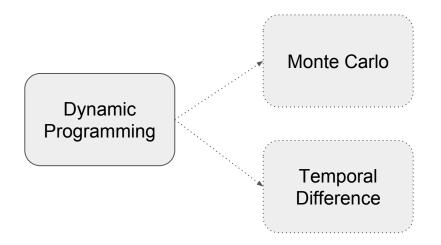
Chapter 4: Dynamic Programming

Seungjae Ryan Lee

Dynamic Programming

- Algorithms to compute optimal policies with a **perfect model of environment**
- Use value functions to structure searching for good policies
- Foundation of all methods hereafter



Policy Evaluation (Prediction)

- Compute state-value $v_{\pi}(s)$ for some policy π
- Use the Bellman Equation:

$$\begin{aligned} v_{\pi}(s) &\doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s] \\ &= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \Big[r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s'] \Big] \\ &= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \Big[r + \gamma v_{\pi}(s') \Big], \quad \text{for all } s \in \mathbb{S}, \end{aligned}$$

Iterative Policy Evaluation

- Solving linear systems is tedious \rightarrow Use iterative methods
- Define sequence of approximate value functions $v_0, v_1, v_2 \dots$
- *Expected update* using the Bellman equation:
 - Update based on *expectation of all possible next states*

$$v_{k+1}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s] \\ = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big],$$

Iterative Policy Evaluation in Practice

- In-place methods usually converge faster than keeping two arrays
- Terminate policy evaluation when $\max_{s} |v_{k+1}(s) v_k(s)|$ is sufficiently small

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

```
Input \pi, the policy to be evaluated

Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation

Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0

Loop:

\Delta \leftarrow 0

Loop for each s \in S:

v \leftarrow V(s)

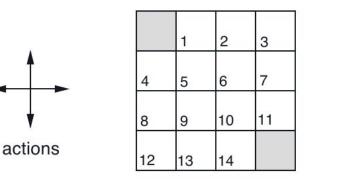
V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s', r|s, a) [r + \gamma V(s')]

\Delta \leftarrow \max(\Delta, |v - V(s)|)

until \Delta < \theta
```


Gridworld Example

- Deterministic state transition
- Off-the-grid actions leave the state unchanged
- Undiscounted, episodic task



 $R_t = -1$ on all transitions

Policy Evaluation in Gridworld

k = 0

k = 2

Random policy π

	0.0	0.0	0.0	0.0
	0.0	-1.0	-1.0	-1.0
k = 1	-1.0	-1.0	-1.0	-1.0
N = 1	-1.0	-1.0	-1.0	-1.0
	-1.0	-1.0	-1.0	0.0

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

	0.0	-2.4	-2.9	-3.0
k = 3	-2.4	-2.9	-3.0	-2.9
$\kappa = 3$	-2.9	-3.0	-2.9	-2.4
	-3.0	-2.9	-2.4	0.0
	0.0	-6.1	-8.4	-9.0
k = 10	-6.1	-7.7	-8.4	-8.4
$\kappa = 10$	-8.4	-8.4	-7.7	-6.1
	-9.0	-8.4	-6.1	0.0
	0.0	-14.	-20.	-22.
$k - \infty$	-14.	-18.	-20.	-20.

 $k = \infty$

0.0

-18. -14

-20. -20.

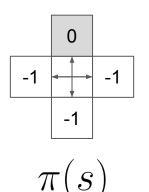
-22. -20. -14.

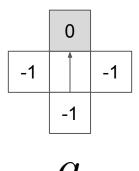
	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

endtoend.a	i
------------	---

Policy Improvement - One state

- Suppose we know v_π for some policy π
- For a state s, see if there is a better action $a \neq \pi(s)$
- Check if $q_{\pi}(s,a) \geq v_{\pi}(s)$
 - \circ If true, greedily selecting a is better than $\pi(s)$
 - Special case of *Policy Improvement Theorem*





Policy Improvement Theorem

For policies π,π' , if for all state $s\in\mathcal{S}$,

$$q_{\pi}(s,\pi'(s)) \ge v_{\pi}(s)$$

Then, π' is at least as good a policy as π .

$$v_{\pi'}(s) \ge v_{\pi}(s)$$

(Strict inequality if $q_{\pi}(s, \pi(s')) > v_{\pi}(s)$)

Policy Improvement

- Find better policies with the computed value function
- Use a new *greedy* policy π'
- Satisfies the conditions of Policy Improvement Theorem

$$\pi'(s) \doteq \operatorname{arg\,max}_{a} q_{\pi}(s, a)$$

=
$$\operatorname{arg\,max}_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$

=
$$\operatorname{arg\,max}_{a} \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big],$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow
\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow
\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow
\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	

	↓	↓	¢Ţ
1	1	Ļ	Ļ
1	ţ	Ļ	Ŧ
ҍ	\rightarrow	\rightarrow	

Guarantees of Policy Improvement

• If $v_{\pi} = v_{\pi'}$, then the Bellman Optimality Equation holds.

$$v_{\pi'}(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi'}(S_{t+1}) \mid S_t = s, A_t = a]$$

=
$$\max_{a} \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi'}(s') \Big].$$

→ Policy Improvement always returns a better policy unless already optimal

Policy Iteration

- Repeat Policy Evaluation and Policy Improvement
- Guaranteed improvement for each policy
- Guaranteed convergence in finite number of steps for finite MDPs

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*,$$

Policy Iteration in Practice

- Initialize $v_{\pi_{t+1}}$ with v_{π_t} for quicker policy evaluation
- Often converges in surprisingly few iterations

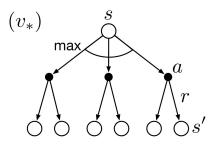
```
Policy Iteration (using iterative policy evaluation) for estimating \pi \approx \pi_*
1. Initialization
    V(s) \in \mathbb{R} and \pi(s) \in \mathcal{A}(s) arbitrarily for all s \in S
2. Policy Evaluation
   Loop:
         \Delta \leftarrow 0
         Loop for each s \in S:
             v \leftarrow V(s)
             V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r+\gamma V(s')]
              \Delta \leftarrow \max(\Delta, |v - V(s)|)
   until \Delta < \theta (a small positive number determining the accuracy of estimation)
3. Policy Improvement
    policy-stable \leftarrow true
    For each s \in S:
         old-action \leftarrow \pi(s)
        \pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s', r | s, a) [r + \gamma V(s')]
         If old-action \neq \pi(s), then policy-stable \leftarrow false
    If policy-stable, then stop and return V \approx v_* and \pi \approx \pi_*; else go to 2
```


Value Iteration

- "Truncate" policy evaluation
 - \circ Don't wait until $\max_{s} |v_{k+1}(s) v_k(s)|$ is sufficiently small
 - Update state values once for each state
- Evaluation and improvement can be simplified to one update operation
 - Bellman optimality equation turned into an update rule

$$v_{k+1}(s) = \sum_{a} \pi_k(a, s) \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_k(s')]$$

= $\max_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_k(s')]$



Value Iteration in Practice

• Terminate when $\max_{s} |v_{k+1}(s) - v_k(s)|$ is sufficiently small

Value Iteration, for estimating $\pi \approx \pi_*$

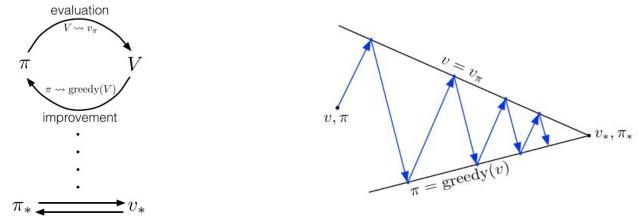
Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0Loop: $\mid \Delta \leftarrow 0$ $\mid \text{Loop for each } s \in S$: $\mid v \leftarrow V(s)$ $\mid V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]$ $\mid \Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \arg\max_a \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]$

Asynchronous Dynamic Programming

- Don't sweep over the entire state set systematically
 - Some states are updated multiple times before other state is updated once
 - Order/skip states to propagate information efficiently
- Can intermix with real-time interaction
 - Update states according to the agent's experience
 - Allow focusing updates to relevant states
- To converge, all states must be continuously updated

Generalized Policy Iteration

- Idea of interaction between policy evaluation and policy improvement
 - Policy improved w.r.t. value function
 - Value function updated for new policy
- Describes most RL methods
- Stabilized process guarantees optimal policy



Efficiency of Dynamic Programming

- Polynomial in $|\mathcal{S}|$ and $|\mathcal{A}|$
 - \circ Exponentially faster than direct search in policy space $|\mathcal{A}|^{|\mathcal{S}|}$
- More practical than linear programming methods in larger problems
 - Asynchronous DP preferred for large state spaces
- Typically converge faster than their worst-case guarantee
 - Initial values can help faster convergence

Thank you!

Original content from

<u>Reinforcement Learning: An Introduction by Sutton and Barto</u>

You can find more content in

- github.com/seungjaeryanlee
- <u>www.endtoend.ai</u>

