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Abstract

This paper describes an expert system development tool-
set called the Production-Based Expert System Toolset
(P-BEST) and how it is employed in the development of a
modern generic signature-analysis engine for computer and
network misuse detection. For more than a decade, earlier
versions of P-BEST have been used in intrusion detection
research and in the development of some of the most well-
known intrusion detection systems, but this is the first time
the principles and language of P-BEST are described to
a wide audience. We present rule sets for detecting sub-
version methods against which there are few defenses—
specifically, SYN flooding and buffer overruns—and provide
performance measurements. Together, these examples and
performance measurements indicate that P-BEST-based ex-
pert systems are well suited for real-time misuse detection
in contemporary computing environments. In addition, the
simplicity of the P-BEST language and its close integra-
tion with the C programming language makes it easy to use
while still being very powerful and flexible.

1. Introduction

Intrusion detection components analyze system and user
operations in computer and network systems in search of
activity considered undesirable from a security perspective.
Data sources for intrusion detection may include audit trails
produced by an operating system, or network traffic flow-
ing between systems, or application logs, or data collected
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from system probes (e.g., file system alteration monitors).
The collected data may be stored for batch-mode analysis
or immediately analyzed in real-time.

For the most part, the various strategies for intrusion de-
tection are not unique to the field, but are rather derived
from applications established by other fields: knowledge-
based expert systems, pattern recognition algorithms, statis-
tical profiling techniques, neural networks, Bayesian statis-
tics, information retrieval algorithms, state-transition mod-
els, Petri-net techniques, and so forth. Among the more
widely used strategies proposed early within the intrusion
detection community are signature-based analyses.

Intuitively, we describe a signature-based intrusion-de-
tection component as an algorithm with which we spec-
ify the characteristics of malicious behavior and then mon-
itor an event stream for activity that maps to the tar-
get behavior. Various signature-based systems have been
developed, ranging from simple (but efficient) pattern-
matching systems to more sophisticated algorithms that em-
ploy more general directed reasoning systems such as rule-
based expert systems. In this paper, we describe in detail
the principles and language of one forward-chaining rule-
based expert system construction toolset called P-BEST
(Production-Based Expert System Toolset), which has been
continually applied to intrusion detection applications for
more than a decade, but never before widely presented in
this level of detail.

By using a general expert system, we can describe the
behavior of our signature-based intrusion-detection com-
ponent within an established theoretical framework. This
choice also facilitates the evolution of the component, be-
cause new rules can be added without changing existing
rules and without creating any undesired dependency. Tra-
ditional reasons for not choosing an expert system are re-
lated to low performance, difficult integration with other
program components, and language complexity. How-
ever, in this paper we show that P-BEST is sufficiently
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fast for real-time detection of currently widely used at-
tack methods—SYN flooding and buffer overruns—against
which systems usually have no defense mechanisms. We
also show that P-BEST provides exceptional interoperabil-
ity with native operating system libraries, and is easily in-
tegrated into a larger software framework for distributed
anomaly and misuse detection. We also argue that while
the production rule language is powerful, it remains easy to
use for beginners.

2. Monitoring misuse through expert systems

Expert systems provide strategies and mechanisms for
processing facts regarding the state of a given environment,
and deriving logical inferences from these facts. With re-
spect to intrusion detection, a fact maps to an event that
is recorded and evaluated by the expert system. This pro-
cess of fact evaluation leading to the assertion of a new
derived fact or conclusion is referred to asmodus ponens,
which states that given(p ) q) andp we deduceq. Sys-
tems that iteratively apply modus ponens under a bottom-
up reasoning strategy (from evidence evaluation to conclu-
sion) are referred to asforward-chainingsystems. Forward-
chaining expert systems are well-suited for reasoning about
activity within an event stream. A forward-chaining rule-
based system is data-driven: each fact asserted may sat-
isfy the conditions under which new facts or conclusions
are derived. Alternatively,backward-chainingsystems em-
ploy the reverse strategy; starting from a proposed hypothe-
sis they proceed to collect supportive evidence. Backward-
chaining systems are typically applied to problems of di-
agnosis, whereas forward-chaining strategies dominate sys-
tems involving prognosis, monitoring, and control applica-
tions.

Using a forward-chaining rule-based system, one may
establish a chain of rules, orrule set, with which a series of
asserted facts may lead the system to deduce that a targeted
multistep scenario has occurred. Within an intrusion detec-
tion system, event records are asserted as facts and evalu-
ated against penetration rule sets. As individual rules are
evaluated against facts and satisfied, the individual event
records provide a trail of reasoning that allows the user to
analyze the evidence of malicious activity in isolation from
the full event stream. In this section, we will discuss the ba-
sic elements of forward-chaining rule-based systems, and
provide an overview of the P-BEST expert system and its
language.

2.1. Components of forward-chaining systems

The underlying strategy of a forward-chaining reasoning
system involves the atomic evaluation of each fact presented

to the system against conditional expressions that, when sat-
isfied by the arguments of a fact, establish new derived facts
or conclusions. In this context, afact is a statement that is
asserted into the system and whose validity is accepted (for
example, “smoke is present”). Facts are often implemented
as attributes and values that represent the state of the envi-
ronment to which the expert system is applied. Arule is an
inference formula of the form�1,... ,�n infer . Inference
formulae can be alternatively expressed asproduction rules,
such asIF ... THEN ... . Production rules are the basic
elements through which an expert system is programmed to
interpret and discover meaning from environmental signals
that it receives, as in

IF smoke is presentTHENfire is near.

A production rule consists of two parts, theantecedent
(or conditional part, left-hand side) and theconsequent(or
right-hand side) as shown in Figure 1. When theconditions
(predicate expressions) in the antecedent are satisfied, the
rule isactivated. The logical component through which an
expert system evaluates a fact against the production rules
is referred to as theinference engine. As an antecedent is
found to be satisfied by the attributes of a fact, the conse-
quent of the rule is asserted to hold, and the rule is said to
havefired. Expert systems might additionally allow the in-
ference engine to initiate action within the consequent, for
example:

IF fire is nearTHENinitiate sprinkler.

Abstractly, the assertion of action, such as the initiation
of a response, based on a fact derived from an inference
engine is placed within the purview of adecision engine,
though in practice inference and response may be merged.

IF
condition1
condition2

...

9=
; antecedent

THEN
derived fact1
derived fact2

...

9=
; consequent

Figure 1. Production rule structure.

The collection of facts available to the system at any
point in time is called thefactbase(or working memory)
of the system. The collection of rules is called theknowl-
edge base(or production memory). Although separation
of data (facts) from knowledge (rules) is an important ab-
straction within rule-based expert systems, some texts use
the terms more loosely and consider the factbase to be part
of the knowledge base. Another important abstraction is
the separation of knowledge from the inference engine. In
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practice, an inference engine, also known as an expert sys-
temshell, provides several advantages over a one-of-a-kind
system written in a procedural language. In particular, a
knowledge-independent shell can be used to develop ex-
pert systems for many different knowledge domains. The
knowledge in the expert system can also be incrementally
extended by adding new rules, as opposed to implementing
large portions of the decision process all at once. Next, we
present the principles and language of P-BEST, a construc-
tion toolset for building customized inference engines, and
discuss its applicability to intrusion detection.

2.2. An overview of P-BEST

The Production-Based Expert System Toolset (P-BEST)
was originally written by Alan Whitehurst, and employed
in the Multics Intrusion Detection and Alerting System
(MIDAS) [18], which performed misuse detection on the
National Computer Security Center’s Internet-connected
mainframe, Dockmaster. P-BEST was later enhanced at
SRI by Whitehurst, and later by Fred Gilham, and was em-
ployed in an early version of the Intrusion Detection Ex-
pert Systems (IDES) [14], and later Next-Generation IDES
(NIDES) [1]. See Section 3 for details on the application of
P-BEST on these systems.

The P-BEST toolset consists of a rule translator, a li-
brary of runtime routines, and a set of garbage collection
routines. When using P-BEST, rules and facts are written
in the P-BEST production rule specification language. The
rule translator,pbcc, is then used to translate the specifica-
tion into a C language expert system program. This expert
system can then be compiled into either of two forms: a
stand-alone self-contained executable program or a set of
library routines that implement the core P-BEST inference
engine, and which can be linked to a larger software frame-
work. P-BEST has several features that make it well-suited
for the type of application described in this paper:

� The P-BEST language is small and relatively intuitive
to use and extend.

� It is easily applied to a variety of problem domains.
P-BEST provides a general-purpose forward-chaining
inference engine that can be targeted to a specific ap-
plication domain. P-BEST does not inherently depend
on the structure of the input data stream or the infer-
ence objectives of the application that employs it.

� By using translation instead of interpretation of rules,
P-BEST can be used to build expert systems for
performance-demanding applications. A pre-compiled
expert system, rather than an expert system interpreter,
provides a significant advantage in performing real-
time event analysis.

� Pre-compilation also allows P-BEST components to be
integrated well into larger program frameworks, and
is easily called from, and can call out to, other C li-
braries. Arbitrary C functions can be called from the
antecedent or consequent of any P-BEST rule. Thus,
it is possible to write powerful rules without adding
unnecessary complexity to the P-BEST language.

2.3. The P-BEST language

P-BEST provides a production rule language from which
users may specify the inference formula for reasoning and
acting upon facts asserted into its factbase from external
sources or derived from the satisfaction of other production
rules. This section provides a brief overview of the prin-
ciple elements of this language, with common examples of
its usage. The language overview provides the reader with a
primer for understanding several examples of intrusion de-
tection rules later in this paper.

In P-BEST, the structure of a fact is specified by the user
through a template definition referred to as a pattern type or
ptype. For example, to define a ptype namedeventthat con-
sists of the four fieldseventtype (an integer),return code
(an integer),username(a string), andhostname(a string),
we define the fact template as in Figure 2. Facts from such
a ptype definition could be constructed through the mon-
itoring of audit records and asserted into the factbase for
evaluation against the available production rules.

ptype[event event_type:int,
return_code:int,
username:string,
hostname:string]

Figure 2. An example of a ptype declaration.

Fact evaluation is performed by the P-BEST inference
engine, where the attributes of the fact are mapped against
the predicate expression(s) of each rule antecedent. For ex-
ample, we may want to determine whether the asserted fact
represents an unsuccessful login attempt, which we shall re-
fer to ase. To express this criterion using a mathematical
notation style, we can form the statement in Equation 1.

Here,S represents the set of all facts known to the P-
BEST factbase, and within which a production rule an-
tecedent postulates the existence of a facte that satisfies
specific properties. In the P-BEST language, the statement
in Equation 1 placed in the antecedent of a rule would be
written as in Figure 3.

The terme:event allows one to assign analias e to
one fact (of possibly several) that satisfies the antecedent for
the duration of the rule. The plus (+) sign after the open-
ing bracket represents an existential quantifier that allows
the rule to check for any fact that satisfies the conditions of
the antecedent. Alternatively, a minus (- ) sign searches for
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�
9e
��

(e 2 S) ^ event(e) ^

(eevent type = login) ^

(ereturn code = bad password)
�

(1)

[+e:event|event_type == login,
return_code == BAD_PASSWORD]

Figure 3. An example of fact matching.

cases where no fact in the factbase satisfies the conditions
of the antecedent. For example,

[-event|username == "GoodGuy"]

evaluates to true if there is no event in the factbase that has
been asserted on behalf of “GoodGuy.”

The plus and minus tests have corresponding assert and
delete actions that can appear in the consequent of a rule.
For example, to assert a new fact of ptypebad_login and
give its fields initial values, we can write

[+bad_login|username = e.username,
hostname = e.hostname]

To be deleted from the factbase, a fact must be matched
and given an alias in the antecedent before it can be deleted
in the consequent. This is illustrated in the example of a
complete rule namedBad Login in Figure 4.

1 rule[Bad_Login(#10;*):
2 [+e:event| event_type == login,
3 return_code == BAD_PASSWORD]
4 ==>
5 [+bad_login| username = e.username,
6 hostname = e.hostname]
7 [-|e]
8 [!|printf("Bad login for user %s from \
9 host %s\n", e.username, e.hostname)]
10 ]

Figure 4. An example of a rule declaration.

TheBad Login rule in Figure 4 also demonstrates how
the evaluation of an asserted fact can be used to derive sub-
sequent facts that may themselves drive new inferences.
That is, in the above rule, should a login event be encoun-
tered with a return code ofBAD_PASSWORD, the rule cre-
ates a new fact of ptypebad login , which saves the user-
name and hostname of the event; the rule also destroys the
event facte from the factbase. Using a mathematical no-
tation, we can represent this state transition in our factbase
from S to a desired new stateS0 as in Equation 2 (this ex-
cludes lines 8 and 9 in Figure 4).

Within parentheses after the rule name (line 1), there is a
semicolon-separated list of options. The option#10 means
that this rule is given a ranking (priority) of 10. Priorities
allow one to specify well-defined orders in the sequences

for rule evaluation, and are primarily used for rules required
to be evaluated first for initialization purposes, or that must
be evaluated last to perform garbage collection. The star
option (* ) indicates that the rule is repeatable, that is, the
rule is allowed to fire repeatedly even if no other rule is
fired in between. Thus, a key function of the consequent
is to alter the state of the factbase such that the antecedent
is not satisfied indefinitely (e.g., the consequent may mark
or remove a fact). The arrow delimiter (==>) separates the
antecedent and the consequent (line 4).

The [!|...] clause (line 8) within the consequent il-
lustrates how the P-BEST inference engine may call out to
native C functions should action be warranted when the an-
tecedent is evaluated to true. Both inference and action can
be taken directly within the P-BEST inference engine. P-
BEST recognizes most of the standard library C functions,
which may be invoked directly via the[!|...] clause,
and which may refer to ptype attributes directly. User-
defined C functions and auxiliary variables may also be in-
voked and referenced, respectively. To do this, we must
declare our intentions to reference C variables and func-
tions using the P-BEST external type declaration mecha-
nism xtype. For example, the following external declara-
tions will allow P-BEST to recognize a user-defined C func-
tion callednativeprobe()returning an integer and an inte-
ger variableendof streamas follows:

xtype [native_probe: intfunc]
xtype [end_of_stream: int]

We can then employ our native C routine and variable
directly in a P-BEST production rule, as illustrated in Fig-
ure 5. The antecedent[?|...] clause (line 3) is a query
clause used to evaluate conditional requirements. This rule
will check to see whether theend of stream variable
has been set to1, and if not, it will set the variable to the
return code of the functionnative probe() (line 5),
which is invoked in the consequent. Thisnativeprobe()
could, for example, provide an interface to the host oper-
ating system that allows the expert system to retrieve appli-
cation records, which it may then assert as facts in the fact-
base. The rule also gives an example (line 6) of how a field
in an existing fact can be modified; in this case, the field
rec cnt of the factcounter , aliased in the antecedent,
is incremented by 1.

1 rule[get_native_record(-99;*):
2 [+c:counter]
3 [?|’end_of_stream != 1]
4 ==>
5 [!|’end_of_stream = native_probe()]
6 [/c|rec_cnt += 1]
7 ]

Figure 5. Example usage of external C types.

To further improve the performance of the expert system,
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(e 2 S) ^ event(e) ^ (eevent type = login) ^ (ereturn code = bad password)
�

`
�
S0 = S � feg

S
f bad login(b) j (busername = eusername) ^ (bhostname = ehostname ) g

� (2)

rules can be disabled and enabled dynamically through ac-
tions in the consequents of rules. A rule can even disable
itself, which means that it can fire once, at most, unless en-
abled again by another rule. To disable a rule, we can put
the following action in a consequent:

[-#rulename]

To enable a rule, we can change the minus sign in the
above statement to a plus sign. In addition, a rule can be
declared as disabled from start by adding a single minus
sign to the list of options after the rule name, for example:

rule[rulename(#10;*;-):

Using these features, we can build preconditional re-
quirements that can enable or disable whole portions of the
knowledge base, depending on the current state of the envi-
ronment being monitored. For example, rules pertaining to
the analysis of a serviceA can be dynamically added or re-
moved from the knowledge base by the expert system itself,
depending on whether serviceA is currently enabled or dis-
abled within the analysis target. Another example is when
the analysis is extended with previously disabled rules due
to an increased level of suspicion reported by the basic rule
sets.

Another powerful feature of P-BEST is the ability of
rules to uniquely mark and unmark facts, and to test for
these marks. This can be used when we want to give sev-
eral groups of mutually exclusive rules the chance to ex-
amine a fact before it is deleted from the factbase. Each
rule will evaluate the fact, and if the antecedent is satisfied,
the consequent of the rule will mark the fact. This will al-
low the rule to avoid re-firing, while not having to remove
the fact completely from the factbase. When all such rules
have evaluated (and if necessary marked) the fact, the fact
can then be removed by a lower-priority fact-removal rule
that is run last. For example, to match an event that is not
marked withCHECKED, we can put the following test in the
antecedent of our rule:

[+e:eventˆCHECKED]

To mark a matched event facte with CHECKED, we can
add the following action to the consequent:

[$|e:CHECKED]

Alternatively, to unmark a fact we simply use a caret (ˆ )
instead of the dollar sign ($):

[ˆ|e:CHECKED]

Finally, we can use the dollar sign to check for a marked
fact, as follows:

[+e:event$CHECKED]

2.4. P-BEST language simplicity and usability
tested in student experiment

Although the P-BEST language has proven itself suitable
for intrusion detection systems, it is in fact also a general
language for building rule-based expert systems in many
different applications. The close integration with C makes it
unnecessary to include more than the basic operations in the
P-BEST language itself, because any needed operation can
be designed as a C function and called from the antecedent
or consequent of a P-BEST rule. Thus, the P-BEST lan-
guage can be kept small and simple, resulting in a very low
learning threshold for beginners.

In addition to its use in intrusion detection system devel-
opment, P-BEST has recently for the first time been used for
laboratory exercises in a university course in applied com-
puter security at Chalmers. In addition to the educational
goals of these exercises, we wanted to learn what amount of
instruction is required for beginners when applying P-BEST
to intrusion detection analysis and thereby see whether the
experiment would support or contradict our hypothesis that
the P-BEST is easy to use for beginners.

The assignment was to build a system that could be used
to automatically detect attacks against a file transfer (FTP)
server. For evaluation of their resulting system, the stu-
dents were given a very large data file (3 megabytes of text)
containing recorded network data representing actual FTP
transactions. A small number of real and synthetic intru-
sions were mixed with a large number of normal transac-
tions, and the students were to use their system to find those
intrusions. It was supposed to be a pedagogic effect that the
file was too large to be easily examined by hand, because
this is the very reason for having automatic intrusion detec-
tion tools. It was also required by the students to include in
their lab reports a discussion of their experiences of using
the tool.

There were 87 students who participated in the assign-
ment, and with a few exceptions they worked in pairs, mak-
ing a total of 46 groups. The estimated maximum working
time was two lab sessions of four hours each, plus another
eight hours of homework to prepare the lab sessions and to
complete the report. Out of the 46 groups, 25 had built a
system that gave the completely correct answer. An addi-
tional 8 groups would most likely have got the correct re-
sult if they had not all misinterpreted a vaguely formulated
part of the instructions. Only a handful of groups failed to
hand in a report before the given deadline. Most students
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reported that they found the exercise interesting and some
even took the time to give detailed suggestions of improve-
ments to the tool. As we had expected, being used to writ-
ing programs in a procedural style, they had some initial
difficulties in declarative programming. In summary, we
claim that the student experiment shows that P-BEST has a
low learning threshold for beginners and is thereby suitable
both for building user-customizable intrusion detection sys-
tems as well as for student exercises in computer security
courses.

3. Integration of P-BEST into IDS components

For more than 10 years, P-BEST has been successfully
integrated into several intrusion detection systems (IDSs)
that represent the state of the art for their time. The appli-
cation of P-BEST to intrusion detection began in the main-
frame world of Multics and lands in present time with the
highly distributed, scalable, and network-oriented EMER-
ALD (Event Monitoring Enabling Responses to Anomalous
Live Disturbances) environment. It is not only the IDSs
that have changed over time; P-BEST itself has been con-
tinuously improved as the requirements and its operational
environment have changed. However, performance and lan-
guage simplicity are issues that have had top priority from
the beginning, and are no less important today.

3.1. P-BEST in MIDAS

P-BEST was developed at SRI International and first de-
ployed as the core of MIDAS, which provided real-time in-
trusion and misuse detection for the National Computer Se-
curity Center’s networked mainframe, Dockmaster, a Hon-
eywell DPS-8/70 running Multics [18]. Audit data prepro-
cessing and command monitoring was performed on the
Dockmaster, and the data was sent to a separate Symbolics
Lisp machine where the expert system and the user interface
were running.

MIDAS used both static and dynamic knowledge for de-
tecting intrusive user behavior. The static knowledge was
represented in so-called immediate attack heuristics writ-
ten as P-BEST rules that would trigger on events that were
considered anomalous regardless of previous system activ-
ity. In terms of dynamic knowledge, MIDAS recorded user
and system statistics in a database that would represent nor-
mal behavior. It is interesting to note that it was in fact an-
other set of P-BEST rules—the user anomaly heuristics and
the system state heuristics—that used threshold values de-
rived from the statistics database to distinguish anomalous
user and system behavior from normal activity. Thus, the
P-BEST inference engine was the sole analysis component
in MIDAS.

3.2. P-BEST in IDES and NIDES

In 1983, SRI International began research on statistical
techniques for audit-trail reduction and analysis [6]. This
research led to the development of a prototype IDES, ca-
pable of providing real-time detection of security violations
on single-target host systems. Originally, IDES only used
statistical anomaly detection [5, 12], but later a component
for misuse detection based on static knowledge was added,
using P-BEST [14]. The two components were fed the same
audit records, but performed their inferences and reporting
independently.

Next, SRI began a comprehensive effort to enhance, op-
timize, and re-engineer the earlier IDES prototype into a
production-quality intrusion-detection system called Next-
Generation Intrusion Detection Expert System (NIDES).
Just like its predecessor, NIDES has both a statistical
anomaly detection component and a rule-based misuse de-
tection component [1]. Again, P-BEST was the expert sys-
tem shell of choice for the rule-based component, but P-
BEST was first extensively revised. Among other things,
the revision gave P-BEST a new syntax and a very tight cou-
pling to the C programming language. While the early ver-
sion of P-BEST used in MIDAS and IDES compiled rules
into Lisp object code, the new version produced C source
code. NIDES collects host audit trail data from different
host systems and converts it to the NIDES audit record for-
mat. The current version of NIDES has a default rulebase
of 39 rule sets (69 total production rules) but also allows
the user to write his or her own rules (that, for example,
are specific to the user’s environment or policy) and has a
mechanism for dynamically adding new rules at runtime.

3.3. P-BEST in the EMERALD eXpert

The EMERALD environment is a distributed scalable
tool suite for tracking malicious activity through and across
large networks [16]. EMERALD employs a building-block
architectural strategy using independent distributed surveil-
lancemonitorsthat can analyze and respond to malicious
activity on local targets, and can interoperate to form an
analysis hierarchy. The generic EMERALD monitor ar-
chitecture is designed to enable the flexible introduction
and deletion of analysis engines from the monitor bound-
ary as necessary. In its dual-analysis configuration, an
EMERALD monitor instantiation combines signature anal-
ysis with statistical profiling to provide complementary
forms of analysis over the operation of network services
and infrastructure. In general, a monitor may include ad-
ditional analysis engines that can implement other forms of
event analysis, or a monitor may consist of only a single
resolver implementing a response policy based on intrusion
summaries produced by other EMERALD monitors. Moni-
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tors also incorporate a versatile application programmers’
interface (API) that enhances their ability to interoperate
with the analysis target, and with other third-party intrusion
detection tools.

Underlying the deployment of an EMERALD monitor is
the selection of a target-specific event stream. The event
stream may be derived from a variety of sources, includ-
ing audit data, network datagrams, SNMP traffic, applica-
tion logs, and analysis results from other intrusion detec-
tion instrumentation. The event stream is parsed, filtered,
and formatted by the target-specific event-collection meth-
ods provided by the monitor’s pluggable configuration li-
brary, referred to as theresource object. Event records are
then forwarded to the monitor’s analysis engine(s) for pro-
cessing.

The EMERALD eXpert(pronounced E-expert) is a ge-
neric signature-analysis engine based on the expert system
shell P-BEST. The eXpert resource object has two parts, one
of which consists of the configuration files for the EMER-
ALD API that define the transports used for message pass-
ing (e.g., files or network connections), the message tem-
plates, and so forth, for the particular analysis target. The
other part of the resource object is a P-BEST source file con-
taining the fact type (ptype) declarations and rules. In the
ptype declarations, the user must specify to what message
field (if any) the ptype field corresponds.

Under EMERALD’s eXpert architecture, special-pur-
pose rule sets are encapsulated within resource objects
that are then instantiated with an EMERALD monitor, and
which can then be distributed to an appropriate observation
point in the computing environment. This enables a spec-
trum of configurations from light weight distributed eXpert
signature engines to heavy-duty centralized host-layer eX-
pert engines, such as those constructed for use in NIDES
and MIDAS. In a given environment, P-BEST-based moni-
tors may be independently distributed to analyze the activ-
ity of multiple network services (e.g., FTP, SMTP, HTTP)
or network elements (e.g., a router or firewall). As each
EMERALD eXpert is deployed to its target, it is instanti-
ated with an appropriate resource object (e.g., an FTP re-
source object for FTP monitoring), while the eXpert code
base remains independent of the analysis target.

EMERALD also introduces a target-independent code
generation utility that allows one to automatically produce
the library interfaces necessary to integrate a P-BEST expert
system into the EMERALD monitor infrastructure. This
utility effectively relieves the creator of a resource object
from dealing with the internal operation of the eXpert code-
base, even when redirecting the eXpert to a completely new
event stream. This automated generation utility both en-
hances the rapid integration of eXpert to new analysis tar-
gets, and simplifies the process of augmenting the rule base
with new heuristics. The basic operation of an eXpert anal-

ysis engine is as follows:

1. On startup, eXpert is initialized and its interface rou-
tine waits for messages on one or several transports,
as specified in the configuration files of the resource
object.

2. When an event record is received in the form of an
EMERALD message, the message is matched against
an interface data structure associated with the ptype
definition in the eXpert’s P-BEST fact base.

3. The message content is transferred to the interface data
structure, which in turn is used to assert a fact into the
expert system factbase.

4. The eXpert interface component hands over control to
the expert system inference engine.

5. If a rule is fired, in which the consequent specifies that
an alert shall be generated, the alert is propagated back
to the analysis engine’s interface component, which in
turn composes and sends the alert on to the EMER-
ALD resolver. The resolver operates as the monitor’s
decision engine, and can invoke local responses based
on the alert or propagate the alert on to subscribers of
the monitor’s results (including administrative display
interfaces).

6. When there are no more rules that can fire, the ex-
pert system returns control to the interface routine that
again starts waiting for incoming messages.

In the following section, we discuss examples of how
eXpert can be used to analyze very different types of event
streams.

4. eXpert rule development examples

Throughout its usage, P-BEST inference engines have
implemented a variety of intrusion detection rule sets for
detecting and responding to numerous forms of malicious
activity. Next, we describe the application of P-BEST in
reasoning about attacks represented in two data streams:
Solaris 2.5.+ audit trails, and TCP/IP packet streams. The
examples illustrate the declarative style of the language, and
how event streams can be represented and analyzed.

4.1. Examples of BSM audit trail analysis

The first example of an event stream to be analyzed is the
audit trail produced by the Solaris Basic Security Module
(BSM) from Sun Microsystems [19]. The audit records are
normally saved in a file, but we have developed a BSM col-
lection unit that receives audit records from the OS kernel in
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real time, formats and sends each record as an EMERALD
message to the target monitor for analysis.

For all the rules that analyze BSM data, there is a ptype
calledbsm_event into which the relevant fields from in-
coming messages are mapped. There is also a rule that
has highest priority and copies the time of every incoming
bsm_event fact into a newtime fact, and finally a rule
with lowest priority that removes thebsm_event fact af-
ter all the other rules have had a chance to look at it. For the
sake of brevity, these ptype definitions and administrative
rules are omitted from the examples.

4.1.1. Failed authentication attempts.As an example of
the declarative programming paradigm that P-BEST sup-
ports, we present a set of rules that are designed to detect
a number of failed authentication attempts within a certain
time window. The example illustrates how facts are cre-
ated in rule consequents to keep state information between
incoming events, and how the rule designer can make sure
that facts are removed from the factbase when they are no
longer needed.

Let us assume that we want to raise an alert ifx user
authentication failures occur withiny seconds for a moni-
tored target. A user authentication failure is defined as the
case when either an invalid username or an invalid pass-
word is given to one of the programslogin, telnet, rlogin,
rshd, or su. To accomplish this, we may employ the rule set
presented in Table 1, which is described as follows:

� A1, A2 : For every incoming event that is a user
authentication failure, save the event information in a
bad login fact and increment the counter for current bad
logins (current bl cntr ) by 1. The reason for having
two rules is to separate the case where the username is in-
valid (A1) from the case where the username is valid but the
password is invalid (A2). In the latter case, we want to in-
clude the username in the information we save and therefore
need a rule consequent that is different from the former case
where there is no username reported in the audit record.

� A3: When thecurrent bl cntr counter has the
value x , send an alert and create amax bl reached
fact to indicate that the authentication failure threshold was
reached.

� A4: If there exists amax bl reached fact, then
loop through all savedbad login facts. For every
bad login fact, print the information contained in the fact
to a log file and delete the fact from the factbase.

� A5: If there exists amax bl reached fact but no
bad login facts (i.e., they were all printed and deleted by
rule A4), then delete themax bl reached fact from the
factbase.

� A6: If there exists abad login fact, but no
max bl reached fact, and the difference between the
bad login timestamp and the current event timestamp is

more thany seconds, then delete thebad login fact from
the factbase and decrement thecurrent bl cntr by 1.

4.1.2. Buffer overrun attacks.Buffer overrun attacks are
a common way for attackers to gain super-user privileges
after first breaking into an unprivileged user account. Typ-
ically, a privileged (setuid to root) program is called with
an extremely long and carefully crafted argument that over-
flows memory buffers and alters the program execution [3].
In principle, it would require a fair amount of programming
skills and patience to exploit a buffer overrun vulnerability,
but ready-to-use exploit programs that can be downloaded
from Internet sites give immediate super-user access when
executed. Here, we present an example of a simple heuris-
tic P-BEST rule that detects the behavior of most of the
exploit programs. For example, it has been tested against
buffer overrun exploits that are based on subverting Solaris
2.5eject, fdformat, ffbconfigandufsrestore.1

The heuristic rule is based on the following observations
of the audit trail characteristics of common buffer overrun
exploits:

� We can detect the attack by analyzing a singleexec
system call audit record, as suggested in [2].

� To determine that theexeccall concerns asetuidpro-
gram (otherwise, it would not be a target for attack),
we simply match only the audit records for which the
effective user idandreal user idfields are different.

� The argument passed to theexeccall is relatively long
(because it must overflow a buffer and contain exe-
cutable code), making the length of the entire audit
record significantly exceed the length of almost all nor-
malsetuid execcalls.

� By necessity of the applicable hardware (Sun and In-
tel), theexecargument contains binary opcodes in the
range of ascii control characters. While such a prop-
erty may not necessarily hold on all possible hardware
platforms, this heuristic works exceptionally well for
our purposes.

The P-BEST rule that uses the observations above to de-
tect buffer overrun attacks is shown in Figure 6. This simple
heuristic rule is not a fool-proof way to detect all possible
buffer overrun attacks, but it is remarkably efficient in terms
of coverage and correctness; it detects most common at-
tacks and has not produced any false positives when tested
on a collection of over 35 million audit records in which the
location of buffer overflow attacks was knowna priori.

1There are numerous additional buffer overrun attacks that employ the
identical attack strategy as the four attacks discussed here. All should be
subject to detection by this rule.
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Table 1. Rule set for detection of failed authentication attempts.

1 rule[A1(*): rule[A2(*):
2 [+e:bsm_eventˆA12] [+e:bsm_eventˆA12]
3 [?|e.header_event_type == ’AUE_login || [?|e.header_event_type == ’AUE_login ||
4 e.header_event_type == ’AUE_telnet || e.header_event_type == ’AUE_telnet ||
5 e.header_event_type == ’AUE_rlogin || e.header_event_type == ’AUE_rlogin ||
6 e.header_event_type == ’AUE_rshd || e.header_event_type == ’AUE_rshd ||
7 e.header_event_type == ’AUE_su] e.header_event_type == ’AUE_su]
8 [?|e.return_return_value == ’INVALID_USER] [?|e.return_return_value == ’INVALID_PWD]
9 [+cc: current_bl_cntr] [+cc: current_bl_cntr]

10 [-max_bl_reached] [-max_bl_reached]
11 ==> ==>
12 [+bad_login | [+bad_login |
13 timestamp = e.header_time, timestamp = e.header_time,
14 audit_seq_no = e.msequenceNumber, audit_seq_no = e.msequenceNumber,
15 username = "invalid username", username = e.subject_runame,
16 command = e.header_command, command = e.header_command,
17 etype = e.header_event_type, etype = e.header_event_type,
18 hostname = e.subject_hostname, hostname = e.subject_hostname,
19 portID = e.subject_port_id, portID = e.subject_port_id,
20 processID = e.subject_pid, processID = e.subject_pid,
21 textList = e.textList] textList = e.textList]
22 [/cc| value += 1] [/cc| value += 1]
23 [$|e:A12] [$|e:A12]
24 ] ]

25 rule[A3(*): rule[A4(*):
26 [-max_bl_reached] [+max_bl_reached]
27 [+cc:current_bl_cntr | value == ’x] [+bc:bad_login]
28 [+ts:timeˆA3] [+cc:current_bl_cntr]
29 ==> ==>
30 [!|printf("ALERT: Max Bad Logins \n")] [!|printf("(%s): %s from %s on %s port %d, \
31 [+max_bl_reached | value = 1] PID = %d, time = %d, seq no = %d \n",
32 [$|ts:A3] bc.textlist, bc.command, bc.username,
33 [!|EXpertReport(’eXpertMessagePointerString, bc.hostname, bc.portID, bc.processID,
34 1042, "description", ’pTypeString, bc.timestamp, bc.audit_seq_no)]
35 "MAX LOGIN ALERT", [/cc|value -= 1]
36 "ruleName", ’pTypeString, "A3", "")] [-|bc]
37 ] ]

38 rule[A5(*): rule[A6(*):
39 [+mx:max_bl_reached] [+ts:timeˆA6]
40 [-bad_login] [-max_bl_reached]
41 ==> [+bc:bad_login]
42 [-|mx] [+cc:current_bl_cntr]
43 ] [?|(ts.sec - bc.timestamp) > ’y]
44 ==>
45 [/cc|value -=1 ]
46 [-|bc]
47 [$|ts:A6]
48 ]
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1 rule[BSM_LONG_SUID_EXEC(*):
2 [+e:bsm_event]
3 [?|e.header_event_type == ’AUE_EXEC ||
4 e.header_event_type == ’AUE_EXECVE]
5 [?|e.subject_euid != e.subject_ruid ]
6 [?|contains (e.exec_args, "ˆ\\") == 1]
7 [?|e.header_size > ’NORMAL_LENGTH]
8 ==>
9 [!|printf("ALERT: Buffer overrun attack \
10 on command %s\n", e.header_command)]
11 ]

Figure 6. A heuristic rule for detecting com-
mon buffer overrun attacks.

To determine a suitable value for theNORMAL_LENGTH
threshold parameter, we have analyzed in the order of 4
million audit records representing normal system usage (of
which over 29 thousand wereexecevents) in addition to
audit records representing common buffer overrun attacks.
This analysis gave the following results:

� All the attacks we tested produce anexecaudit record
with a record length of at least 500 bytes.

� Only 0.15 per cent of the normalexecaudit records
were longer than 400 bytes.

Consequently, by setting the threshold to 400 and adding
the conditions forsetuidand control characters, false pos-
itives are effectively eliminated while exploits of the de-
scribed type are detected.

4.2. Network-based traffic analysis

In addition to its extensive application to the area of audit
trail analysis, P-BEST is now being applied to the analysis
of network traffic streams. This work includes the analysis
of TCP/IP packet streams for low-level TCP and IP layer
attacks (i.e., attacks that target vulnerabilities at the trans-
port layer and below) as well as higher-layer attacks involv-
ing vulnerabilities of application-layer (or network service-
layer) protocols, such as FTP, SMTP, and HTTP.

4.2.1. Attack description: SYN flood attack.The SYN
flood attack is a denial-of-service attack that prevents the
target machine from accepting new connections to a given
IP port [17]. Briefly, the attack exploits a resource ex-
haustion vulnerability in the way operating systems han-
dle TCP/IP connections. A TCP/IP connection is estab-
lished through a three-step handshake, in which the client
sends a SYN packet, followed by the server responding with
a SYN-ACK packet, which is then acknowledged by the
client with an ACK packet. Of course, by no means is there
an expectation that all TCP/IP handshakes run to comple-
tion. When the SYN packet is received, the server allocates

an entry in a finite queue of pending connections. We re-
fer to this stage as ahalf-openconnection. The queue entry
will either be released when the final ACK is received by the
server, or the server will proceed to timeout the incomplete
handshake and release the entry.

An attacker can exploit the TCP/IP connection logic by
initiating a series of SYN packet connection requests to a
server, but not completing the handshakes with an ACK
packet. Internally, the server’s queue of pending connec-
tions for the port will eventually be exhausted and will not
be released until the timeout periods for the unfinished con-
nections expire. As a result, subsequent connection requests
to the server that occur while the connection queue is full
will be dropped, effectively denying access to the server by
other legitimate clients.

4.2.2. Event stream format.The requirements for detect-
ing the occurrence of a SYN flooding attack against a host
are rather minimal. From the perspective of TCP/IP traffic
monitoring, the analysis engine need only monitor SYN-
ACK and ACK packet exchanges to identify incomplete
TCP/IP handshakes. In this example, the traffic monitor
is placed on a segment of the network capable of observ-
ing traffic to and from the analysis target (the host being
monitored). All SYN-ACK packets sent from—and ACK
packets sent to—the analysis target are recorded, and the
following event record is derived:

Connection Event Format: <Event Type>
<Timestamp> <Seq ID> <Client ID>

The EventType field is simply a binary flag, which in-
dicates whether the packet has its SYN and ACK flags en-
abled (which we can denote with 0), or only the ACK flag
enabled (denoted by 1). The timestamp is a numeric en-
coding of the time at which the packet is observed from the
monitor. The sequence ID represents the TCP Sequence ID
field, which is used to associate client requests with server
replies. Last, the ClientID can be used to identify the client
who initiated the connection. The ClientID is not critical
for detection, and in all likelihood will not be reliable (i.e.,
attackers will manufacture IP packets with bogus IP source
addresses). Nevertheless, we may choose to capture such
information as the IP address and port number of the client
packet for reporting purposes only.

4.2.3. P-BEST fact type definitions.Table 2 illustrates the
ptype definitions of three example facts that are specified for
use in performing the TCP SYN flooding analysis. The first
ptype,conn event , is used to assert the connection event
described in the connection event record format discussed
above. As connection events are captured by the network
monitor, their fields can be mapped (one to one) to the fields
of the conn event ptype, and theconn event ptype
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is then asserted into the factbase of the SYN flood eXpert.
Theopen conn ptype is used to construct facts regarding
half-open connections that are pending completion of the
TCP/IP handshake. Note, although we use the shorthand
nameopen conn , the fact actually represents the assertion
that a TCPhalf-openedconnection has been observed. The
fields of theopen conn contain the TCP sequence ID of
the pending connection, aclient ID string (as discussed
above), the timestamp as copied from the connection event,
and an expired flag used for garbage collection by the pro-
duction rules. Last, the bad connection fact,bad conn ,
maintains a running count of the number of bad connection
requests detected through the observations of SYN-ACK
and ACK packages between the analysis target and exter-
nal clients.

4.2.4. Example P-BEST rules for SYN flood detection.
The following illustrates one inference strategy that P-
BEST can employ for deducing a TCP SYN flooding attack,
using the fact definitions defined above. In addition, a few
constants are referenced from the rule set, and are defined
as follows:

� max bad conns: Number of bad connections toler-
ated before SYN flood alert.

� expire time: Amount of time to wait on ACK be-
fore a connection is declared a bad connection.

� bad conn life: Number of seconds that a bad con-
nection fact will live before being released.

Abstractly, the rules attempt to identify half-open TCP
connections that expire beyond a user-defined waiting pe-
riod. As we assert half-open connection facts into our fact-
base, we must include logic to recognize both when the
connections are successfully completed and when half-open
connection expire beyond the user-defined waiting period,
from which we deduce the occurrence of a bad connec-
tion. SYN flood attacks will result in excessive bursts of
bad connections, which we monitor with rules that main-
tain a running count of bad connections over a sliding win-
dow of time. When the number of bad connections exceeds
our maximum tolerance for bad connections within our slid-
ing time window, we raise an alert to denote the burst of
noncompleted connection requests. The following is a brief
summary of the rule set shown in Table 3.

� create open conn : determines whether the event
connection represents a SYN-ACK packet (from the mon-
itor target). If so, the rule asserts a new fact into the fact-
base calledopen conn , which records the TCP sequence
number, the timestamp at which this half-opened connec-
tion was first observed, an expired flag to indicate when
the half-open connection exceeds a time threshold, and the
client ID .

� destroy open conn : removes an open connection
fact when the corresponding ACK packet is received from

the client.
� ignore spurious acks : removes events involv-

ing ACK packets that are not associated with a specific
SYN-ACK pending connection. In practice, such packets
are normal.

� first bad conn : This and the following rule man-
age a running count of the set of bad connections observed
by the inference engine. They are driven by time facts
(line 24) which are used to monitor whether there exists a
half-open connection that has exceeded theexpire time
limit. This rule is applied once, to the firstopen conn fact
encountered that is older thanexpire time . Its conse-
quent creates thebad conn fact, which initializes the bad
connection counter upon the first encountered expired con-
nection. Note that the antecedent line 25 evaluates to false
once thebad conn fact has been initialized. In addition,
the rule marks theopen conn fact as expired (line 30),
which is consulted byfree bad open cons when per-
forming garbage collection.

� add to bad cons : is applied while the total num-
ber of bad conn facts is less than the maximum toler-
ated. If anopen conn fact timestamp exceeds the expi-
ration time and the fact has not been counted earlier, then
the bad conn count is incremented, and the expired flag
for theopen conn fact is set.

� max open cons : is applied when the maximum
number ofbad conn facts is encountered during a burst of
bad conn life time units. If abad conn count reaches
the maximum toleratedbad conn facts, the consequent
initiates a SYN flood alert, and resets the bad connection
count.

� free bad open cons : limits the amount of time
that a bad open connection is counted against the sys-
tem. The bad conn life variable provides a user-
defined length of time with which a bad connection is con-
sidered relevant to the bad connection count. This variable
effectively represents the burst duration for accumulating
bad connections. Once an open connection exceeds the
bad conn life , then it is removed and the bad connec-
tion count is reduced.

5. Performance

There are a variety of factors that influence the amount
of time required to process records through a P-BEST-based
signature analysis engine. In this section, we briefly discuss
some of these factors and summarize several performance
measurements in analyzing both Solaris audit records and
TCP packets through an EMERALD eXpert P-BEST en-
gine. These measurements are intended to reflect the pure
processing time required by the eXpert in receiving events,
translating and asserting the events into the eXpert fact base,
processing the events through the inference engine, and
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Table 2. Facts for TCP SYN flood detection.

1 ptype[conn_event ptype[open_conn ptype[bad_conn
2 e_type:integer, expired:integer, count:integer]
3 sec:integer, sec:integer,
4 seq_id:integer, seq_id:integer,
5 client_ID:string] client_ID:string]

Table 3. Rule set for detection of TCP SYN flood attacks.

1 rule[create_open_conn(*): rule[add_to_bad_cons(*):
2 [+ev:conn_event|e_type == 0] [+ts:time]
3 ==> [+oc:open_conn|expired == 0]
4 [+open_conn |seq_id = ev.seq_id, [?|(ts.sec - oc.sec) > ’expire_time]
5 sec = ev.sec, [+bc:bad_conn|count < ’max_bad_conns]
6 expired = 0, ==>
7 client_ID = ev.client_ID] [/bc|count += 1]
8 [-|ev] [/oc|expired = 1]
9 ] ]

10 rule[destroy_open_conn(*): rule[max_open_cons(*):
11 [+ev:conn_event|e_type == 1] [+ts:time]
12 [+oc:open_conn|seq_id == (ev.seq_id - 1)] [+oc:open_conn|expired == 0]
13 ==> [?|(ts.sec - oc.sec) > ’expire_time]
14 [-|oc] [+bc:bad_conn|count == ’max_bad_conns]
15 [-|ev] ==>
16 ] [!|syn_alert("SYN Attack: Last Host %s.\
17 rule[ignore_spurious_acks(*): SeqID = %d. Time = %d",
18 [+ev:conn_event|e_type == 1] oc.client_ID, oc.seq_id, oc.sec)]
19 [-oc:open_conn|seq_id == (ev.seq_id - 1)] [/bc|count = 1]
20 ==> [/oc|expired = 1]
21 [-|ev] ]
22 ]
23 rule[first_bad_conn(*): rule[free_bad_open_cons(*):
24 [+ts:time] [+ts:time]
25 [-bad_conn] [+bc:bad_conn]
26 [+oc:open_conn|expired == 0] [+oc:open_conn|expired == 1]
27 [?|(ts.sec - oc.sec) > ’expire_time] [?|(ts.sec - oc.sec) > ’bad_conn_life]
28 ==> ==>
29 [+bad_conn|count = 1] [-|oc]
30 [/oc| expired = 1] [/bc|count -= 1]
31 ] ]

handling alert reporting.

The measurements exclude the processing time added to
the system for event generation; that is, it excludes the im-
pact to system resources in audit record generation or the
capturing and filtering of TCP packets. It is difficult to esti-
mate the daily expected volumes of audit and network traffic
across a computing environment, in that such statistics are
directly dependent on the structure of the computing envi-
ronment, network topology, and behavior and size of the
user community. Furthermore, the EMERALD architec-
tural model lends itself well to the separation of the event
generation and collection components from the analytical
engines, which could in fact operate in parallel on separate
hosts.

The performance measurements were collected on a

FreeBSD 2.2.6 host computer system using a Pentium II
333 Mhz processor with 128 MB RAM. In addition to the
processing capabilities of the host platform, there are sev-
eral factors that significantly influence the overall perfor-
mance of the analysis engine. For example, the average
record size and total event stream size dictate the amount
of I/O overhead required. As each event is asserted by the
rule base, the antecedent evaluation also impacts perfor-
mance: the sheer number of rules to evaluate, as well as
the complexity of each antecedent evaluation, significantly
influence event processing throughput. Consequent activa-
tion is also a consideration, as is the management of derived
facts that are asserted during the analysis.

Table 4 presents a summary of three analyses performed
on 1 and 5 day collections of Solaris 2.5.1 audit records and
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Table 4. Performance of sample BSM and TCP analysis engines.

24 hrs BSM 120 hrs BSM 24 hrs IP 120 hrs IP
43 users 44 users 496 connects 1,343 connects

365 MB total 1.41 GB total 331 MB total 1.3 GB total
1.1 million recs 4.2 million recs 83,002 recs 352,445 recs

1 rule set
2 rules 4:10 min:sec 15:41 min:sec —– —–

buffer overrun
16 rule sets

28 rules 8:09 min:sec 30:53 min:sec —– —–
various intrusions

1 rule set
12 rules —– —– 1:33 min:sec 3:02 min:sec

TCP SYN flood

TCP packet streams. The audit and TCP data sets were col-
lected by MIT Lincoln Laboratories, and made available for
the DARPA Intrusion Detection Evaluation Program. The
BSM audit logs analyzed here represent the simulated us-
age of a server with 43 users over one 24 hour period and
44 users over a 5 day work week, with minimal filtering.
While it is difficult to generalize what such loads imply for
other computing environments, the data set is representative
of the volume and type of audit activity observed during a
prolonged study of several Air Force local area networks.

The first row in Table 4 summarizes the performance
of an EMERALD eXpert implementing the buffer overflow
rule presented in Section 4.1, which is roughly able to ap-
ply this rule to 24 hours of audit data (over one million audit
records) in 4 minutes, and 120 hours of audit data (4.2 mil-
lion audit records) in under 16 minutes. In the second row,
we present an eXpert with a more extensive collection of
28 rules. These rules implement 16 sets of Solaris BSM
intrusion detection heuristics, including threshold analyses,
immediate attack recognition, process subversion detection,
and illegal file access recognition. While the knowledge
base of this second eXpert represent an increase of fourteen
fold over the 2-rule eXpert system in row one, it introduces
only a two fold increase in the overall processing time of the
1 and 5 day data sets. In this computing environment, the
16 rule sets can process the full five day data set in just over
30 minutes; this represents a small fraction of the overall
audit generation time.

The third and fourth columns of Table 4 present an anal-
ysis of TCP/IP traffic through a gateway that provides ser-
vice between an internal domain of 4 servers and 20 work-
stations, and an external untrusted network. Row three of
Table 4 summarizes the performance of the TCP SYN flood
detection rules presented in Section 4.2 (with a few addi-
tional administrative rules). Here, a server was selected for

analysis, and all TCP packets sent to and from it were mon-
itored for 24 and 120 hours, during which 496 and 1,343
connections were observed over 24 and 120 hours, respec-
tively. The SYN Flood eXpert monitored only those TCP
packets targeted for the host of interest in which the SYN
or ACK flags were enabled. The filtering out of unneces-
sary packets is critical to managing the performance of a
real-time signature analysis engine, and in the SYN flood-
ing case, the criteria for analysis excludes all packets that
are not directly involved in the TCP handshake. In our sim-
ulated analysis, the SYN Flood eXpert is capable of per-
forming the 24 hour packet analysis in 1.5 minutes, and the
120 hour analysis in 3 minutes.

6. Related work

P-BEST has evolved over a substantial lineage of in-
trusion detection projects, which include MIDAS, IDES,
NIDES, and now the EMERALD eXpert. It represents a
very early example of the application of a forward-chaining
rule-based expert system to the problem of misuse detec-
tion in computer system activity logs. However, P-BEST
is by no means the only system to have applied rule-based
expert system techniques to detecting misuse in computing
environments.

Several other systems have been developed that also cen-
ter around the use of forward-chaining inference logic, and
have applied a variety of techniques for representing the un-
derlying heuristics used to represent misuse. The ASAX
(Advanced Security and Audit Trail Analysis on UniX)
project [9], produced a highly specialized rule-based pro-
gramming language called RUSSEL (Rule Based Sequence
Evaluation Language), which provides a combination of
procedural and rule-based programming constructs to rea-
son about activity in Unix audit trails.
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The University of California at Santa Barbara proposed
the use of state transition diagrams to model the sequence
of operations and state changes that occur during the exe-
cution of a penetration [15]. This technique was prototyped
for SunOS 4.1.3+ and Solaris audit trails in a tool called the
Unix State Transition Analysis Tool (USTAT) [10]. While it
did not represent its knowledge base using production rules,
USTAT was architected as a classic expert system, with an
inference engine, knowledge base, fact base, and separate
decision engine. Another system, called IDIOT (Intrusion
Detection In Our Time), took a similar graphical approach
to the analysis of signature operations, but used Colored
Petri-nets to model its analysis of the patterns of execution
represented in an event stream [13].

Wisdom and Sense [20] and NADIR [11], both from Los
Alamos National Laboratory, are further examples of intru-
sion detection systems that employed rule-based analyses
to identify known malicious activity. In the case of W&S,
the anomaly detection component was also implemented as
a rule-base. The signature analysis component was com-
bined into the same rule-base to represent site-specific poli-
cies, expert penetration rules and other administrative data.
NADIR’s expert rule-base consists of penetration rules that
are developed by interviewing and working with security
personnel.

Last, it is important to recognize a continuing growth
in the number of commercial products that provide forms
of signature analysis for various computing environments.
Given the proprietary nature of these systems, it is difficult
to understand which have chosen hard-coded narrow solu-
tions to their problem sets, and which have chosen more
broad techniques that may be portable beyond their current
customers’ needs.

7. Limitations

In Section 2 we attempted to summarize how and why
forward reasoning systems provide a good foundation for
modeling known abusive activity represented in an event
stream. There are, of course, limitations that are fair to
point out with respect to this general method. In our own
system, antecedent evaluation is absolute, and less capable
in environments where uncertainty, incompleteness, or in-
accuracies exist within the event stream content. Other rea-
soning systems can provide some options for handling be-
lief and uncertainty within the analysis framework [8]. In
the presence of incomplete data, backward reasoning sys-
tems can operate in a diagnosis mode to seek out collabora-
tive evidence of problems, and furthermore provide quanti-
tative probabilities based on “evidence to date” that a certain
problem is the culprit responsible for the presence of given
symptoms. Such reasoning capabilities could be valuable if
applied well to the intrusion detection domain.

In addition to event stream inadequacies, heuristics pre-
suppose the existence of detailed insight into that which
constitutes abusive system activity. The problem of rec-
ognizing and responding tounknownmalicious phenom-
ena is extremely difficult, and not directly addressed under
signature analysis. Only in the cases where it is possible
to look for certainresults—rather than explicit action se-
quences leading to those results—does signature analysis
have a chance to detect new attack methods. For example,
if an anonymous user causes the deletion of a file from our
FTP server, we can detect this result without knowing ex-
actly how the attack was carried out.

Other techniques that attempt to understandnormalsys-
tem operation and to provide quick recognition of anoma-
lous activity have been proposed; statistical profiling [5],
neural networks [4], and sequence analysis [7]. The intent
of these systems is to maximize the points at which anoma-
lous activity corresponds to malicious activity, which as a
general property does not always hold. In addition, attempt-
ing to maximize such systems’ sensitivity to malicious ac-
tivity also tends to increase their sensitivity to inane anoma-
lies.

8. Future work

In parallel with our current academic experiments with
P-BEST, we are developing an Internet-accessible P-BEST
translation service, which will allow users to develop and
compile rule sets into self-contained expert systems. Link-
age modules will be provided to allow users to feed the ex-
pert system Solaris 2.5.+ audit records and TCP/IP packets
in batch and real time. Users will be provided an HTML
interface from which ptype definitions and production rules
can be submitted to the P-BEST translation service. The
translation service will attempt to compile an expert sys-
tem based on the ptypes and rules; if successful, the user
will receive a URL link from which the expert system can
be downloaded and tested in the user’s own environment.
If errors are identified in the rules or ptype declarations, a
summary of the errors will be returned to the user for revi-
sion. In addition, a simple reporting utility will be provided
to convert alerts generated by the expert system to HTML
or email notifications. We will make the following compo-
nents available to other universities interested in conducting
classroom experiments involving signature-based intrusion
detection:

� P-BEST expert system generation service available via
HTML-based interface

� Solaris audit and TCP/IP batch and real-time event col-
lection interface modules

� HTML and email alert reporting interface module
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� Language manuals and supporting documentation (in-
cluding exploit detection exercises) developed in sup-
port of our current university classroom experiment

For more information on the Internet-accessible P-BEST
translation service for academic experimentation, the reader
may refer to the following URL:

http://www.csl.sri.com/emerald/

9. Conclusion

We have presented the operation of a production-based
expert system toolset, and its application to the problem
of computer and network signature-based intrusion detec-
tion. P-BEST has had considerable exposure to the intru-
sion detection problem domain over the past decade, under
the MIDAS, IDES, and NIDES projects, and now within the
EMERALD eXpert. P-BEST has been employed on a Sym-
bolics processor for handling Multics audit records, SunOS
4.1.+, Solaris 2.5.+, FreeBSD, and Linux for real-time audit
trail analysis, accounting log analysis, and TCP/IP packet
analysis.

We presented details of the P-BEST production rule
specification language, and illustrated its use with example
rule sets for detecting misuse in Solaris 2.5.+ audit trails
and TCP/IP packet streams. We also discussed the per-
formance of P-BEST inference engines in analyzing mil-
lions of events, which illustrates that P-BEST has been—
and continues to be—useful in live monitoring of computer
and network operations.

In addition, work is in progress to move P-BEST into
academic environments, where it will be made openly avail-
able as an instructional tool for illustrating signature-based
intrusion detection. P-BEST is currently being used for
laboratory exercises in one university course on applied
computer security, where students are guided through its
usage and assigned rule development tasks for analyzing
given intrusions. We have demonstrated that the P-BEST
language is not too complex for beginners to employ, and
is efficient for supporting the iterative development of in-
creasingly complex inference logic for automated reasoning
about misuse in computer and network operations.
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