
Probabilistic Graphical Models

CMSC 478
UMBC



Probabilistic Graphical Models

A graph G that represents a probability 
distribution over random variables 𝑋", … , 𝑋%



Probabilistic Graphical Models

A graph G that represents a probability 
distribution over random variables 𝑋", … , 𝑋%

Graph G = (vertices V, edges E)
Distribution 𝑝(𝑋", … , 𝑋%)



Probabilistic Graphical Models

A graph G that represents a probability distribution 
over random variables 𝑋",… , 𝑋%

Graph G = (vertices V, edges E)
Distribution 𝑝(𝑋", … , 𝑋%)

Vertices ↔ random variables
Edges show dependencies among random variables



Probabilistic Graphical Models

A graph G that represents a probability distribution 
over random variables 𝑋",… , 𝑋%

Graph G = (vertices V, edges E)
Distribution 𝑝(𝑋", … , 𝑋%)

Vertices ↔ random variables
Edges show dependencies among random variables

Two main flavors: directed graphical models and 
undirected graphical models
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Directed Graphical Models

A directed (acyclic) graph G=(V,E) that represents 
a probability distribution over random variables 
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Joint probability factorizes into factors of 𝑋)
conditioned on the parents of 𝑋)



Directed Graphical Models

A directed (acyclic) graph G=(V,E) that represents 
a probability distribution over random variables 

𝑋", … , 𝑋%

Joint probability factorizes into factors of 𝑋)
conditioned on the parents of 𝑋)

Benefit: read the independence 
properties are transparent



Directed Graphical Models

A directed (acyclic) graph G=(V,E) that represents 
a probability distribution over random variables 

𝑋", … , 𝑋%

Joint probability factorizes into factors of 𝑋)
conditioned on the parents of 𝑋)

A graph/joint distribution that follows this is a 
Bayesian network



Bayesian Networks:
Directed Acyclic Graphs
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Bayesian Networks:
Directed Acyclic Graphs
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Bayesian Networks:
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Bayesian Networks:
Directed Acyclic Graphs

𝑥"

𝑥+𝑥, 5

𝑥.

𝑝 𝑥", 𝑥., 𝑥,, … , 𝑥% =0
)

𝑝 𝑥) 𝜋(𝑥)))

exact inference in general DAGs is NP-hard

inference in trees can be exact





Directed Graphical Model Notation

𝑥"

𝑥+𝑥, 5

𝑥.

Shaded nodes are 
observed R.V.s

Unshaded nodes 
are unobserved 

(latent) R.V.s



D-Separation: Testing for Conditional 
Independence

Variables X & Y are 
conditionally 

independent given Z if all 
(undirected) paths from 

(any variable in) X to 
(any variable in) Y are

d-separated by Z

d-separation

P has a chain with an observed middle node

P has a fork with an observed parent node

P includes a “v-structure” or “collider” with 
all unobserved descendants

X & Y are d-separated if for all paths P, one of 
the following is true:
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D-Separation: Testing for Conditional 
Independence

Variables X & Y are conditionally independent 
given Z if all (undirected) paths from (any variable 

in) X to (any variable in) Y are d-separated by Z

d-separation

P has a chain with an observed middle node

P has a fork with an observed parent node

P includes a “v-structure” or “collider” with 
all unobserved descendants

X & Y are d-separated if for all paths P, one of 
the following is true:

X Z Y

X

Z

Y

X Z Y

observing Z blocks 
the path from X to Y

observing Z blocks 
the path from X to Y

not observing Z blocks 
the path from X to Y

𝑝 𝑥, 𝑦, 𝑧 = 𝑝 𝑥 𝑝 𝑦 𝑝(𝑧|𝑥, 𝑦)

𝑝 𝑥, 𝑦 =6
7

𝑝 𝑥 𝑝 𝑦 𝑝(𝑧|𝑥, 𝑦) = 𝑝 𝑥 𝑝 𝑦
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Naïve Bayes

argmax= log 𝑝 𝑋 𝑌) + log 𝑝(𝑌)
likelihood prior

argmax=𝑝 𝑌 𝑋)

Apply Bayes rule and take logs



Naïve Bayes

argmax= log 𝑝 𝑋 𝑌) + log 𝑝(𝑌)

argmax=𝑝 𝑌 𝑋)
Apply Bayes rule and take logs

Represent X is a D-dimensional 
vector (of features):

𝑋 = (𝑋", 𝑋., 𝑋,,… , 𝑋B)



Naïve Bayes

argmax= log 𝑝 𝑋 𝑌) + log 𝑝(𝑌)

argmax=𝑝 𝑌 𝑋)

argmax=6
CD"

B

log 𝑝(𝑋C|𝑌) + log 𝑝(𝑌)

Apply Bayes rule and take logs

Naively generate each “feature” 
of X, conditioned on Y



The Bag of Words Representation
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I love this movie! It's sweet, 
but with satirical humor. The 
dialogue is great and the 
adventure scenes are fun... 
It manages to be whimsical 
and romantic while laughing 
at the conventions of the 
fairy tale genre. I would 
recommend it to just about 
anyone. I've seen it several 
times, and I'm always happy 
to see it again whenever I 
have a friend who hasn't 
seen it yet!
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Adapted from Jurafsky & Martin (draft)
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Bag of Words Representation

γ( )=c
seen 2

sweet 1

whimsical 1
recommend 1

happy 1
... ...classifier

classifier

Adapted from Jurafsky & Martin (draft)



Naïve Bayes: A Generative Story
Generative Story

𝜙 = distribution over 𝐾 labels
for label 𝑘 = 1 to 𝐾: global 

parameters
𝜃U = generate parameters 𝑝 𝑥)C 𝑦 = 𝑘)

𝑝(𝑦 = 𝑘)

6
CD"

B

log 𝑝(𝑋)C|𝑌)) + log 𝑝(𝑌))



Naïve Bayes: A Generative Story

for item 𝑖 = 1 to 𝑁:
𝑦) ~ Cat 𝜙

Generative Story

𝜙 = distribution over 𝐾 labels y
for label 𝑘 = 1 to 𝐾:

𝜃U = generate parameters

Choose the label

6
CD"

B

log 𝑝(𝑋)C|𝑌)) + log 𝑝(𝑌))



Naïve Bayes: A Generative Story

for item 𝑖 = 1 to 𝑁:
𝑦) ~ Cat 𝜙

Generative Story

𝜙 = distribution over 𝐾 labels

for each feature 𝑗
𝑥)C ∼ FC(𝜃`a)

𝑥)" 𝑥). 𝑥), 𝑥)+ 𝑥)2

y
for label 𝑘 = 1 to 𝐾:

𝜃U = generate parameters

local 
variables Generate each feature 

based on the label

6
CD"

B

log 𝑝(𝑋)C|𝑌)) + log 𝑝(𝑌))



Naïve Bayes: A Generative Story

for item 𝑖 = 1 to 𝑁:
𝑦) ~ Cat 𝜙

Generative Story

𝜙 = distribution over 𝐾 labels

𝑥)" 𝑥). 𝑥), 𝑥)+ 𝑥)2

y
for label 𝑘 = 1 to 𝐾:

each xij is conditionally 
independent of one 

another (given the label)

𝜃U = generate parameters

for each feature 𝑗
𝑥)C ∼ FC(𝜃`a)

6
CD"

B

log 𝑝(𝑋)C|𝑌)) + log 𝑝(𝑌))



Naïve Bayes: A Generative Story

for item 𝑖 = 1 to 𝑁:
𝑦) ~ Cat 𝜙

Generative Story

ℒ 𝜃 =6
)

6
C

log𝐹 a(𝑥)C; 𝜃`a) +6
)

log𝜙`a s. t.

Maximize Log-likelihood

𝜙 = distribution over 𝐾 labels

𝑥)" 𝑥). 𝑥), 𝑥)+ 𝑥)2

y
for label 𝑘 = 1 to 𝐾:

6
U

𝜙U = 1 𝜃U is valid for 𝐹C

𝜃U = generate parameters

for each feature 𝑗
𝑥)C ∼ FC(𝜃`a)

𝜙U ≥ 0



Multinomial Naïve Bayes: A Generative 
Story

for item 𝑖 = 1 to 𝑁:
𝑦) ~ Cat 𝜙

Generative Story

ℒ 𝜃 =6
)

6
C

log𝜃`a,ha,i +6
)

log𝜙`a s. t.

Maximize Log-likelihood

𝜙 = distribution over 𝐾 labels

for each feature 𝑗
𝑥)C ∼ Cat(𝜃`a)

𝑥)" 𝑥). 𝑥), 𝑥)+ 𝑥)2

y
for label 𝑘 = 1 to 𝐾:

𝜃U = distribution over J feature values

6
U

𝜙U = 1 6
C

𝜃UC = 1 ∀𝑘 𝜃UC ≥ 0,𝜙U ≥ 0



Multinomial Naïve Bayes: A Generative 
Story

for item 𝑖 = 1 to 𝑁:
𝑦) ~ Cat 𝜙

Generative Story

ℒ 𝜃

=6
)

6
C

log 𝜃`a,ha,i +6
)

log 𝜙`a − 𝜇 6
U

𝜙U − 1 −6
U

𝜆U 6
C

𝜃UC − 1

Maximize Log-likelihood via Lagrange Multipliers (≥ 𝟎 constraints not shown)

𝜙 = distribution over 𝐾 labels

for each feature 𝑗
𝑥)C ∼ Cat(𝜃`a,C)

𝑥)" 𝑥). 𝑥), 𝑥)+ 𝑥)2

y
for label 𝑘 = 1 to 𝐾:

𝜃U = distribution over J feature values



Multinomial Naïve Bayes: Learning

Calculate class priors
For each k:

itemsk = all items with class = k

Calculate feature generation terms
For each k:

obsk = single object containing all 
items labeled as k

For each feature j
nkj = # of occurrences of j in obsk

𝑝 𝑘 =
|itemsU|
# items

𝑝 𝑗|𝑘 =
𝑛UC

∑Cs 𝑛UCs



Brill and Banko (2001)
With enough data, the 

classifier may not matter

Adapted from Jurafsky & Martin (draft)



Summary: Naïve Bayes is Not So Naïve, 
but not without issue

Pro
Very Fast, low storage requirements

Robust to Irrelevant Features

Very good in domains with many 
equally important features

Optimal if the independence 
assumptions hold

Dependable baseline for text 
classification (but often not the best)

Con
Model the posterior in one go? 
(e.g., use conditional maxent)

Are the features really 
uncorrelated?

Are plain counts always 
appropriate?

Are there “better” ways of 
handling missing/noisy data? 

(automated, more principled)

Adapted from Jurafsky & Martin (draft)
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Undirected Graphical Models

An undirected graph G=(V,E) that represents a 
probability distribution over random variables 

𝑋", … , 𝑋%

Joint probability factorizes based on cliques in 
the graph



Undirected Graphical Models

An undirected graph G=(V,E) that represents a 
probability distribution over random variables 

𝑋", … , 𝑋%
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Common name: Markov Random Fields



Undirected Graphical Models
An undirected graph G=(V,E) that represents a 
probability distribution over random variables 

𝑋",… , 𝑋%

Joint probability factorizes based on cliques in the 
graph

Common name: Markov Random Fields

Undirected graphs can have an alternative 
formulation as Factor Graphs



Markov Random Fields:
Undirected Graphs

𝑝 𝑥", 𝑥., 𝑥,, … , 𝑥%



Markov Random Fields:
Undirected Graphs

𝑝 𝑥", 𝑥., 𝑥,, … , 𝑥%

clique: subset of nodes, 
where nodes are 

pairwise connected

maximal clique: a clique 
that cannot add a node 

and remain a clique



Markov Random Fields:
Undirected Graphs

𝑝 𝑥", 𝑥., 𝑥,, … , 𝑥% =
1
𝑍0

u

𝜓u 𝑥w
variables part 
of the clique C

maximal 
cliques

global 
normalization

clique: subset of nodes, 
where nodes are 

pairwise connected

maximal clique: a clique 
that cannot add a node 

and remain a clique

potential function (not 
necessarily a probability!)



Markov Random Fields:
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Markov Random Fields:
Undirected Graphs

𝑝 𝑥", 𝑥., 𝑥,, … , 𝑥% =
1
𝑍0

u

𝜓u 𝑥w
variables part 
of the clique C

maximal 
cliques

global 
normalization

clique: subset of nodes, 
where nodes are 

pairwise connected

maximal clique: a clique 
that cannot add a node 

and remain a clique

potential function (not 
necessarily a probability!)

Q: What restrictions should we 
place on the potentials 𝜓u?



Markov Random Fields:
Undirected Graphs

𝑝 𝑥", 𝑥., 𝑥,, … , 𝑥% =
1
𝑍0

u

𝜓u 𝑥w
variables part 
of the clique C

maximal 
cliques

global 
normalization

clique: subset of nodes, 
where nodes are 

pairwise connected

maximal clique: a clique 
that cannot add a node 

and remain a clique

potential function (not 
necessarily a probability!)

Q: What restrictions should we 
place on the potentials 𝜓u?

A: 𝜓u ≥ 0 (or 𝜓u > 0)



Terminology: Potential Functions

𝜓u 𝑥w = exp−𝐸(𝑥u)

energy function (for clique C)

Boltzmann distribution

(get the total energy of a 
configuration by summing the 

individual energy functions)

𝑝 𝑥", 𝑥., 𝑥,, … , 𝑥% =
1
𝑍
0
u

𝜓u 𝑥w



Ambiguity in Undirected Model Notation

X

Y Z

𝑝 𝑥, 𝑦, 𝑧 ∝ 𝜓(𝑥, 𝑦, 𝑧)

𝑝 𝑥, 𝑦, 𝑧 ∝ 𝜓" h,` 𝜓. `,7 𝜓, h,7
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MRFs as Factor Graphs

Undirected graphs: G=(V,E) that represents 𝑝(𝑋",… , 𝑋%)

Factor graph of p: Bipartite graph of evidence nodes X, 
factor nodes F, and edges T

Evidence nodes X are the random variables

Factor nodes F take values associated with the potential 
functions

Edges show what variables are used in which factors 



MRFs as Factor Graphs

Undirected graphs: 
G=(V,E) that 
represents 
𝑝(𝑋", … , 𝑋%)

Factor graph of p: 
Bipartite graph of 
evidence nodes X, 
factor nodes F, and 
edges T

X

Y Z



MRFs as Factor Graphs

Undirected graphs: 
G=(V,E) that represents 
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Different Factor Graph Notation for 
the Same Graph 
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Example: Linear Chain

Directed (e.g., 
hidden Markov model 

[HMM]; generative)

z1

w1 w2 w3 w4

z2 z3 z4

Undirected as 
factor graph 
(e.g., conditional 

random field [CRF])

z1 z2 z3 z4

Directed (e.g.., 
maximum entropy 

Markov model 
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Example: Linear Chain Conditional 
Random Field

Widely used in applications like
part-of-speech tagging

and named entity recognition

z1 z2 z3 z4

President Obama told Congress …
Noun-Mod Noun NounVerb

President Obama told Congress …
Person Person Org.Other
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z1 z2 z3 z4

𝑓" 𝑓. 𝑓, 𝑓+

𝑔" 𝑔. 𝑔, 𝑔+

𝑔C: inter-tag features 
(can depend on 

any/all input words 
𝑥":%)

𝑓): solo tag features 
(can depend on 

any/all input words 
𝑥":%)

Feature design, just 
like in maxent 

models!



Linear Chain CRFs for Part of Speech 
Tagging

z1 z2 z3 z4

𝑓" 𝑓. 𝑓, 𝑓+

𝑔" 𝑔. 𝑔, 𝑔+

𝑔C: inter-tag features 
(can depend on 

any/all input words 
𝑥":%)

𝑓): solo tag features 
(can depend on 

any/all input words 
𝑥":%)

Example:
𝑔C,%→� z�, z��" = 1 (if z� == N & z��" == V) else 0

𝑔C,����,%→� z�, z��" = 1 (if z� == N & z��" == V & x� == told) else 0
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Example: Ising Model

x: original 
pixel/state

y: 
observed 

(noisy) 
pixel/state

Image denoising (Bishop, 2006; Fig 8.30)

original w/ 10% noise

two solutions

𝐸 𝑥, 𝑦 = ℎ6
)

𝑥) − 𝛽6
)C

𝑥)𝑥C − 𝜂6
)

𝑥)𝑦)

xi and yi should 
be correlated

neighboring pixels 
should be similar

allow for a bias

Q: Why subtract β and η?

A: Better states à lower 
energy (higher potential) 
𝜓u 𝑥w = exp−𝐸(𝑥u)



Markov Random Fields with
Factor Graph Notation

x: original 
pixel/state

y: observed 
(noisy) 

pixel/state

factor nodes 
are added 

according to 
maximal 
cliques

unary
factor

variable

factor graphs are bipartite

binary
factor
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Finding the normalizer

𝑍 =6
h

0
w

𝜓w(𝑥w)

Computing the marginals

𝑍�(𝑣) = 6
h:h�D�

0
w

𝜓w(𝑥w)

Q: Why are these difficult?

A: Many different combinations

Sum over all variable 
combinations, with the xn

coordinate fixed

𝑍.(𝑣) = 6
h�

6
h�

0
w

𝜓w(𝑥 = 𝑥", 𝑣, 𝑥, )

Example: 3 
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2nd dimension

𝑝 𝑥", 𝑥., 𝑥,, … , 𝑥% =
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If you are the front soldier in 
the line, say the number ‘one’ 
to the soldier behind you.

If you are the rearmost soldier 
in the line, say the number 
‘one’ to the soldier in front of 
you. 

If a soldier ahead of or behind 
you says a number to you, add 
one to it, and say the new 
number to the soldier on the 
other side

ITILA, Ch 16
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Sum-Product Algorithm

Main idea: message passing

An exact inference algorithm for tree-like graphs

Belief propagation (forward-backward for 
HMMs) is a special case
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𝑝 𝑥) = 𝑣 =0
�

𝑟�→ha(𝑥))
alternative 
marginal 

computation

…
…

main idea: use bipartite nature of graph to 
efficiently compute the marginals
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𝑟�→�
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Sum-Product
From variables to factors

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥�

From factors to variables

𝑟�→� 𝑥�
= 6

𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)

n

m

n

m

set of variables that the 
mth factor depends on

set of factors in which 
variable n participates

sum over configuration of 
variables for the mth factor, 

with variable n fixed

default value of 1 if 
empty product
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𝑞h�→�¦ 𝑥, = 1

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree (𝑥,)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞h�→�¦ 𝑥, = 1

𝑟�¦→h¤ 𝑥. = 6
U

𝑓 (𝑥., 𝑥, = 𝑘)

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree (𝑥,)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞h�→�¦ 𝑥, = 1

𝑟�¦→h¤ 𝑥. = 6
U

𝑓 (𝑥., 𝑥, = 𝑘)

𝑞h¤→�¡ 𝑥. = ? ? ?

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree (𝑥,)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞h�→�¦ 𝑥, = 1

𝑟�¦→h¤ 𝑥. = 6
U

𝑓 (𝑥., 𝑥, = 𝑘)

𝑞h¤→�¡ 𝑥. = 𝑟�¦→h¤ 𝑥. 𝑟�£→h¤ 𝑥.

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)

We just 
computed this

Q: Where did we 
compute this?



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree (𝑥,)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞h�→�¦ 𝑥, = 1

𝑟�¦→h¤ 𝑥. = 6
U

𝑓 (𝑥., 𝑥, = 𝑘)

𝑞h¤→�¡ 𝑥. = 𝑟�¦→h¤ 𝑥. 𝑟�£→h¤ 𝑥.

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)

We just 
computed this

Q: Where did we 
compute this?

A: In step 1 
(leaves à root)



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree (𝑥,)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞h�→�¦ 𝑥, = 1

𝑟�¦→h¤ 𝑥. = 6
U

𝑓 (𝑥., 𝑥, = 𝑘)

𝑞h¤→�¡ 𝑥. = 𝑟�¦→h¤ 𝑥. 𝑟�£→h¤ 𝑥.
𝑞h¤→�£ 𝑥. = 𝑟�¡→h¤ 𝑥. 𝑟�¦→h¤ 𝑥.

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree (𝑥,)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞h�→�¦ 𝑥, = 1

𝑟�¦→h¤ 𝑥. = 6
U

𝑓 (𝑥., 𝑥, = 𝑘)

𝑞h¤→�¡ 𝑥. = 𝑟�¦→h¤ 𝑥. 𝑟�£→h¤ 𝑥.
𝑞h¤→�£ 𝑥. = 𝑟�¡→h¤ 𝑥. 𝑟�¦→h¤ 𝑥.

𝑟�£→h¢ 𝑥+ = 6
U

𝑓w(𝑥. = 𝑘, 𝑥+)

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree (𝑥,)
1. Send messages from leaves to root
2. Send messages from root to leaves

𝑞h�→�¦ 𝑥, = 1

𝑟�¦→h¤ 𝑥. = 6
U

𝑓 (𝑥., 𝑥, = 𝑘)

𝑞h¤→�¡ 𝑥. = 𝑟�¦→h¤ 𝑥. 𝑟�£→h¤ 𝑥.
𝑞h¤→�£ 𝑥. = 𝑟�¡→h¤ 𝑥. 𝑟�¦→h¤ 𝑥.

𝑟�£→h¢ 𝑥+ = 6
U

𝑓w(𝑥. = 𝑘, 𝑥+)

𝑟�¡→h� 𝑥" = 6
U

𝑓�(𝑥", 𝑥. = 𝑘)

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree (𝑥,)
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities

𝑝 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥�

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree (𝑥,)
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities

𝑝 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥�

𝑝 𝑥" = 𝑟�¡→h� 𝑥"

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree (𝑥,)
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities

𝑝 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥�

𝑝 𝑥" = 𝑟�¡→h� 𝑥"
𝑝 𝑥.
= 𝑟�¡→h¤ 𝑥. 𝑟�¦→h¤ 𝑥. 𝑟�£→h¤ 𝑥.

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree (𝑥,)
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities

𝑝 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥�

𝑝 𝑥" = 𝑟�¡→h� 𝑥"
𝑝 𝑥.
= 𝑟�¡→h¤ 𝑥. 𝑟�¦→h¤ 𝑥. 𝑟�£→h¤ 𝑥.
𝑝 𝑥, = 𝑟�¦→h� 𝑥,
𝑝 𝑥+ = 𝑟�£→h¢ 𝑥+

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree (𝑥,)
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities
2. Are we done?

1. If a tree structure, we’ve converged
2.

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree (𝑥,)
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities
2. Are we done?

1. If a tree structure, we’ve converged
2. If not:

1. Either accept the partially 
converged result, or…

2.

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)



Example

𝑥.𝑥" 𝑥,

𝑥+

𝑓� 𝑓 

𝑓w

1. Select the root, or pick one if a tree
1. Send messages from leaves to root
2. Send messages from root to leaves
3. Use messages to compute marginal 

probabilities
2. Are we done?

1. If a tree structure, we’ve converged
2. If not:

1. Either accept the partially 
converged result, or…

2. Go back to (1) and repeat

[Loopy BP]

𝑞�→� 𝑥� = 0
�s∈�(�)\�

𝑟�s→� 𝑥� 𝑟�→� 𝑥� = 6
𝒘�\�

𝑓� 𝒘� 0
�s∈%(�)\�

𝑞�s→�(𝑥��)



Max-Product (Max-Sum)

Problem: how to find the most likely (best) 
setting of latent variables

Replace sum (+) with max in factoràvariable
computations
𝑟�→� 𝑥� = max

𝒘�\�
𝑓� 𝒘� 0

�s∈%(�)\�

𝑞�s→�(𝑥��)

(why max-sum? computationally, 
implement with logs)



Loopy Belief Propagation

Sum-product algorithm is not exact for general 
graphs

Loopy Belief Propagation (Loopy BP): run sum-
product algorithm anyway and hope for the best

Requires a message passing schedule



Outline
Directed Graphical Models

Naïve Bayes

Undirected Graphical Models
Factor Graphs
Ising Model

Message Passing: Graphical Model Inference


