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Dynamic Programming
● Algorithms to compute optimal policies with a perfect model of environment
● Use value functions to structure searching for good policies
● Foundation of all methods hereafter

Dynamic 
Programming

Monte Carlo

Temporal 
Difference



Policy Evaluation (Prediction)
● Compute state-value            for some policy
● Use the Bellman Equation:

 



Iterative Policy Evaluation
● Solving linear systems is tedious → Use iterative methods
● Define sequence of approximate value functions
● Expected update using the Bellman equation:

○ Update based on expectation of all possible next states



Iterative Policy Evaluation in Practice
● In-place methods usually converge faster than keeping two arrays
● Terminate policy evaluation when                              is sufficiently small



Gridworld Example
● Deterministic state transition
● Off-the-grid actions leave the state unchanged
● Undiscounted, episodic task



Policy Evaluation in Gridworld
● Random policy 



Policy Improvement - One state
● Suppose we know       for some policy 
● For a state    , see if there is a better action                
● Check if  

○ If true, greedily selecting      is better than  
○ Special case of Policy Improvement Theorem
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Policy Improvement Theorem
For policies           , if for all state              ,

Then,       is at least as good a policy as     .

(Strict inequality if                                     ) 



Policy Improvement
● Find better policies with the computed value function
● Use a new greedy policy
● Satisfies the conditions of Policy Improvement Theorem



Guarantees of Policy Improvement 
● If                 , then the Bellman Optimality Equation holds.

 

→    Policy Improvement always returns a better policy unless already optimal



Policy Iteration
● Repeat Policy Evaluation and Policy Improvement
● Guaranteed improvement for each policy
● Guaranteed convergence in finite number of steps for finite MDPs



Policy Iteration in Practice
● Initialize            with         for quicker policy evaluation
● Often converges in surprisingly few iterations



Value Iteration
● “Truncate” policy evaluation

○ Don’t wait until                                      is sufficiently small
○ Update state values once for each state

● Evaluation and improvement can be simplified to one update operation
○ Bellman optimality equation turned into an update rule



Value Iteration in Practice
● Terminate when                              is sufficiently small 



Asynchronous Dynamic Programming
● Don’t sweep over the entire state set systematically

○ Some states are updated multiple times before other state is updated once
○ Order/skip states to propagate information efficiently

● Can intermix with real-time interaction
○ Update states according to the agent’s experience
○ Allow focusing updates to relevant states

● To converge, all states must be continuously updated



Generalized Policy Iteration
● Idea of interaction between policy evaluation and policy improvement

○ Policy improved w.r.t. value function
○ Value function updated for new policy

● Describes most RL methods
● Stabilized process guarantees optimal policy



Efficiency of Dynamic Programming
● Polynomial in         and 

○ Exponentially faster than direct search in policy space

● More practical than linear programming methods in larger problems
○ Asynchronous DP preferred for large state spaces

● Typically converge faster than their worst-case guarantee
○ Initial values can help faster convergence



Thank you!
Original content from

● Reinforcement Learning: An Introduction by Sutton and Barto

You can find more content in

● github.com/seungjaeryanlee 
● www.endtoend.ai

http://incompleteideas.net/book/the-book-2nd.html
https://github.com/seungjaeryanlee
http://www.endtoend.ai

