Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)

CMSC 678 UMBC

Recap from last time...

Feed-Forward Neural Network: Multilayer Perceptron

Flavors of Gradient Descent

"Online"	"Minibatch"	"Batch"
Set t = 0	Set t = 0	Set t = 0
Pick a starting value θ_t	Pick a starting value θ_t	Pick a starting value θ_t
Until converged:	Until converged:	Until converged:
	get batch B ⊂ full data	
	set g _t = 0	set g _t = 0
for example i in full data:	for example(s) i in B:	for example(s) i in full data:
1. Compute loss I on x _i	1. Compute loss I on x _i	1. Compute loss I on x _i
2. Get gradient	2. Accumulate gradient	2. Accumulate gradient
$g_t = I'(x_i)$	$g_{t} += l'(x_{i})$	$g_{t} += I'(x_{i})$
3. Get scaling factor ρ_t	done	done
4. Set $\theta_{t+1} = \theta_t - \rho_t * g_t$	Get scaling factor ρ_t	Get scaling factor ρ_t
5. Set t += 1	Set $\theta_{t+1} = \theta_t - \rho_t * g_t$	Set $\theta_{t+1} = \theta_t - \rho_t * g_t$
done	Set t += 1	Set t += 1

Dropout: Regularization in Neural Networks

tanh Activation

Rectifiers Activations

Outline

Convolutional Neural Networks

What *is* a convolution?

Multidimensional Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural Networks Types of recurrence

A basic recurrent cell

BPTT: Backpropagation through time

Dot Product

$$x^T y = \sum_k x_k y_k$$

$$(x^T y)_i = \sum_k x_{k+i} y_k$$

 $(x \star y)[i] =$

Outline

Convolutional Neural Networks What *is* a convolution?

> Multidimensional Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural Networks Types of recurrence

A basic recurrent cell

BPTT: Backpropagation through time

kernel

width: shape of the kernel (often square)

stride(s): how many
spaces to move the kernel

width: shape of the kernel (often square)

stride(s): how many
spaces to move the kernel

stride=1

width: shape of the kernel (often square)

stride(s): how many spaces to move the kernel

stride=1

width: shape of the kernel (often square)

stride(s): how many spaces to move the kernel

stride=1

width: shape of the kernel (often square)

stride(s): how many spaces to move the kernel

stride=2

width: shape of the kernel (often square)

skip starting here

input ("image") stride(s): how many
spaces to move the kernel

stride=2

width: shape of the kernel (often square)

skip starting here

input ("image") *stride(s)*: how many spaces to move the kernel

stride=2

width: shape of the kernel (often square)

input ("image") *stride(s)*: how many spaces to move the kernel

stride=2

width: shape of the kernel (often square)

stride(s): how many spaces to move the kernel

padding: how to handle input/kernel shape mismatches

width: shape of the kernel (often square)

input ("image")

"same": input.shape == output.shape *"different"*: input.shape ≠ output.shape

image

Fully connected layer

image

Convolutional layer

Convolution as feature extraction

Input Slide credit: Svetlana Lazebnik Feature Map

image

Convolutional layer

Outline

Convolutional Neural Networks What *is* a convolution?

> Multidimensional Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural Networks Types of recurrence

A basic recurrent cell

BPTT: Backpropagation through time

Solving vanishing gradients problem

Key operations in a CNN

Input

Feature Map
Key operations

Key operations

Design principles

Reduce filter sizes (except possibly at the lowest layer), factorize filters aggressively

Use 1x1 convolutions to reduce and expand the number of feature maps judiciously

Use skip connections and/or create multiple paths through the network

LeNet-5

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proc. IEEE 86(11): 2278–2324, 1998.

ImageNet

IM GENET

~14 million labeled images, 20k classes

Images gathered from Internet

Human labels via Amazon MTurk

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1.2 million training images, 1000 classes

www.image-net.org/challenges/LSVRC/

Outline

Convolutional Neural Networks What *is* a convolution?

> Multidimensional Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural Networks Types of recurrence

A basic recurrent cell

BPTT: Backpropagation through time

Solving vanishing gradients problem

AlexNet: ILSVRC 2012 winner

Similar framework to LeNet but:

Max pooling, ReLU nonlinearity More data and bigger model (7 hidden layers, 650K units, 60M params) GPU implementation (50x speedup over CPU): Two GPUs for a week Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep Convolutional</u> <u>Neural Networks</u>, NIPS 2012

GoogLeNet

GoogLeNet

GoogLeNet: Auxiliary Classifier at Sublevels

GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	$112 \times 112 \times 64$	1							2.7K	34M
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		1×1×1000	1							1000K	1 M
softmax		1×1×1000	0								

ResNet (Residual Network)

Make it easy for network layers to represent the identity mapping

Skipping 2+ layers is intentional & needed

He et al. "Deep Residual Learning for Image Recognition" (2016)

Summary: ILSVRC 2012-2015

Team	Year	Place	Error (top-5)	External data	
SuperVision	2012	-	16.4%	no	
SuperVision	2012	1st	15.3%	ImageNet 22k	
Clarifai (7 layers)	2013	-	11.7%	no	
Clarifai	2013	1st	11.2%	ImageNet 22k	
VGG (16 layers)	2014	2nd	7.32%	no	
GoogLeNet (19 layers)	2014	1st	6.67%	no	
ResNet (152 layers)	2015	1st	3.57%		
Human expert*			5.1%		

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Rapid Progress due to CNNs

Classification: ImageNet Challenge top-5 error

Outline

Convolutional Neural Networks What *is* a convolution?

> Multidimensional Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural Networks Types of recurrence

A basic recurrent cell

BPTT: Backpropagation through time

Feed forward

Linearizable feature input Bag-of-items classification/regression Basic non-linear model

Recursive: One input, Sequence output

Automated caption generation

Recursive: Sequence input, one output

Document classification Action recognition in video (high-level)

Recursive: Sequence input, Sequence output (time delay)

Machine translation Sequential description Summarization

Recursive: Sequence input, Sequence output

Part of speech tagging Action recognition (fine grained)

RNN Outputs: Image Captions

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A herd of elephants walking across a dry grass field.

A close up of a cat laying on a couch.

Show and Tell: A Neural Image Caption Generator, CVPR 15

Human Reference

The family has gathered around the dinner table to share a meal together. They all pitched in to help cook the seafood to perfection. Afterwards they took the family dog to the beach to get some exercise. The waves were cool and refreshing! The dog had so much fun in the water. One family member decided to get a better view of the waves!

Huang et al. (2016)

The family got together for a cookout. They had a lot of delicious food. The dog was happy to be there. They had a great time on the beach. They even had a swim in the water.

Outline

Convolutional Neural Networks What *is* a convolution?

> Multidimensional Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural Networks Types of recurrence

A basic recurrent cell

BPTT: Backpropagation through time

 $h_i = \tanh(Wh_{i-1} + Ux_i)$

 $h_i = \tanh(Wh_{i-1} + Ux_i)$ $y_i = \operatorname{softmax}(Sh_i)$

$$h_i = \tanh(Wh_{i-1} + Ux_i)$$

$$y_i = \operatorname{softmax}(Sh_i)$$

Weights are shared over time

unrolling/unfolding: copy the RNN cell across time (inputs)

Outline

Convolutional Neural Networks What *is* a convolution?

> Multidimensional Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural Networks Types of recurrence

A basic recurrent cell

BPTT: Backpropagation through time

BackPropagation Through Time (BPTT)

"Unfold" the network to create a single, large, feedforward network

- 1. Weights are copied (W \rightarrow W^(t))
- 2. Gradients computed ($\delta W^{(t)}$), and
- 3. Summed ($\sum_t \partial W^{(t)}$)

BPTT

 $y_i = \operatorname{softmax}(Sh_i)$

 $\frac{\partial E_i}{\partial W} = \frac{\partial E_i}{\partial y_i} \frac{\partial y_i}{\partial W} = \frac{\partial E_i}{\partial y_i} \frac{\partial y_i}{\partial h_i} \frac{\partial h_i}{\partial W}$

 $h_i = \tanh(Wh_{i-1} + Ux_i)$

per-step loss: cross entropy

BPTT

 $y_i = \operatorname{softmax}(Sh_i)$

 $h_i = \tanh(Wh_{i-1} + Ux_i)$

per-step loss: cross entropy

 $\frac{\partial E_i}{\partial W} = \frac{\partial E_i}{\partial y_i} \frac{\partial y_i}{\partial W} = \frac{\partial E_i}{\partial y_i} \frac{\partial y_i}{\partial h_i} \frac{\partial h_i}{\partial W}$

$$\frac{\partial h_i}{\partial W} = \tanh'(Wh_{i-1} + Ux_i)\frac{\partial Wh_{i-1}}{\partial W}$$

 $y_i = \operatorname{softmax}(Sh_i)$

 $h_i = \tanh(Wh_{i-1} + Ux_i)$

per-step loss: cross entropy

$$\frac{\partial E_i}{\partial W} = \frac{\partial E_i}{\partial y_i} \frac{\partial y_i}{\partial W} = \frac{\partial E_i}{\partial y_i} \frac{\partial y_i}{\partial h_i} \frac{\partial h_i}{\partial W}$$
$$\frac{\partial h_i}{\partial W} = \tanh'(Wh_{i-1} + Ux_i) \frac{\partial Wh_{i-1}}{\partial W}$$
$$= \tanh'(Wh_{i-1} + Ux_i) \left(h_{i-1} + W \frac{\partial h_{i-1}}{\partial W}\right)$$

$$\frac{\partial h_i}{\partial W} = \tanh'(Wh_{i-1} + Ux_i)\left(h_{i-1} + W\frac{\partial h_{i-1}}{\partial W}\right) = \delta_i h_{i-1} + \delta_i W \eth h_{i-1}\left(h_{i-2} + W\frac{\partial h_{i-2}}{\partial W}\right)$$

$$\frac{\partial h_i}{\partial W} = \tanh'(Wh_{i-1} + Ux_i)\left(h_{i-1} + W\frac{\partial h_{i-1}}{\partial W}\right)$$
$$= \tanh'(Wh_{i-1} + Ux_i)h_{i-1} + \tanh'(Wh_{i-1} + Ux_i)W\tanh'(Wh_{i-2} + Ux_{i-1})\left(h_{i-2} + W\frac{\partial h_{i-2}}{\partial W}\right)$$

$$= \sum_{j} \frac{\partial E_{i}}{\partial y_{i}} \frac{\partial y_{i}}{\partial h_{i}} \frac{\partial h_{i}}{\partial h_{l}} \frac{\partial h_{l}}{\partial W^{(l)}}$$
$$= \sum_{j} \delta_{j}^{(i)} \frac{\partial h_{l}}{\partial W^{(l)}}$$

per-loss, per-step backpropagation error

 $y_i = \operatorname{softmax}(Sh_i)$

 $h_i = \tanh(Wh_{i-1} + Ux_i)$

per-step loss: cross entropy

$$\frac{\partial E_i}{\partial W} = \sum_j \frac{\partial E_i}{\partial y_i} \frac{\partial y_i}{\partial h_i} \frac{\partial h_i}{\partial W^{(j)}}$$

compact form

hidden chain rule

Why Is Training RNNs Hard?

Vanishing gradients

$$\frac{\partial C_t}{\partial h_1} = \left(\frac{\partial C_t}{\partial y_t}\right) \left(\frac{\partial y_t}{\partial h_1}\right)$$
$$= \left(\frac{\partial C_t}{\partial y_t}\right) \left(\frac{\partial y_t}{\partial h_t}\right) \left(\frac{\partial h_t}{\partial h_{t-1}}\right) \cdots \left(\frac{\partial h_2}{\partial h_1}\right)$$

Multiply the same matrices at each timestep → multiply many matrices in the gradients

The Vanilla RNN Backward

$$h_{t} = \tanh W \begin{pmatrix} x_{t} \\ h_{t-1} \end{pmatrix}$$
$$y_{t} = F(h_{t})$$
$$C_{t} = \text{Loss}(y_{t}, \text{GT}_{t})$$
$$\frac{\partial C_{t}}{\partial h_{1}} = \left(\frac{\partial C_{t}}{\partial y_{t}}\right) \left(\frac{\partial y_{t}}{\partial h_{1}}\right)$$

Vanishing Gradient Solution: Motivation

$$\frac{\partial C_{t}}{\partial h_{1}} = \left(\frac{\partial C_{t}}{\partial y_{t}}\right) \left(\frac{\partial y_{t}}{\partial h_{1}}\right)$$
$$= \left(\frac{\partial C_{t}}{\partial y_{t}}\right) \left(\frac{\partial y_{t}}{\partial h_{t}}\right) \left(\frac{\partial h_{t}}{\partial h_{t-1}}\right) \cdots \left(\frac{\partial h_{2}}{\partial h_{1}}\right)$$
$$h_{t} = \tanh W \begin{pmatrix} x_{t} \\ h_{t-1} \end{pmatrix}$$
$$y_{t} = F(h_{t})$$
$$C_{t} = \operatorname{Loss}(y_{t}, \operatorname{GT}_{t})$$

Identity $h_{t} = h_{t-1} + F(x_{t})$ $\Rightarrow \left(\frac{\partial h_{t}}{\partial h_{t-1}}\right) = 1$

The gradient does not decay as the error is propagated all the way back aka "Constant Error Flow"

Vanishing Gradient Solution: Model Implementations

LSTM: Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)

Long Short-Term Memory (LSTM): Hochreiter et al., (1997)

Create a "Constant Error Carousel" (CEC) which ensures that gradients don't decay

A memory cell that acts like an accumulator (contains the identity relationship) over time

$$c_t = f_t \otimes c_{t-1} + i_t \otimes \tanh\left(\frac{w\binom{x_t}{h_{t-1}}}\right)$$

$$f_t = \sigma \left(W_f \begin{pmatrix} x_t \\ h_{t-1} \end{pmatrix} + b_f \right)$$

I want to use CNNs/RNNs/Deep Learning in my project. I don't want to do this all by hand.

(Modified Very Slightly)

```
import torch.nn as nn
from torch.autograd import Variable
class RNN(nn.Module):
    def init (self, input size, hidden size, output size):
        super(RNN, self). init ()
        self.hidden size = hidden size
        self.i2h = nn.Linear(input size + hidden size, hidden size)
        self.i2o = nn.Linear(input size + hidden size, output size)
        self.softmax = nn.LogSoftmax()
    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return Variable(torch.zeros(1, self.hidden size))
n hidden = 128
rnn = RNN(n letters, n hidden, n categories)
```

(Modified Very Slightly)

```
import torch.nn as nn
from torch.autograd import Variable
class RNN(nn.Module):
    def init (self, input size, hidden size, output size):
        super(RNN, self). init ()
        self.hidden size = hidden size
       self.i2h = nn.Linear(input size + hidden size, hidden size)
       self.i2o = nn.Linear(input size + hidden size, output size)
        self.softmax = nn.LogSoftmax()
    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return Variable(torch.zeros(1, self.hidden size))
n hidden = 128
rnn = RNN(n letters, n hidden, n categories)
```

(Modified Very Slightly)

```
import torch.nn as nn
from torch.autograd import Variable
class RNN(nn.Module):
    def init (self, input size, hidden size, output size):
        super(RNN, self). init ()
        self.hidden size = hidden size
        self.i2h = nn.Linear(input size + hidden size, hidden size)
        self.i2o = nn.Linear(input size + hidden size, output size)
        self.softmax = nn.LogSoftmax()
    def forward(self, input, hidden):
       combined = torch.cat((input, hidden), 1)
                                                       encode
       hidden = self.i2h(combined)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return Variable(torch.zeros(1, self.hidden size))
n hidden = 128
rnn = RNN(n letters, n hidden, n categories)
```

(Modified Very Slightly)

```
import torch.nn as nn
from torch.autograd import Variable
class RNN(nn.Module):
    def init (self, input size, hidden size, output size):
        super(RNN, self). init ()
        self.hidden size = hidden size
        self.i2h = nn.Linear(input size + hidden size, hidden size)
        self.i2o = nn.Linear(input size + hidden size, output size)
        self.softmax = nn.LogSoftmax()
    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
       output = self.i2o(combined)
                                                       decode
       output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return Variable(torch.zeros(1, self.hidden size))
n hidden = 128
rnn = RNN(n letters, n hidden, n categories)
```

(Modified Very Slightly)

```
criterion = nn.NLLLoss()
learning rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn
def train(category tensor, line tensor):
    hidden = rnn.initHidden()
    rnn.zero grad()
    for i in range(line tensor.size()[0]):
        output, hidden = rnn(line tensor[i], hidden)
    loss = criterion(output, category tensor)
    loss.backward()
    # Add parameters' gradients to their values, multiplied by learning rate
    for p in rnn.parameters():
        p.data.add (-learning rate, p.grad.data)
    return output, loss.data[0]
```

(Modified Very Slightly)

	Negative log- likelihood				
criterio	on = nn.NLLLoss()				
learning	rate = 0.005 # If y	ou set this too high, it might explode. If too low, it might not	learn		
<pre>def train(category_tensor, line_tensor): hidden = rnn.initHidden()</pre>					
rnn.	<pre>rnn.zero_grad()</pre>				
for	<pre>for i in range(line_tensor.size()[0]): output, hidden = rnn(line_tensor[i], hidden)</pre>				
loss	<pre>s = criterion(output, s.backward()</pre>	category_tensor)			
# Ac for	<pre>id parameters' gradien p in rnn.parameters() p.data.add_(-learnin)</pre>	nts to their values, multiplied by learning rate): g_rate, p.grad.data)			
retu	irn output, loss.data	[0]			

(Modified Very Slightly)

	Negative log- likelihood					
criterio	on = nn.NLLLoss()					
learning def trai	_rate = 0.005 # If y n(category_tensor, l	ou set this too high, it m ine_tensor):	ight explode. If too	low, it might no	t learn	
hido	len = rnn.initHidden()				
rnn.	<pre>rnn.zero_grad()</pre>					
for	<pre>i in range(line_tens) output, hidden = rnn</pre>	or.size()[0]): (line_tensor[i], hidden)	get predictions			
loss	<pre>loss = criterion(output, category_tensor) loss.backward()</pre>					
# Ac for	<pre># Add parameters' gradients to their values, multiplied by learning rate for p in rnn.parameters(): p.data.add_(-learning_rate, p.grad.data)</pre>					
retu	ırn output, loss.data	[0]				

(Modified Very Slightly)

	Negative log- likelihood				
criterio	n = nn.NLLLoss()				
learning	_rate = 0.005 # If y	ou set this too high, it n	night explode. If too	low, it might not lear	n
<pre>def train(category_tensor, line_tensor): hidden = rnn.initHidden()</pre>					
rnn.	zero_grad()				
for	i in range (line_tenso output, hidden = rnn	or.size()[0]): (line_tensor[i], hidden)	get predictions		
loss	<pre>= criterion(output, .packward()</pre>	category_tensor)	eval predictions		
# Ad for	<pre># Add parameters' gradients to their values, multiplied by learning rate for p in rnn.parameters(): p.data.add_(-learning_rate, p.grad.data)</pre>				
retu	rn output, loss.data	0]			

(Modified Very Slightly)

	Negative log- likelihood				
criterio	n = nn.NLLLoss()				
<pre>learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn</pre>					
<pre>def train(category_tensor, line_tensor): hidden = rnn.initHidden()</pre>					
rnn.	zero_grad()				
for	i in range(line_tenso output, hidden = rnn	or.size()[0]): (line_tensor[i], hidden)	get predictions		
loss	s = criterion(output, category_tensor) s.backward()	category_tensor)	eval predictions		
loss			compute gradient		
# Ad for	d parameters' gradie p in rnn.parameters() p.data.add_(-learning	nts to their values, multip : g_rate, p.grad.data)	nined by learning rate	2	
retu	rn output, loss.data	[0]			

(Modified Very Slightly)

	Negative log- likelihood				
criterio	n = nn.NLLLoss()				
<pre>learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn</pre>					
<pre>def train(category_tensor, line_tensor): hidden = rnn.initHidden()</pre>					
rnn.	zero_grad()				
for	i in range(line_tenso output, hidden = rnn	r.size()[0]): line_tensor[i], hidden)	get predictions		
loss	= criterion(output,	category_tensor)	eval predictions		
loss	.backward()		compute gradient		
# Ad	<u>d parameters' gradie</u>	ts to their values, multi	plied by learning rate	2	
TOF	p in rnn.parameters() p.data.add_(-learnin;	: _rate, p.grad.data)	perform SGD		
retu	rn output, loss.data	0]			

Slide Credit

http://slazebni.cs.illinois.edu/spring17/lec01_cnn_architectures.pdf

http://slazebni.cs.illinois.edu/spring17/lec02_rnn.pdf