0.001) 0.298 (0.043) 0.058 (0.001)  
Table 2 – Average values of f1…f5, totals, and diversity measurements for seed plan, SEAMO-SR, 

and previously implemented search methods. Standard deviations are shown in parentheses. 

 

 

Convergence for varying n and m 

 While the groups of plans in the previous experiment were being generated, I 

tracked the percentage of the population being replaced in each generation. Since 

SEAMO relies primarily on replacement to improve the quality of its population, this 

should provide another estimate of how well each method performs. The results of this 

experiment may be found in Figure 1 and Figure 2 (they have been broken up for easier 

readability). 

 Figures 1 and 2 show the average amount of replacement that occurred in each 

generation for the different groups of plans. More total replacement (i.e., a greater area 

under the “curve” of each group) should correspond to better total plan quality. These 

results reflect the results of the previous experiment; most groups except n=.05, m=.1 

perform similar amounts of total replacement, and these groups have similar plan 

qualities. The n=.05, m=.1 group appears to perform considerably less replacement, 

however, and its plan quality is indeed lower. 

 

Comparison of SEAMO to previous search methods 

 In order to compare SEAMO-SR to the previous search methods developed by 

desJardins et al. [1] (basic hillclimbing, biased hillclimbing with blind bias, and biased 

hillclimbing with diversity bias), I generated 30 school plans with each of these methods 

using the original middle school plan as a seed.  

The results of this experiment are presented in Table 2. The best values obtained 

by SEAMO-SR (i.e., the column from Table 1 with the lowest total f-values) are 

duplicated and compared with the average values of the plans produced the three 

hillclimbing methods. Their performance mirrors the performance shown in previous 

work: basic hillclimbing and biased hillclimbing with blind bias produce the best results 

but with low diversity, while biased hillclimbing with diversity bias produces highly 

diverse plans at the expense of plan quality [1]. SEAMO-SR’s performance, at first 

glance, appears comparable to the first two hillclimbing methods. While its plan quality 

and diversity is between biased hillclimbing with blind bias and basic hillclimbing, all 

three values are extremely close compared to those achieved by biased hillclimbing with 

diversity bias.  

Note, however, that SEAMO-SR is the only method that has better f-values than 

the seed plan across all evaluation functions. Since f1,  f2, and f3 have relatively high 

values compared to f4 and f5, the hillclimbing methods tend to improve these criteria at 

the expense of the others. This tends to lead to plans with better school utilizations and 



FARM and MSA distributions, but high busing costs and students who could walk to a 

school being bused to one further away. While SEAMO-SR does not make such 

significant gains on the first three evaluation functions, it is also able to improve busing 

costs and walk area usage. Thus, the average plan generated by SEAMO-SR dominates 

the seed plan, which gives it a significant advantage over the hillclimbing methods. 

 

Conclusions and Future Work 
  

 The Simple Evolutionary Algorithm for Multiobjective Optimization (SEAMO) 

developed by Mumford-Valenzuela [2] has been successfully applied to the domain of 

school redistricting. SEAMO is a good fit for this application because it finds plans that 

are both high-quality and diverse, because it does well in applications with large search 

spaces, and because it endeavors to conserve memory and computation time. The 

implementation of SEAMO was refined via empirical results, and the final version of the 

algorithm was compared to previous heuristic local search methods developed by 

desJardins et al. [1] for this application. SEAMO was found to produce results 

comparable to the previous methods in terms of plan quality and diversity. However, 

SEAMO was shown to improve all evaluation criteria simultaneously, while the previous 

methods tended to improve some at the expense of others. This gave SEAMO a 

significant advantage, since the plans that it generates are more likely to dominate the 

plan used to seed the search. 

 In the future, I plan to alter the SEAMO adaptation to preserve plans with the best 

individual function values, and compare this approach to the one presented above. 

However, most future work for this application will consist of adding or changing 

evaluation functions. Functions which evaluate region compactness (i.e., how much each 

region resembles a circle) and feeder statistics (i.e., what portion of students who attend a 

lower-level school stay together when they move to a higher-level school) are currently 

in development, and several others are being considered. Additionally, some of the 

evaluation functions are being re-normalized to have values more comparable to the 

others (for instance, f1 is being generally reduced, and f4,5 are being generally increased). 

It should be interesting to see how this impacts SEAMO’s performance with respect to 

the hillclimbing methods. 
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