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What is (Generative) Probabilistic 
Modeling?

So far, we’ve (mostly)
had labeled data pairs (x, y), and
built classifiers p(y | x)

What if we want to model both x and y 
together?

p(x, y)

Or what if we only have data but no labels?
p(x) • Like A3, Q1

• Piazza Q68

Q: Where have we 
used p(x,y)?

A: Linear 
Discriminant Analysis
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that explains how you believe your training data 
came into existence.” --- CIML Ch 9.5



Generative Stories

Generative stories are most often used with 
joint models p(x, y)…. but despite their name, 

generative stories are applicable to both 
generative and conditional models

“A useful way to develop probabilistic models is 
to tell a generative story. This is a fictional story 
that explains how you believe your training data 
came into existence.” --- CIML Ch 9.5
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Generative Story for Rolling a Die

𝑝 𝑤#,𝑤%, … ,𝑤' = 𝑝 𝑤# 𝑝 𝑤% ⋯𝑝 𝑤' =*
+

𝑝 𝑤+

N different 
(independent) rolls

𝑤# = 1

𝑤% = 5

𝑤. = 4

⋯

for roll 𝑖 = 1 to 𝑁:
𝑤+ ∼ Cat(𝜃)

Generative Story

a probability 
distribution over 6 

sides of the die

>
?@#

A

𝜃? = 1 0 ≤ 𝜃? ≤ 1, ∀𝑘

“for each” 
loop 
becomes a 
product

Calculate 𝑝 𝑤+
according to 
provided 
distribution
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Learning Parameters for the Die Model

𝑝 𝑤#,𝑤%, … ,𝑤' = 𝑝 𝑤# 𝑝 𝑤% ⋯𝑝 𝑤' =*
+

𝑝 𝑤+
maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing log-
likelihood a reasonable 

thing to do?

A: Develop a good model 
for what we observe

Q: (for discrete 
observations) What loss 

function do we minimize to 
maximize log-likelihood?

A: Cross-entropy



Learning Parameters for the Die Model: 
Maximum Likelihood (Intuition)
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Learning Parameters for the Die Model: 
Maximum Likelihood (Intuition)

p(1) = 2/9

p(3) = 1/9

p(5) = 1/9

p(2) = 1/9

p(4) = 3/9

p(6) = 1/9

maximum 
likelihood 
estimates

𝑝 𝑤#,𝑤%, … ,𝑤' = 𝑝 𝑤# 𝑝 𝑤% ⋯𝑝 𝑤' =*
+

𝑝 𝑤+

maximize (log-) likelihood to learn the probability parameters

If you observe 
these 9 rolls…

…what are “reasonable” 
estimates for p(w)?



Learning Parameters for the Die 
Model: Maximum Likelihood (Math)
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Learning Parameters for the Die 
Model: Maximum Likelihood (Math)

𝑝 𝑤#,𝑤%, … ,𝑤' = 𝑝 𝑤# 𝑝 𝑤% ⋯𝑝 𝑤' =*
+

𝑝 𝑤+

N different 
(independent) rolls

for roll 𝑖 = 1 to 𝑁:
𝑤+ ∼ Cat(𝜃)

Generative Story

ℒ 𝜃 =>
+

log𝜃IJ

Maximize Log-likelihood

Q: What’s an easy way to maximize this, as 
written exactly (even without calculus)?

A: Just keep increasing 𝜃? (we know 𝜃 must 
be a distribution, but it’s not specified) 



Learning Parameters for the Die 
Model: Maximum Likelihood (Math)

𝑝 𝑤#,𝑤%, … ,𝑤' = 𝑝 𝑤# 𝑝 𝑤% ⋯𝑝 𝑤' =*
+

𝑝 𝑤+

N different 
(independent) rolls

ℒ 𝜃 =>
+

log𝜃IJ s. t.>
?@#

A

𝜃? = 1

Maximize Log-likelihood (with distribution constraints)

(we can include the 
inequality constraints 

0 ≤ 𝜃?, but it complicates 
the problem and, right 

now, is not needed)

solve using Lagrange multipliers
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𝑝 𝑤#,𝑤%, … ,𝑤' = 𝑝 𝑤# 𝑝 𝑤% ⋯𝑝 𝑤' =*
+

𝑝 𝑤+

N different 
(independent) rolls

ℱ 𝜃 =>
+

log𝜃IJ − 𝜆 >
?@#

A

𝜃? − 1

Maximize Log-likelihood (with distribution constraints)
(we can include the 

inequality constraints 
0 ≤ 𝜃?, but it 

complicates the 
problem and, right 
now, is not needed)

𝜕ℱ 𝜃
𝜕𝜃?

= >
+:IJ@?

1
𝜃IJ

− 𝜆 𝜕ℱ 𝜃
𝜕𝜆

= −>
?@#

A

𝜃? + 1
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Maximize Log-likelihood (with distribution constraints)
(we can include the 

inequality constraints 
0 ≤ 𝜃?, but it 

complicates the 
problem and, right 
now, is not needed)

𝜃? =
∑+:IJ@? 1

∑? ∑+:IJ@? 1
=
𝑁?
𝑁 optimal 𝜆 when>

?@#

A

𝜃? = 1
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𝑝 𝑤#,𝑤%,… ,𝑤' = 𝑝 𝑤# 𝑝 𝑤% ⋯𝑝 𝑤' =*
+

𝑝 𝑤+

𝑝 𝑧#,𝑤#, 𝑧%, 𝑤%,… , 𝑧',𝑤' = 𝑝 𝑧# 𝑝 𝑤#|𝑧# ⋯𝑝 𝑧' 𝑝 𝑤'|𝑧'

=*
+

𝑝 𝑤+|𝑧+ 𝑝 𝑧+

add complexity to better 
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Example: Conditionally Rolling a Die

𝑝 𝑤#,𝑤%,… ,𝑤' = 𝑝 𝑤# 𝑝 𝑤% ⋯𝑝 𝑤' =*
+

𝑝 𝑤+

𝑝 𝑧#,𝑤#, 𝑧%, 𝑤%,… , 𝑧',𝑤' = 𝑝 𝑧# 𝑝 𝑤#|𝑧# ⋯𝑝 𝑧' 𝑝 𝑤'|𝑧'

=*
+

𝑝 𝑤+|𝑧+ 𝑝 𝑧+

add complexity to better 
explain what we see

𝑤# = 1

𝑤% = 5

⋯

𝑧# = 𝑇

𝑧% = 𝐻

First flip a coin…
…then roll a different die 
depending on the coin flip



Learning in Conditional Die Roll Model: 
Maximize (Log-)Likelihood
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𝑝 𝑧#,𝑤#, 𝑧%, 𝑤%,… , 𝑧',𝑤' =*
+

𝑝 𝑤+|𝑧+ 𝑝 𝑧+

If you observe the 𝑧+
values, this is easy!

First: Write the Generative Story

𝜆 = distribution over coin (z)
𝛾(e) = distribution for die when coin comes up heads

𝑤+ ~ Cat 𝛾(gJ)

𝛾(h) = distribution for die when coin comes up tails
for item 𝑖 = 1 to 𝑁:
𝑧+ ~ Bernoulli 𝜆



Learning in Conditional Die Roll Model: 
Maximize (Log-)Likelihood

𝑝 𝑧#,𝑤#, 𝑧%, 𝑤%,… , 𝑧',𝑤' =*
+

𝑝 𝑤+|𝑧+ 𝑝 𝑧+

If you observe the 𝑧+
values, this is easy!

First: Write the Generative Story

𝜆 = distribution over coin (z)
𝛾(e) = distribution for H die

𝑤+ ~ Cat 𝛾(gJ)

𝛾(h) = distribution for T die
for item 𝑖 = 1 to 𝑁:
𝑧+ ~ Bernoulli 𝜆

Second: Generative Story à Objective

ℱ 𝜃 =>
+

l

(log 𝜆gJ + log 𝛾IJ
(gJ))

−𝜂 >
?@#

%

𝜆? − 1 −>
?

%

𝛿? >
o

A

𝛾o
(?) − 1

Lagrange multiplier 
constraints
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𝑝 𝑤+|𝑧+ 𝑝 𝑧+

If you observe the 𝑧+
values, this is easy!

First: Write the Generative Story

𝜆 = distribution over coin (z)
𝛾(e) = distribution for H die

𝑤+ ~ Cat 𝛾(gJ)
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Learning in Conditional Die Roll Model: 
Maximize (Log-)Likelihood

𝑝 𝑧#,𝑤#, 𝑧%, 𝑤%,… , 𝑧',𝑤' =*
+

𝑝 𝑤+|𝑧+ 𝑝 𝑧+

If you observe the 𝑧+
values, this is easy!

First: Write the Generative Story

𝜆 = distribution over coin (z)
𝛾(e) = distribution for H die

𝑤+ ~ Cat 𝛾(gJ)

𝛾(h) = distribution for T die
for item 𝑖 = 1 to 𝑁:
𝑧+ ~ Bernoulli 𝜆

Second: Generative Story à Objective

ℱ 𝜃 =>
+

l

(log 𝜆gJ + log 𝛾IJ
(gJ))

−𝜂 >
?@#

%

𝜆? − 1 −>
?@#

%

𝛿? >
o@#

A

𝛾o
(?) − 1

But if you don’t observe the 
𝑧+ values, this is not easy!
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+

𝑝 𝑤+|𝑧+ 𝑝 𝑧+

if we did observe z, estimating the 
probability parameters would be easy… 

but we don’t! :(

we don’t actually observe these z values
we just see the items w

goal: maximize (log-)likelihood



Example: Conditionally Rolling a Die

𝑝 𝑧#,𝑤#, 𝑧%, 𝑤%,… , 𝑧',𝑤' =*
+

𝑝 𝑤+|𝑧+ 𝑝 𝑧+

we don’t actually observe these z values
we just see the items w

goal: maximize (log-)likelihood

if we knew the probability parameters
then we could estimate z and evaluate 

likelihood… but we don’t! :(

if we did observe z, estimating the 
probability parameters would be easy… 

but we don’t! :(
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𝑝 𝑧#,𝑤#, 𝑧%, 𝑤%,… , 𝑧',𝑤' =*
+
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we don’t actually observe these z values

goal: maximize marginalized (log-)likelihood
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Example: Conditionally Rolling a Die

𝑝 𝑧#,𝑤#, 𝑧%, 𝑤%,… , 𝑧',𝑤' =*
+

𝑝 𝑤+|𝑧+ 𝑝 𝑧+

we don’t actually observe these z values

goal: maximize marginalized (log-)likelihood

w z1 & w z2 & w z3 & w z4 & w

𝑝 𝑤#,𝑤%,… ,𝑤' = >
gp

𝑝(𝑧#,𝑤1) >
gq

𝑝(𝑧%,𝑤2) ⋯ >
gs

𝑝(𝑧',𝑤𝑁)
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𝑝 𝑧#,𝑤#, 𝑧%, 𝑤%,… , 𝑧',𝑤' = 𝑝 𝑧# 𝑝 𝑤#|𝑧# ⋯𝑝 𝑧' 𝑝 𝑤'|𝑧'

goal: maximize marginalized (log-)likelihood

w z1 & w z2 & w z3 & w z4 & w

𝑝 𝑤#,𝑤%,… ,𝑤' = >
gp

𝑝(𝑧#,𝑤1) >
gq

𝑝(𝑧%,𝑤2) ⋯ >
gs

𝑝(𝑧',𝑤𝑁)

if we did observe z, estimating the 
probability parameters would be easy… 

but we don’t! :(

if we knew the probability parameters
then we could estimate z and evaluate 

likelihood… but we don’t! :(
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if we did observe z, estimating the 
probability parameters would be easy… 

but we don’t! :(

if we knew the probability parameters
then we could estimate z and evaluate 

likelihood… but we don’t! :(
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Expectation Maximization (EM)

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these 
uncertain counts



Expectation Maximization (EM): E-step

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these 
parameters

2. M-step: maximize log-likelihood, assuming these 
uncertain counts

count(𝑧+, 𝑤+)𝑝(𝑧+)



Expectation Maximization (EM): M-step
0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these 
parameters

2. M-step: maximize log-likelihood, assuming these 
uncertain counts

𝑝 tu# (𝑧)𝑝(t)(𝑧)
estimated 

counts



EM Math

max𝔼g ~ xy(z)(⋅|I) log 𝑝H(𝑧, 𝑤)
the average log-likelihood of our 

complete data (z, w), averaged across 
all z and according to how likely our 

current model thinks z is



EM Math

max
H
𝔼g ~ xy(z)(⋅|I) log 𝑝H(𝑧, 𝑤)

maximize the average log-likelihood of our complete data (z, w), averaged 
across all z and according to how likely our current model thinks z is



EM Math

max
H
𝔼g ~ xy(z)(⋅|I) log 𝑝H(𝑧, 𝑤)

maximize the average log-likelihood of our complete data (z, w), averaged 
across all z and according to how likely our current model thinks z is



EM Math

max
H
𝔼g ~ xy(z)(⋅|I) log 𝑝H(𝑧, 𝑤)

posterior distribution

maximize the average log-likelihood of our complete data (z, w), averaged 
across all z and according to how likely our current model thinks z is

current parameters



EM Math

max
H
𝔼g ~ xy(z)(⋅|I) log 𝑝H(𝑧, 𝑤)

current parameters

new parameters new parametersposterior distribution

maximize the average log-likelihood of our complete data (z, w), averaged 
across all z and according to how likely our current model thinks z is



EM Math

max
H
𝔼g ~ xy(z)(⋅|I) log 𝑝H(𝑧, 𝑤)

E-step: count under uncertainty
M-step: maximize log-likelihood

current parameters

new parameters new parametersposterior distribution

maximize the average log-likelihood of our complete data (z, w), averaged 
across all z and according to how likely our current model thinks z is



Why EM? Un-Supervised Learning
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?

NO labeled data:
• human annotated
• relatively small/few 

examples

unlabeled data:
• raw; not annotated
• plentiful

EM/generative 
models in this case 

can be seen as a type 
of clustering

EM è



Why EM? Semi-Supervised Learning

O
P
O
P
P
O

? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?labeled data:

• human annotated
• relatively small/few 

examples

unlabeled data:
• raw; not annotated
• plentiful
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Three Coins Example

Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)



Three Coins Example

Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

only observe these 
(record heads vs. tails 
outcome)

don’t observe this



Three Coins Example

Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

observed:
a, b, e, etc.
We run the code, vs. 
The run failed

unobserved:
part of speech?
genre?



Three Coins Example

Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

𝑝 heads = 𝜆 𝑝 tails = 1 − 𝜆

𝑝 heads = 𝛾

𝑝 heads = 𝜓

𝑝 tails = 1 − 𝛾

𝑝 tails = 1 − 𝜓



Three Coins Example

Imagine three coins

𝑝 heads = 𝜆
𝑝 tails = 1 − 𝜆

𝑝 heads = 𝛾 𝑝 heads = 𝜓
𝑝 tails = 1 − 𝛾 𝑝 tails = 1 − 𝜓

Three parameters to estimate: λ, γ, and ψ



Generative Story for Three Coins
𝑝 𝑤#,𝑤%,… ,𝑤' = 𝑝 𝑤# 𝑝 𝑤% ⋯𝑝 𝑤' =*

+

𝑝 𝑤+

𝑝 𝑧#,𝑤#, 𝑧%, 𝑤%,… , 𝑧',𝑤' = 𝑝 𝑧# 𝑝 𝑤#|𝑧# ⋯𝑝 𝑧' 𝑝 𝑤'|𝑧'

=*
+

𝑝 𝑤+|𝑧+ 𝑝 𝑧+

add complexity to better 
explain what we see

𝑝 heads = 𝜆
𝑝 tails = 1 − 𝜆

𝑝 heads = 𝛾

𝑝 heads = 𝜓

𝑝 tails = 1 − 𝛾

𝑝 tails = 1 − 𝜓

for item 𝑖 = 1 to 𝑁:
𝑧+ ~ Bernoulli 𝜆

Generative Story

𝜆 = distribution over penny
𝛾 = distribution for dollar coin
𝜓 = distribution over dime

if 𝑧+ = 𝐻:𝑤+ ~ Bernoulli 𝛾
else:𝑤+ ~ Bernoulli 𝜓



Three Coins Example

If all flips were observed

H H T H T H
H T H T T T

𝑝 heads = 𝜆
𝑝 tails = 1 − 𝜆

𝑝 heads = 𝛾 𝑝 heads = 𝜓
𝑝 tails = 1 − 𝛾 𝑝 tails = 1 − 𝜓



Three Coins Example

If all flips were observed

H H T H T H
H T H T T T

𝑝 heads =
4
6

𝑝 tails =
2
6

𝑝 heads =
1
4 𝑝 heads =

1
2

𝑝 tails =
3
4 𝑝 tails =

1
2

𝑝 heads = 𝜆
𝑝 tails = 1 − 𝜆

𝑝 heads = 𝛾 𝑝 heads = 𝜓
𝑝 tails = 1 − 𝛾 𝑝 tails = 1 − 𝜓



Three Coins Example

But not all flips are observed à set parameter values

H H T H T H
H T H T T T

𝑝 heads = 𝜆 = .6
𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6
𝑝 tails = .2 𝑝 tails = .4



Three Coins Example

But not all flips are observed à set parameter values

H H T H T H
H T H T T T

𝑝 heads = 𝜆 = .6
𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6
𝑝 tails = .2 𝑝 tails = .4

𝑝 heads | observed item H =
𝑝(heads & H)

𝑝(H)

Use these values to compute posteriors

𝑝 heads | observed item T =
𝑝(heads & T)

𝑝(T)



Three Coins Example

But not all flips are observed à set parameter values

H H T H T H
H T H T T T

𝑝 heads = 𝜆 = .6
𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6
𝑝 tails = .2 𝑝 tails = .4

𝑝 heads | observed item H =
𝑝 H heads)𝑝(heads)

𝑝(H)

Use these values to compute posteriors

marginal likelihood

rewrite joint using Bayes rule



Three Coins Example

But not all flips are observed à set parameter values

H H T H T H
H T H T T T

𝑝 heads = 𝜆 = .6
𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6
𝑝 tails = .2 𝑝 tails = .4

𝑝 heads | observed item H =
𝑝 H heads)𝑝(heads)

𝑝(H)

Use these values to compute posteriors

𝑝 H | heads = .8 𝑝 T | heads = .2



Three Coins Example

But not all flips are observed à set parameter values

H H T H T H
H T H T T T

𝑝 heads = 𝜆 = .6
𝑝 tails = .4

𝑝 heads = .8 𝑝 heads = .6
𝑝 tails = .2 𝑝 tails = .4

Use these values to compute posteriors

𝑝 H = 𝑝 H | heads ∗ 𝑝 heads + 𝑝 H | tails *	𝑝(tails)
= .8 ∗ .6 + .6 ∗ .4

𝑝 heads | observed item H =
𝑝 H heads)𝑝(heads)

𝑝(H)

𝑝 H | heads = .8 𝑝 T | heads = .2



Three Coins Example
H H T H T H
H T H T T T

𝑝 heads | obs. H =
𝑝 H heads)𝑝(heads)

𝑝(H)

=
.8 ∗ .6

.8 ∗ .6 + .6 ∗ .4
≈ 0.667

Use posteriors to update parameters

𝑝 heads | obs. T =
𝑝 T heads)𝑝(heads)

𝑝(T)

=
.2 ∗ .6

.2 ∗ .6 + .6 ∗ .4
≈ 0.334

Q: Is p(heads | obs. H) + p(heads| obs. T) = 1?



Three Coins Example
H H T H T H
H T H T T T

𝑝 heads | obs. H =
𝑝 H heads)𝑝(heads)

𝑝(H)

=
.8 ∗ .6

.8 ∗ .6 + .6 ∗ .4
≈ 0.667

Use posteriors to update parameters

𝑝 heads | obs. T =
𝑝 T heads)𝑝(heads)

𝑝(T)

=
.2 ∗ .6

.2 ∗ .6 + .6 ∗ .4
≈ 0.334

Q: Is p(heads | obs. H) + p(heads| obs. T) = 1?

A: No.



Three Coins Example
H H T H T H
H T H T T T

Use posteriors to update parameters

𝑝 heads =
# heads from penny
# total �lips of pennyfully observed setting

our setting: partially-observed 𝑝 heads =
# 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny

# total �lips of penny

𝑝 heads | obs. H =
𝑝 H heads)𝑝(heads)

𝑝(H)

=
.8 ∗ .6

.8 ∗ .6 + .6 ∗ .4
≈ 0.667

𝑝 heads | obs. T =
𝑝 T heads)𝑝(heads)

𝑝(T)

=
.2 ∗ .6

.2 ∗ .6 + .6 ∗ .4
≈ 0.334

(in general, p(heads | obs. H) and 
p(heads| obs. T) do NOT sum to 1)



Three Coins Example
H H T H T H
H T H T T T

Use posteriors to update parameters

our setting: partially-observed

𝑝(tu#) heads =
# 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny

# total �lips of penny

=
𝔼x(z)[# 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny]

# total �lips of penny

𝑝 heads | obs. H =
𝑝 H heads)𝑝(heads)

𝑝(H)

=
.8 ∗ .6

.8 ∗ .6 + .6 ∗ .4
≈ 0.667

𝑝 heads | obs. T =
𝑝 T heads)𝑝(heads)

𝑝(T)

=
.2 ∗ .6

.2 ∗ .6 + .6 ∗ .4
≈ 0.334



Three Coins Example
H H T H T H
H T H T T T

Use posteriors to update parameters

our setting: 
partially-
observed

𝑝(tu#) heads =
# 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny

# total �lips of penny

=
𝔼x(z)[# 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 heads from penny]

# total �lips of penny

=
2 ∗ 𝑝 heads | obs. H + 4 ∗ 𝑝 heads | obs. 𝑇

6
≈ 0.444

𝑝 heads | obs. H =
𝑝 H heads)𝑝(heads)

𝑝(H)

=
.8 ∗ .6

.8 ∗ .6 + .6 ∗ .4
≈ 0.667

𝑝 heads | obs. T =
𝑝 T heads)𝑝(heads)

𝑝(T)

=
.2 ∗ .6

.2 ∗ .6 + .6 ∗ .4
≈ 0.334



Expectation Maximization (EM)

0. Assume some value for your parameters

Two step, iterative algorithm:

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these 
uncertain counts
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Why does EM work?
𝑋: observed data 𝑌: unobserved data 𝒞 𝜃 = log-likelihood of complete data (X,Y)

𝒫 𝜃 = posterior log-likelihood of 
incomplete data Y

ℳ 𝜃 = marginal log-likelihood of 
observed data X

what do 𝒞, ℳ, 𝒫 look like?



Why does EM work?
𝑋: observed data 𝑌: unobserved data 𝒞 𝜃 = log-likelihood of complete data (X,Y)

𝒫 𝜃 = posterior log-likelihood of 
incomplete data Y

ℳ 𝜃 = marginal log-likelihood of 
observed data X

𝒞 𝜃 =>
+

log 𝑝(𝑥+, 𝑦+)



Why does EM work?
𝑋: observed data 𝑌: unobserved data 𝒞 𝜃 = log-likelihood of complete data (X,Y)

𝒫 𝜃 = posterior log-likelihood of 
incomplete data Y

ℳ 𝜃 = marginal log-likelihood of 
observed data X

𝒞 𝜃 =>
+

log 𝑝(𝑥+, 𝑦+)

ℳ 𝜃 =>
+

log 𝑝(𝑥+) = >
+

log>
?

𝑝(𝑥+, 𝑦 = 𝑘)



Why does EM work?
𝑋: observed data 𝑌: unobserved data 𝒞 𝜃 = log-likelihood of complete data (X,Y)

𝒫 𝜃 = posterior log-likelihood of 
incomplete data Y

ℳ 𝜃 = marginal log-likelihood of 
observed data X

𝒞 𝜃 =>
+

log 𝑝(𝑥+, 𝑦+)

ℳ 𝜃 =>
+

log 𝑝(𝑥+) = >
+

log>
?

𝑝(𝑥+, 𝑦 = 𝑘)

𝒫 𝜃 =>
+

log 𝑝 𝑦+ 𝑥+)



Why does EM work?
𝑋: observed data 𝑌: unobserved data 𝒞 𝜃 = log-likelihood of complete data (X,Y)

𝑝H 𝑌 𝑋) =
𝑝H(𝑋, 𝑌)
𝑝H(𝑋)

𝑝H(𝑋) =
𝑝H(𝑋, 𝑌)
𝑝H 𝑌 𝑋)

𝒫 𝜃 = posterior log-likelihood of 
incomplete data Y

definition of 
conditional probability

algebra

ℳ 𝜃 = marginal log-likelihood of 
observed data X



Why does EM work?
𝑋: observed data 𝑌: unobserved data 𝒞 𝜃 = log-likelihood of complete data (X,Y)

𝑝H 𝑌 𝑋) =
𝑝H(𝑋, 𝑌)
𝑝H(𝑋)

𝑝H(𝑋) =
𝑝H(𝑋, 𝑌)
𝑝H 𝑌 𝑋)

𝒫 𝜃 = posterior log-likelihood of 
incomplete data Y

ℳ 𝜃 = marginal log-likelihood of 
observed data X

ℳ 𝜃 = 𝒞 𝜃 −𝒫 𝜃

𝒞 𝜃 =>
+

log 𝑝(𝑥+, 𝑦+) ℳ 𝜃 =>
+

log 𝑝(𝑥+) = >
+

log>
?

𝑝(𝑥+, 𝑦 = 𝑘) 𝒫 𝜃 =>
+

log 𝑝 𝑦+ 𝑥+)



Why does EM work?
𝑋: observed data 𝑌: unobserved data 𝒞 𝜃 = log-likelihood of complete data (X,Y)

𝑝H 𝑌 𝑋) =
𝑝H(𝑋, 𝑌)
𝑝H(𝑋)

𝑝H(𝑋) =
𝑝H(𝑋, 𝑌)
𝑝H 𝑌 𝑋)

𝒫 𝜃 = posterior log-likelihood of 
incomplete data Y

ℳ 𝜃 = marginal log-likelihood of 
observed data X

ℳ 𝜃 = 𝒞 𝜃 −𝒫 𝜃

𝔼�∼H(z)[ℳ 𝜃 |𝑋] = 𝔼�∼H(z)[𝒞 𝜃 |𝑋] − 𝔼�∼H(z)[𝒫 𝜃 |𝑋]

take a conditional expectation 
(why? we’ll cover this more in 

variational inference)



Why does EM work?
𝑋: observed data 𝑌: unobserved data 𝒞 𝜃 = log-likelihood of complete data (X,Y)

𝑝H 𝑌 𝑋) =
𝑝H(𝑋, 𝑌)
𝑝H(𝑋)

𝑝H(𝑋) =
𝑝H(𝑋, 𝑌)
𝑝H 𝑌 𝑋)

𝒫 𝜃 = posterior log-likelihood of 
incomplete data Y

ℳ 𝜃 = marginal log-likelihood of 
observed data X

ℳ 𝜃 = 𝒞 𝜃 −𝒫 𝜃

𝔼�∼H(z)[ℳ 𝜃 |𝑋] = 𝔼�∼H(z)[𝒞 𝜃 |𝑋] − 𝔼�∼H(z)[𝒫 𝜃 |𝑋]

ℳ 𝜃 = 𝔼�∼H(z)[𝒞 𝜃 |𝑋] − 𝔼�∼H(z)[𝒫 𝜃 |𝑋]
ℳ already 
sums over Y

ℳ 𝜃 =>
+

log 𝑝(𝑥+) =>
+

log>
?

𝑝(𝑥+, 𝑦 = 𝑘)



Why does EM work?
𝑋: observed data 𝑌: unobserved data 𝒞 𝜃 = log-likelihood of complete data (X,Y)

𝒫 𝜃 = posterior log-likelihood of 
incomplete data Y

ℳ 𝜃 = marginal log-likelihood of 
observed data X

ℳ 𝜃 = 𝔼�∼H(z)[𝒞 𝜃 |𝑋] − 𝔼�∼H(z)[𝒫 𝜃 |𝑋]

𝔼�∼H(z) 𝒞 𝜃 𝑋 =>
+

>
?

𝑝H(z) 𝑦 = 𝑘 𝑥+) log 𝑝(𝑥+, 𝑦 = 𝑘)



Why does EM work?
𝑋: observed data 𝑌: unobserved data 𝒞 𝜃 = log-likelihood of complete data (X,Y)

𝒫 𝜃 = posterior log-likelihood of 
incomplete data Y

ℳ 𝜃 = marginal log-likelihood of 
observed data X

ℳ 𝜃 = 𝔼�∼H(z)[𝒞 𝜃 |𝑋] − 𝔼�∼H(z)[𝒫 𝜃 |𝑋]

𝑄(𝜃, 𝜃(t)) 𝑅(𝜃, 𝜃(t))

Let 𝜃∗ be the value that maximizes 𝑄(𝜃, 𝜃(t))



Why does EM work?
𝑋: observed data 𝑌: unobserved data 𝒞 𝜃 = log-likelihood of complete data (X,Y)

𝒫 𝜃 = posterior log-likelihood of 
incomplete data Y

ℳ 𝜃 = marginal log-likelihood of 
observed data X

ℳ 𝜃 = 𝔼�∼H(z)[𝒞 𝜃 |𝑋] − 𝔼�∼H(z)[𝒫 𝜃 |𝑋]

𝑄(𝜃, 𝜃(t)) 𝑅(𝜃, 𝜃(t))

ℳ 𝜃∗ −ℳ 𝜃 t = 𝑄 𝜃∗, 𝜃(t) − 𝑄(𝜃(t), 𝜃(t)) − 𝑅 𝜃∗, 𝜃(t) − 𝑅(𝜃(t), 𝜃(t))

Let 𝜃∗ be the value that maximizes 𝑄(𝜃, 𝜃(t))



Why does EM work?
𝑋: observed data 𝑌: unobserved data 𝒞 𝜃 = log-likelihood of complete data (X,Y)

𝒫 𝜃 = posterior log-likelihood of 
incomplete data Y

ℳ 𝜃 = marginal log-likelihood of 
observed data X

ℳ 𝜃 = 𝔼�∼H(z)[𝒞 𝜃 |𝑋] − 𝔼�∼H(z)[𝒫 𝜃 |𝑋]

𝑄(𝜃, 𝜃(t)) 𝑅(𝜃, 𝜃(t))

ℳ 𝜃∗ −ℳ 𝜃 t = 𝑄 𝜃∗, 𝜃(t) − 𝑄(𝜃(t), 𝜃(t)) − 𝑅 𝜃∗, 𝜃(t) − 𝑅(𝜃(t), 𝜃(t))

Let 𝜃∗ be the value that maximizes 𝑄(𝜃, 𝜃(t))

≥ 0 ≤ 0 (we’ll see why with Jensen’s 
inequality, in variational inference)



Why does EM work?
𝑋: observed data 𝑌: unobserved data 𝒞 𝜃 = log-likelihood of complete data (X,Y)

𝒫 𝜃 = posterior log-likelihood of 
incomplete data Y

ℳ 𝜃 = marginal log-likelihood of 
observed data X

ℳ 𝜃 = 𝔼�∼H(z)[𝒞 𝜃 |𝑋] − 𝔼�∼H(z)[𝒫 𝜃 |𝑋]

𝑄(𝜃, 𝜃(t)) 𝑅(𝜃, 𝜃(t))

ℳ 𝜃∗ −ℳ 𝜃 t = 𝑄 𝜃∗, 𝜃(t) − 𝑄(𝜃(t), 𝜃(t)) − 𝑅 𝜃∗, 𝜃(t) − 𝑅(𝜃(t), 𝜃(t))

Let 𝜃∗ be the value that maximizes 𝑄(𝜃, 𝜃(t))

ℳ 𝜃∗ −ℳ 𝜃 t ≥ 0
EM does not decrease the 

marginal log-likelihood



Generalized EM

Partial M step: find a θ that simply increases, 
rather than maximizes, Q

Partial E step: only consider some of the 
variables (an online learning algorithm)



EM has its pitfalls

Objective is not convex à converge to a bad 
local optimum

Computing expectations can be hard: the E-step 
could require clever algorithms

How well does log-likelihood correlate with an 
end task?



A Maximization-Maximization Procedure

𝐹 𝜃, 𝑞 = 𝔼 𝒞(𝜃)
−𝔼 log 𝑞(𝑍)

observed data 
log-likelihood

any
distribution 

over Z

we’ll see this again with 
variational inference



Outline

Latent and probabilistic modeling
Generative Modeling
Example 1: A Model of Rolling a Die
Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization)
Basic idea
Three coins example
Why EM works


