
Convolutional Neural Networks (CNNs)
and

Recurrent Neural Networks (RNNs)

CMSC 678
UMBC

Recap from last time…

Feed-Forward Neural Network:
Multilayer Perceptron

𝑥

ℎ# = 𝐹(𝐰𝐢
)𝑥 + 𝑏,)

ℎ 𝑦

𝑦/

𝑦0

F: (non-linear) activation
function

Classification: softmax
Regression: identity

G: (non-linear) activation
function

𝑦1 = G(𝛃𝐣)ℎ + 𝑏/)

𝜷

𝐰𝟏 𝐰𝟐 𝐰𝟑 𝐰𝟒

information/
computation flow

no self-loops
(recurrence/reuse of weights)

Flavors of Gradient Descent

Set t = 0
Pick a starting value θt
Until converged:

set gt = 0
for example(s) i in full data:

1. Compute loss l on xi
2. Accumulate gradient

g t += l’(xi)
done

Get scaling factor ρ t
Set θ t+1 = θ t - ρ t *g t
Set t += 1

Set t = 0
Pick a starting value θt
Until converged:

get batch B ⊂ full data
set gt = 0
for example(s) i in B:

1. Compute loss l on xi
2. Accumulate gradient

g t += l’(xi)
done
Get scaling factor ρ t
Set θ t+1 = θ t - ρ t *g t
Set t += 1

Set t = 0
Pick a starting value θt
Until converged:

for example i in full data:
1. Compute loss l on xi
2. Get gradient

g t = l’(xi)
3. Get scaling factor ρ t
4. Set θ t+1 = θ t - ρ t *g t
5. Set t += 1

done

“Online” “Minibatch” “Batch”

Dropout: Regularization in Neural Networks

𝑥 ℎ 𝑦

𝑦/

𝑦0

𝜷

𝐰𝟏 𝐰𝟐 𝐰𝟑 𝐰𝟒

randomly ignore
“neurons” (hi) during

training

tanh Activation

tanh? 𝑥 =
2

1 + exp(−2 ∗ 𝑠 ∗ 𝑥)
− 1

= 2𝜎I 𝑥 − 1

s=10

s=0.5

s=1

Rectifiers Activations

relu 𝑥 = max(0, 𝑥)

softplus 𝑥 = log(1 + exp 𝑥)

leaky_relu 𝑥 = W0.01𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0

Outline

Convolutional Neural
Networks

What is a convolution?

Multidimensional
Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural
Networks

Types of recurrence

A basic recurrent cell

BPTT: Backpropagation
through time

Dot Product

∑
𝑥)𝑦 =\

]

𝑥]𝑦]

Convolution: Modified Dot Product
Around a Point

∑
𝑥)𝑦 # = \

]^_

𝑥]`#𝑦]

Convolution/cross-correlation

Convolution: Modified Dot Product
Around a Point

∑

𝑥)𝑦 # =\
]

𝑥]`#𝑦]

𝑥 ⋆ 𝑦 𝑖 =

Convolution/cross-correlation

Convolution: Modified Dot Product
Around a Point

∑

𝑥)𝑦 # =\
]

𝑥]`#𝑦]

𝑥 ⋆ 𝑦 𝑖 =

Convolution/cross-correlation

Convolution: Modified Dot Product
Around a Point

∑

𝑥)𝑦 # =\
]

𝑥]`#𝑦]

𝑥 ⋆ 𝑦 𝑖 =

Convolution/cross-correlation

Convolution: Modified Dot Product
Around a Point

∑
𝑥⋆𝑦 𝑖 =

𝑥)𝑦 # =\
]

𝑥]`#𝑦]

Convolution/cross-correlation

Convolution: Modified Dot Product
Around a Point

∑
𝑥⋆𝑦 =

𝑥)𝑦 # =\
]

𝑥]`#𝑦]

Convolution/cross-correlation

feature map

kernel

input
(“image”)

1-D
convolution

Outline

Convolutional Neural
Networks

What is a convolution?

Multidimensional
Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural
Networks

Types of recurrence

A basic recurrent cell

BPTT: Backpropagation
through time

2-D Convolution

kernel

input
(“image”)

width: shape of the kernel
(often square)

2-D Convolution

input
(“image”)

stride(s): how many
spaces to move the kernel

width: shape of the kernel
(often square)

2-D Convolution

input
(“image”)

stride(s): how many
spaces to move the kernel

stride=1

width: shape of the kernel
(often square)

2-D Convolution

input
(“image”)

stride(s): how many
spaces to move the kernel

stride=1

width: shape of the kernel
(often square)

2-D Convolution

input
(“image”)

stride(s): how many
spaces to move the kernel

stride=1

width: shape of the kernel
(often square)

2-D Convolution

input
(“image”)

stride(s): how many
spaces to move the kernel

stride=2

width: shape of the kernel
(often square)

2-D Convolution

input
(“image”)

stride(s): how many
spaces to move the kernel

stride=2

width: shape of the kernel
(often square)

skip starting here

2-D Convolution

input
(“image”)

stride(s): how many
spaces to move the kernel

stride=2

width: shape of the kernel
(often square)

skip starting here

2-D Convolution

input
(“image”)

stride(s): how many
spaces to move the kernel

stride=2

width: shape of the kernel
(often square)

skip starting here

2-D Convolution

input
(“image”)

width: shape of the kernel
(often square)

stride(s): how many
spaces to move the kernel

padding: how to handle
input/kernel shape

mismatches

“same”:
input.shape == output.shape

“different”:
input.shape ≠ output.shape

pad with 0s
(one option)

2-D Convolution

input
(“image”)

width: shape of the kernel
(often square)

stride(s): how many
spaces to move the kernel

padding: how to handle
input/kernel shape

mismatches

“same”:
input.shape == output.shape

“different”:
input.shape ≠ output.shape

pad with 0s
(another option)

pad with 0s
(another option)

2-D Convolution

input
(“image”)

width: shape of the kernel
(often square)

stride(s): how many
spaces to move the kernel

padding: how to handle
input/kernel shape

mismatches

“same”:
input.shape == output.shape

“different”:
input.shape ≠ output.shape

From fully connected to convolutional networks

image Fully connected layer

Slide credit: Svetlana Lazebnik

image

feature map

learned
weights

From fully connected to convolutional networks

Convolutional layer

Slide credit: Svetlana Lazebnik

image

feature map

learned
weights

From fully connected to convolutional networks

Convolutional layer

Slide credit: Svetlana Lazebnik

Convolution as feature extraction

Input Feature Map

.

.

.

Filters/Kernels

Slide credit: Svetlana Lazebnik

image

feature map

learned
weights

From fully connected to convolutional networks

Convolutional layer

Slide credit: Svetlana Lazebnik

image
next layer

Convolutional layer

From fully connected to convolutional networks

non-linearity
and/or pooling

Slide adapted: Svetlana Lazebnik

Outline

Convolutional Neural
Networks

What is a convolution?

Multidimensional
Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural
Networks

Types of recurrence

A basic recurrent cell

BPTT: Backpropagation
through time

Solving vanishing gradients
problem

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Feature maps

Input Feature Map

.

.

.

Key operations in a CNN

Slide credit: Svetlana Lazebnik, R. Fergus, Y. LeCun

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Feature maps

Key operations

Example: Rectified Linear Unit (ReLU)

Slide credit: Svetlana Lazebnik, R. Fergus, Y. LeCun

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Feature maps

Max

Key operations

Slide credit: Svetlana Lazebnik, R. Fergus, Y. LeCun

Design principles

Reduce filter sizes (except possibly at the lowest
layer), factorize filters aggressively

Use 1x1 convolutions to reduce and expand the
number of feature maps judiciously

Use skip connections and/or create multiple
paths through the network

Slide credit: Svetlana Lazebnik

LeNet-5

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition,
Proc. IEEE 86(11): 2278–2324, 1998.

Slide credit: Svetlana Lazebnik

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

ImageNet

Validation classification

Validation classification

Validation classification

~14 million labeled images, 20k classes

Images gathered from Internet

Human labels via Amazon MTurk

ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC): 1.2 million training images,

1000 classes

www.image-net.org/challenges/LSVRC/

Slide credit: Svetlana Lazebnik

http://www.image-net.org/challenges/LSVRC/

http://www.inference.vc/deep-learning-is-easy/Slide credit: Svetlana Lazebnik

Outline

Convolutional Neural
Networks

What is a convolution?

Multidimensional
Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural
Networks

Types of recurrence

A basic recurrent cell

BPTT: Backpropagation
through time

Solving vanishing gradients
problem

AlexNet: ILSVRC 2012 winner

Similar framework to LeNet but:
Max pooling, ReLU nonlinearity
More data and bigger model (7 hidden layers, 650K units, 60M params)
GPU implementation (50x speedup over CPU): Two GPUs for a week
Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional
Neural Networks, NIPS 2012

Slide credit: Svetlana Lazebnik

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

GoogLeNet

Slide credit: Svetlana Lazebnik Szegedy et al., 2015

GoogLeNet

Slide credit: Svetlana Lazebnik Szegedy et al., 2015

GoogLeNet: Auxiliary Classifier at Sub-
levels

Idea: try to make each sub-layer good (in its
own way) at the prediction task

Slide credit: Svetlana Lazebnik Szegedy et al., 2015

GoogLeNet

• An alternative view:

Slide credit: Svetlana Lazebnik Szegedy et al., 2015

ResNet (Residual Network)

He et al. “Deep Residual Learning
for Image Recognition” (2016)

Make it easy for
network layers to

represent the identity
mapping

Skipping 2+ layers is
intentional & needed

Slide credit: Svetlana Lazebnik

Summary: ILSVRC 2012-2015
Team Year Place Error (top-5) External data

SuperVision 2012 - 16.4% no

SuperVision 2012 1st 15.3% ImageNet 22k

Clarifai (7 layers) 2013 - 11.7% no

Clarifai 2013 1st 11.2% ImageNet 22k

VGG (16 layers) 2014 2nd 7.32% no

GoogLeNet (19 layers) 2014 1st 6.67% no

ResNet (152 layers) 2015 1st 3.57%

Human expert* 5.1%

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Slide credit: Svetlana Lazebnik

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Rapid Progress due to CNNs
Classification: ImageNet Challenge top-5 error

Figure source: Kaiming HeSlide credit: Svetlana Lazebnik

http://kaiminghe.com/cvpr16resnet/cvpr2016_deep_residual_learning_kaiminghe.pdf

Outline

Convolutional Neural
Networks

What is a convolution?

Multidimensional
Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural
Networks

Types of recurrence

A basic recurrent cell

BPTT: Backpropagation
through time

Network Types

x

h

y

Feed forward

Linearizable feature input
Bag-of-items classification/regression

Basic non-linear model

Network Types

x

h0

y0

Recursive: One input, Sequence output

Automated caption generationh1

y1

h2

y2

Network Types

x0

h0

Recursive: Sequence input, one output

Document classification
Action recognition in video (high-level)

h1 h2

y

x1 x2

Network Types

x0

h0

Recursive: Sequence input, Sequence output (time delay)

Machine translation
Sequential description

Summarization

h1 h2

x1 x2

o0

y0

o1

y1

o2

y2

o3

y3

Network Types

x0

h0

Recursive: Sequence input, Sequence output

Part of speech tagging
Action recognition (fine grained)

h1 h2

x1 x2

y0 y1 y2

RNN Outputs: Image Captions

Show and Tell: A Neural Image Caption Generator, CVPR 15 Slide credit: Arun Mallya

https://arxiv.org/pdf/1411.4555.pdf

RNN Output:
Visual Storytelling

CNN CNN CNN CNN CNN

GRU GRU GRU GRU GRU

Encode

Decode

GRUs GRUs …

The
family got
together

for a
cookout

They had a lot
of delicious

food.

The family got together for a cookout. They had a lot of delicious food.
The dog was happy to be there. They had a great time on the beach.

They even had a swim in the water.
Huang et al. (2016)

Human Reference

The family has gathered around the dinner table to share a meal
together. They all pitched in to help cook the seafood to perfection.

Afterwards they took the family dog to the beach to get some exercise.
The waves were cool and refreshing! The dog had so much fun in the
water. One family member decided to get a better view of the waves!

Recurrent Networks

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

observe these inputs one at a time

Recurrent Networks

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

observe these inputs one at a time

predict the corresponding label

from these hidden states

Recurrent Networks

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

observe these inputs one at a time

predict the corresponding label

from these hidden states

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

observe these inputs one at a time

predict the corresponding label “cell”

Recurrent Networks

Outline

Convolutional Neural
Networks

What is a convolution?

Multidimensional
Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural
Networks

Types of recurrence

A basic recurrent cell

BPTT: Backpropagation
through time

xixi-1

hi-1 hi

yiyi-1

A Simple Recurrent Neural Network Cell

W W

U U

S S

encoding

xixi-1

hi-1 hi

yiyi-1

A Simple Recurrent Neural Network Cell

W W

U U

S S

ℎ# = tanh(𝑊ℎ#d/ + 𝑈𝑥#)

decoding

encoding

xixi-1

hi-1 hi

yiyi-1

A Simple Recurrent Neural Network Cell

W W

U U

S S

ℎ# = tanh(𝑊ℎ#d/ + 𝑈𝑥#) 𝑦# = softmax(𝑆ℎ#)

decoding

encoding

xixi-1

hi-1 hi

yiyi-1

A Simple Recurrent Neural Network Cell

W W

U U

S S

ℎ# = tanh(𝑊ℎ#d/ + 𝑈𝑥#) 𝑦# = softmax(𝑆ℎ#)

Weights are shared over time unrolling/unfolding: copy the RNN cell
across time (inputs)

Outline

Convolutional Neural
Networks

What is a convolution?

Multidimensional
Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural
Networks

Types of recurrence

A basic recurrent cell

BPTT: Backpropagation
through time

BackPropagation Through Time (BPTT)

“Unfold” the network to create a single, large, feed-
forward network

1. Weights are copied (W à W(t))
2. Gradients computed (ð𝑊(h)), and
3. Summed (∑h ð𝑊(h))

BPTT

ℎ# = tanh(𝑊ℎ#d/ + 𝑈𝑥#)

𝑦# = softmax(𝑆ℎ#)

per-step loss: cross entropy

𝜕𝐸#
𝜕𝑊

=
𝜕𝐸#
𝜕𝑦#

𝜕𝑦#
𝜕𝑊

=
𝜕𝐸#
𝜕𝑦#

𝜕𝑦#
𝜕ℎ#

𝜕ℎ#
𝜕𝑊

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

𝑦#dk∗ log 𝑝(𝑦#dk) 𝑦#d0∗ log 𝑝(𝑦#d0)
𝐸# =

𝑦#∗ log 𝑝(𝑦#)
𝑦#d/∗ log 𝑝(𝑦#d/)

BPTT

ℎ# = tanh(𝑊ℎ#d/ + 𝑈𝑥#)

𝑦# = softmax(𝑆ℎ#)

per-step loss: cross entropy

𝜕𝐸#
𝜕𝑊

=
𝜕𝐸#
𝜕𝑦#

𝜕𝑦#
𝜕𝑊

=
𝜕𝐸#
𝜕𝑦#

𝜕𝑦#
𝜕ℎ#

𝜕ℎ#
𝜕𝑊

𝜕ℎ#
𝜕𝑊

= tanhm 𝑊ℎ#d/ + 𝑈𝑥#
𝜕𝑊ℎ#d/
𝜕𝑊

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

𝑦#dk∗ log 𝑝(𝑦#dk) 𝑦#d0∗ log 𝑝(𝑦#d0)
𝐸# =

𝑦#∗ log 𝑝(𝑦#)
𝑦#d/∗ log 𝑝(𝑦#d/)

BPTT

ℎ# = tanh(𝑊ℎ#d/ + 𝑈𝑥#)

𝑦# = softmax(𝑆ℎ#)

per-step loss: cross entropy

𝜕𝐸#
𝜕𝑊

=
𝜕𝐸#
𝜕𝑦#

𝜕𝑦#
𝜕𝑊

=
𝜕𝐸#
𝜕𝑦#

𝜕𝑦#
𝜕ℎ#

𝜕ℎ#
𝜕𝑊

𝜕ℎ#
𝜕𝑊

= tanhm 𝑊ℎ#d/ + 𝑈𝑥#
𝜕𝑊ℎ#d/
𝜕𝑊

= tanhm 𝑊ℎ#d/ + 𝑈𝑥# ℎ#d/ + 𝑊
𝜕ℎ#d/
𝜕𝑊

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

𝑦#dk∗ log 𝑝(𝑦#dk) 𝑦#d0∗ log 𝑝(𝑦#d0)
𝐸# =

𝑦#∗ log 𝑝(𝑦#)
𝑦#d/∗ log 𝑝(𝑦#d/)

BPTT

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

𝑦#dk∗ log 𝑝(𝑦#dk) 𝑦#d0∗ log 𝑝(𝑦#d0)
𝐸# =

𝑦#∗ log 𝑝(𝑦#)
𝑦#d/∗ log 𝑝(𝑦#d/)

ℎ# = tanh(𝑊ℎ#d/ + 𝑈𝑥#)

𝑦# = softmax(𝑆ℎ#)

per-step loss: cross entropy

𝜕ℎ#
𝜕𝑊

= tanhm 𝑊ℎ#d/ + 𝑈𝑥# ℎ#d/ + 𝑊
𝜕ℎ#d/
𝜕𝑊

= 𝛿#ℎ#d/ + 𝛿#𝑊ðℎ#d/ ℎ#d0 + 𝑊
𝜕ℎ#d0
𝜕𝑊

𝜕𝐸#
𝜕𝑊

=
𝜕𝐸#
𝜕𝑦#

𝜕𝑦#
𝜕ℎ#

𝜕ℎ#
𝜕𝑊

= ðℎ#
𝜕ℎ#
𝜕𝑊

= 𝛿o
(#) 𝛿o

(#) =
𝜕𝐸#
𝜕𝑦#

𝜕𝑦#
𝜕ℎ#

𝜕ℎ#
𝜕ℎo

𝜕ℎo
𝜕𝑊

BPTT

𝜕ℎ#
𝜕𝑊

= tanhm 𝑊ℎ#d/ + 𝑈𝑥# ℎ#d/ + 𝑊
𝜕ℎ#d/
𝜕𝑊

= tanhm 𝑊ℎ#d/ + 𝑈𝑥# ℎ#d/ + tanhm 𝑊ℎ#d/ + 𝑈𝑥# 𝑊tanhm 𝑊ℎ#d0 + 𝑈𝑥#d/ ℎ#d0 + 𝑊
𝜕ℎ#d0
𝜕𝑊

=\
1

𝜕𝐸#
𝜕𝑦#

𝜕𝑦#
𝜕ℎ#

𝜕ℎ#
𝜕ℎo

𝜕ℎo
𝜕𝑊(o)

= \
1

𝛿1
(#) 𝜕ℎo
𝜕𝑊(o)

𝛿o
(#) =

𝜕𝐸#
𝜕𝑦#

𝜕𝑦#
𝜕ℎ#

𝜕ℎ#
𝜕ℎo

per-loss, per-step
backpropagation error

BPTT

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

𝑦#dk∗ log 𝑝(𝑦#dk) 𝑦#d0∗ log 𝑝(𝑦#d0)
𝐸# =

𝑦#∗ log 𝑝(𝑦#)
𝑦#d/∗ log 𝑝(𝑦#d/)

ℎ# = tanh(𝑊ℎ#d/ + 𝑈𝑥#)

𝑦# = softmax(𝑆ℎ#)

per-step loss: cross entropy

𝜕𝐸#
𝜕𝑊

=\
1

𝜕𝐸#
𝜕𝑦#

𝜕𝑦#
𝜕ℎ#

𝜕ℎ#
𝜕𝑊(1)

hidden chain rulecompact form

Why Is Training RNNs Hard?

Vanishing gradients

Multiply the same
matrices at each

timestep è multiply
many matrices in the

gradients

∂Ct

∂h1
= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂h1

⎛
⎝⎜

⎞
⎠⎟

= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂ht

⎛
⎝⎜

⎞
⎠⎟

∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
!

∂h2
∂h1

⎛
⎝⎜

⎞
⎠⎟

The Vanilla RNN Backward

h1

x1 h0

C1

y1

h2

x2 h1

C2

y2

h3

x3 h2

C3

y3

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht)
Ct = Loss(yt ,GTt)

∂Ct

∂h1
= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂h1

⎛
⎝⎜

⎞
⎠⎟

= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂ht

⎛
⎝⎜

⎞
⎠⎟

∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
!

∂h2
∂h1

⎛
⎝⎜

⎞
⎠⎟

Slide credit: Arun Mallya

Vanishing Gradient Solution:
Motivation

ht = ht−1 + F(xt)

∂Ct

∂h1
= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂h1

⎛
⎝⎜

⎞
⎠⎟

= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂ht

⎛
⎝⎜

⎞
⎠⎟

∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
!

∂h2
∂h1

⎛
⎝⎜

⎞
⎠⎟

Identity

The gradient does not decay
as the error is propagated all
the way back aka “Constant

Error Flow”

⇒ ∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
= 1

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht)
Ct = Loss(yt ,GTt)

Slide credit: Arun Mallya

Vanishing Gradient Solution:
Model Implementations

LSTM: Long Short-Term Memory (Hochreiter &
Schmidhuber, 1997)

GRU: Gated Recurrent Unit (Cho et al., 2014)

Basic Ideas: learn to forget
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

forget line

representation
line

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM):
Hochreiter et al., (1997)

Create a “Constant
Error Carousel” (CEC)
which ensures that

gradients don’t decay

A memory cell that acts
like an accumulator

(contains the identity
relationship) over time

it ot

ft

Input Gate Output Gate

Forget Gate

ht

xt ht-1

Cell

ct

xt ht-1

xt

ht-1

W

Wi Wo

Wf

𝑐h = 𝑓h ⊗ 𝑐hd/ + 𝑖h ⊗ tanh 𝑊
𝑥h
ℎhd/

𝑓h = 𝜎 𝑊s
𝑥h
ℎhd/

+ 𝑏s

xt ht-1

Slide credit: Arun Mallya

I want to use CNNs/RNNs/Deep Learning in my
project. I don’t want to do this all by hand.

Defining A Simple RNN in Python
(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Defining A Simple RNN in Python
(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Defining A Simple RNN in Python
(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

encode

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Defining A Simple RNN in Python
(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

decode

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Training A Simple RNN in Python
(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Training A Simple RNN in Python
(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Negative log-
likelihood

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Training A Simple RNN in Python
(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Negative log-
likelihood

get predictions

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Training A Simple RNN in Python
(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Negative log-
likelihood

get predictions

eval predictions

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Training A Simple RNN in Python
(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Negative log-
likelihood

get predictions

eval predictions
compute gradient

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Training A Simple RNN in Python
(Modified Very Slightly)

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Negative log-
likelihood

get predictions

eval predictions
compute gradient

perform SGD

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Slide Credit

http://slazebni.cs.illinois.edu/spring17/lec01_cnn_architectures.pdf

http://slazebni.cs.illinois.edu/spring17/lec02_rnn.pdf

http://slazebni.cs.illinois.edu/spring17/lec02_rnn.pdf
http://slazebni.cs.illinois.edu/spring17/lec02_rnn.pdf

