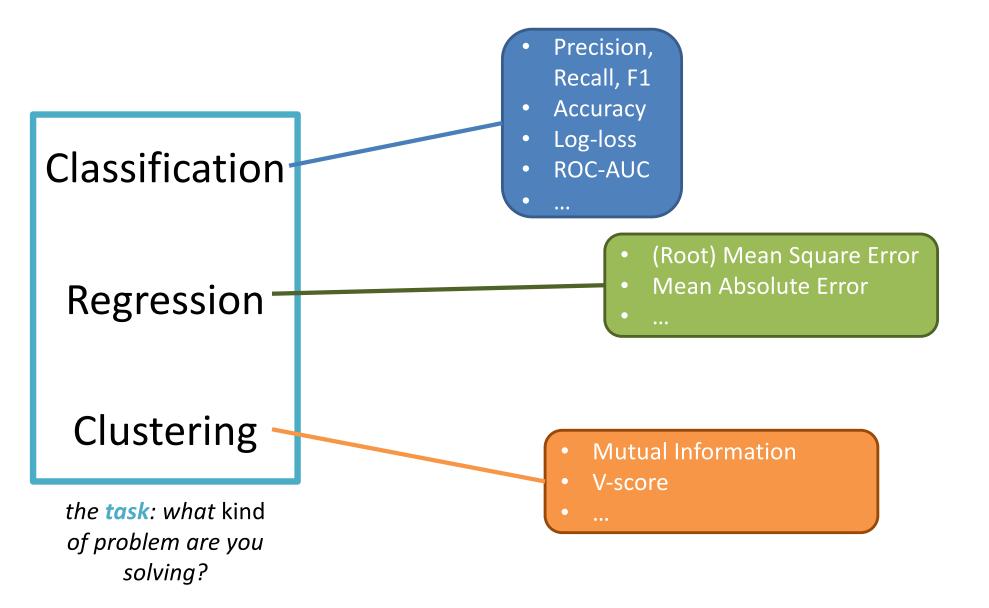
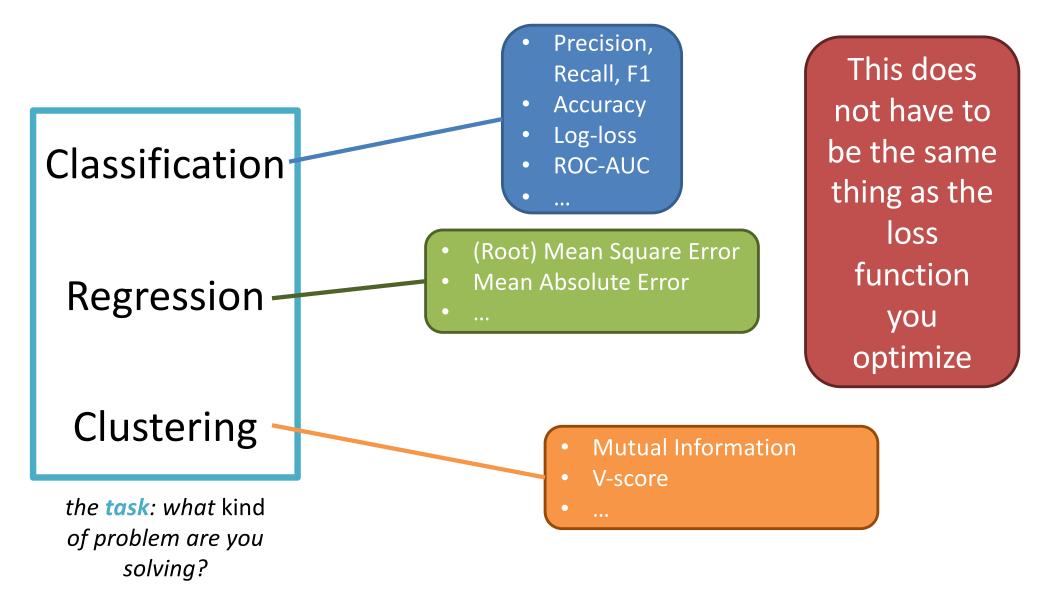
Experimental Setup, Multi-class vs. Multi-label classification, and Evaluation

> CMSC 478 UMBC

Central Question: How Well Are We Doing?



Central Question: How Well Are We Doing?

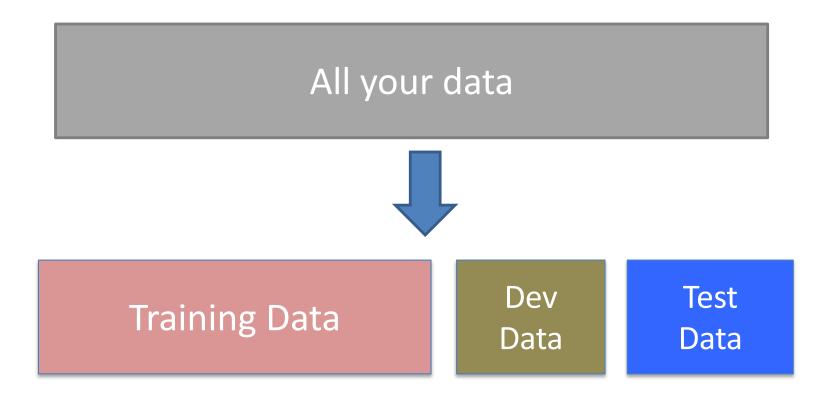


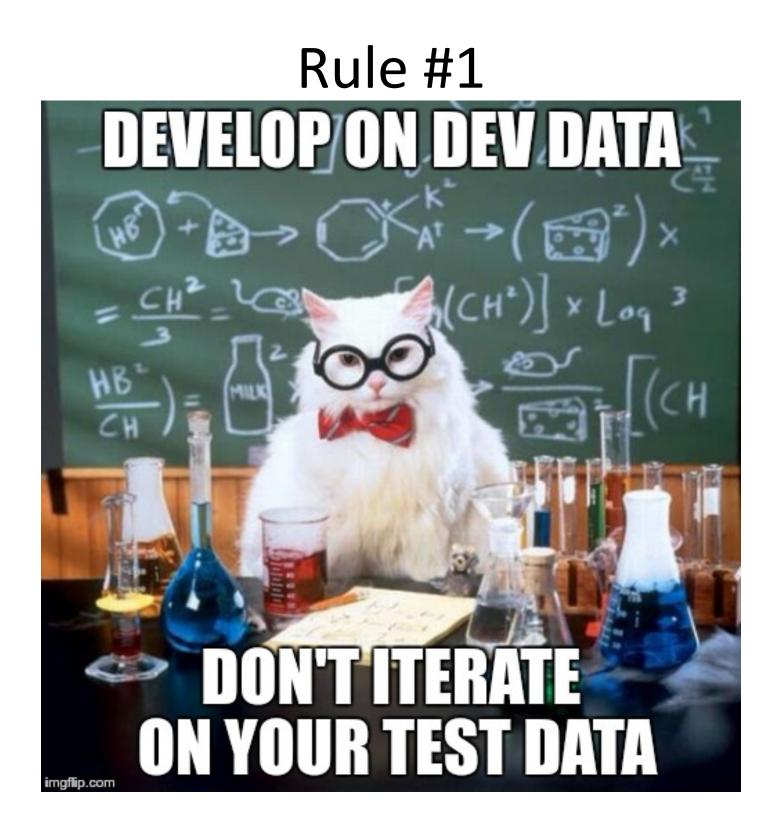
Outline

Experimental Design: Rule 1

Multi-class vs. Multi-label classification

Evaluation Regression Metrics Classification Metrics

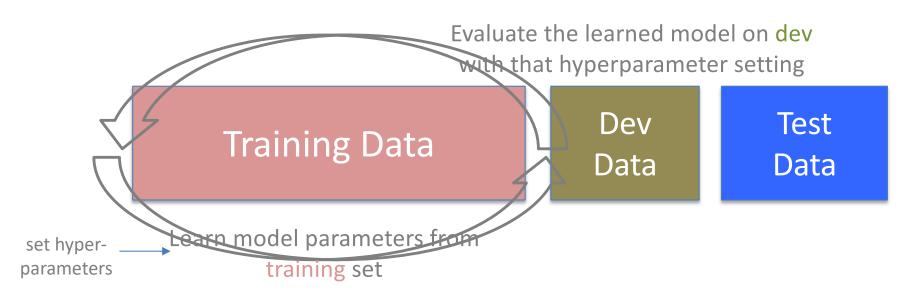




What is "correct?" What is working "well?"

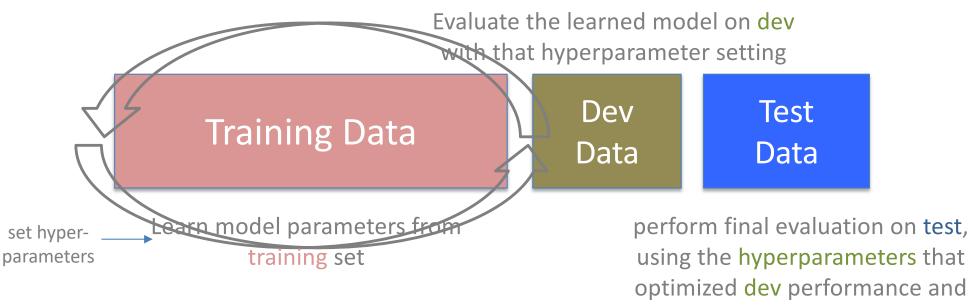
What is "correct?"

What is working "well?"



What is "correct?"

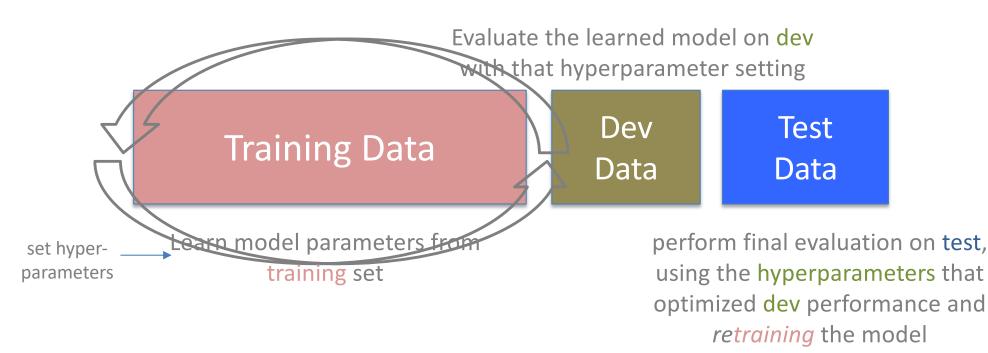
What is working "well?"



using the hyperparameters that optimized dev performance and *retraining* the model

What is "correct?"

What is working "well?"



Rule 1: DO NOT ITERATE ON THE TEST DATA

Outline

Experimental Design: Rule 1

Multi-class vs. Multi-label classification

Evaluation Regression Metrics Classification Metrics

Given input x, predict discrete label y

Given input x, predict discrete label y

If $y \in \{0,1\}$ (or $y \in \{\text{True, False}\}$), then a binary classification task

Given input *x*, predict discrete label *y*

If $y \in \{0,1\}$ (or $y \in \{\text{True, False}\}$), then a binary classification task

If $y \in \{0, 1, ..., K - 1\}$ (for finite K), then a multi-class classification task

Q: What are some examples of multi-class classification?

Given input *x*, predict discrete label *y*

If $y \in \{0,1\}$ (or $y \in \{\text{True, False}\}$), then a binary classification task

If $y \in \{0, 1, ..., K - 1\}$ (for finite K), then a multi-class classification task

Q: What are some examples of multi-class classification?

A: Many possibilities. See A2, Q{1,2,4-7}

Given input *x*, predict discrete label *y*

Single output If $y \in \{0,1\}$ (or $y \in \{\text{True, False}\}$), then a binary classification task

If $y \in \{0, 1, ..., K - 1\}$ (for finite K), then a multi-class classification task

Multioutput If multiple y_l are predicted, then a multilabel classification task

Given input *x*, predict discrete label *y*

Single output

Multi-

output

If $y \in \{0,1\}$ (or $y \in \{\text{True, False}\}$), then a binary classification task

If $y \in \{0, 1, ..., K - 1\}$ (for finite K), then a multi-class classification task

If multiple y_l are predicted, then a multilabel classification task

Given input x, predict multiple discrete labels $y = (y_1, ..., y_L)$

Given input *x*, predict discrete label *y*

If $y \in \{0,1\}$ (or $y \in$

{True, False}), then a

binary classification task

Single output If $y \in \{0, 1, ..., K - 1\}$ (for finite K), then a multi-class classification task

Multi-
outputIf multiple y_l are
predicted, then a multi-
label classification taskEach y_l could be binary or
multi-class

Given input x, predict multiple discrete labels $y = (y_1, ..., y_L)$

Multi-Label Classification...

Will not be a primary focus of this course

Many of the single output classification methods apply to multi-label classification

Predicting "in the wild" can be trickier

Evaluation can be trickier

Option 1: Develop a multiclass version

Option 2: Build a one-vsall (OvA) classifier

Option 3: Build an all-vsall (AvA) classifier

(there can be others)

Option 1: Develop a multiclass version Loss function may (or may not) need to be extended & the model structure may need to change (big or small)

Option 2: Build a one-vsall (OvA) classifier

Option 3: Build an all-vsall (AvA) classifier

(there can be others)

Option 1: Develop a multiclass version

Option 2: Build a one-vsall (OvA) classifier

Option 3: Build an all-vsall (AvA) classifier

(there can be others)

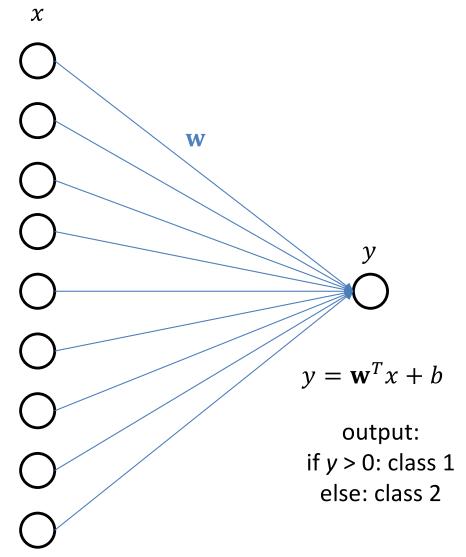
Loss function may (or may not) need to be extended & the model structure may need to change (big or small)

Common change:

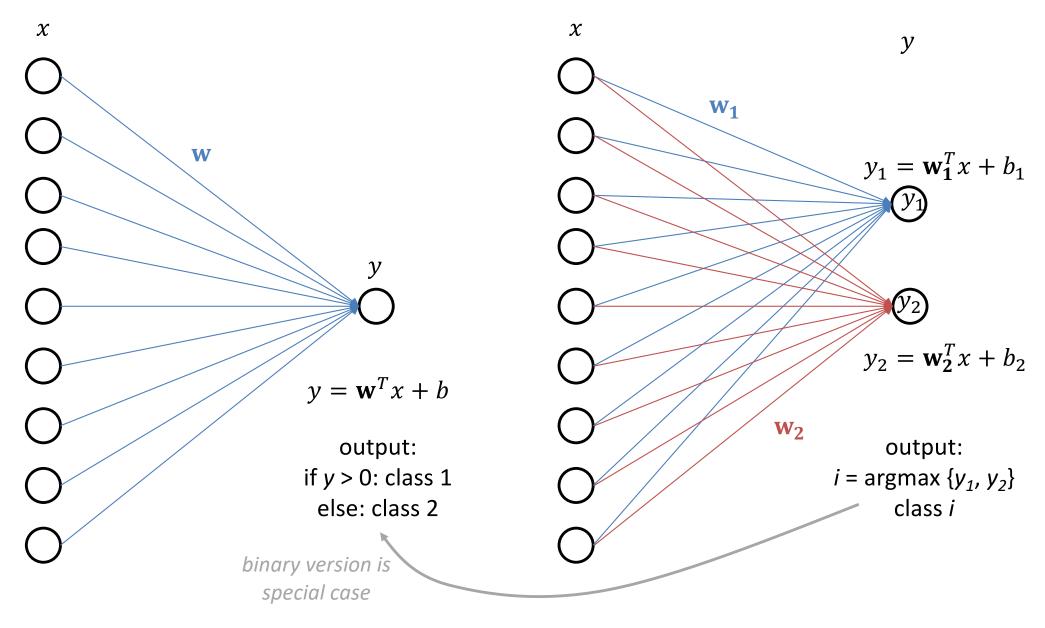
instead of a single weight vector w, keep a weight vector $w^{(c)}$ for each class c

Compute class specific scores, e.g., $\widehat{y_i^{(c)}} = (w^{(c)})^T x + b^{(c)}$

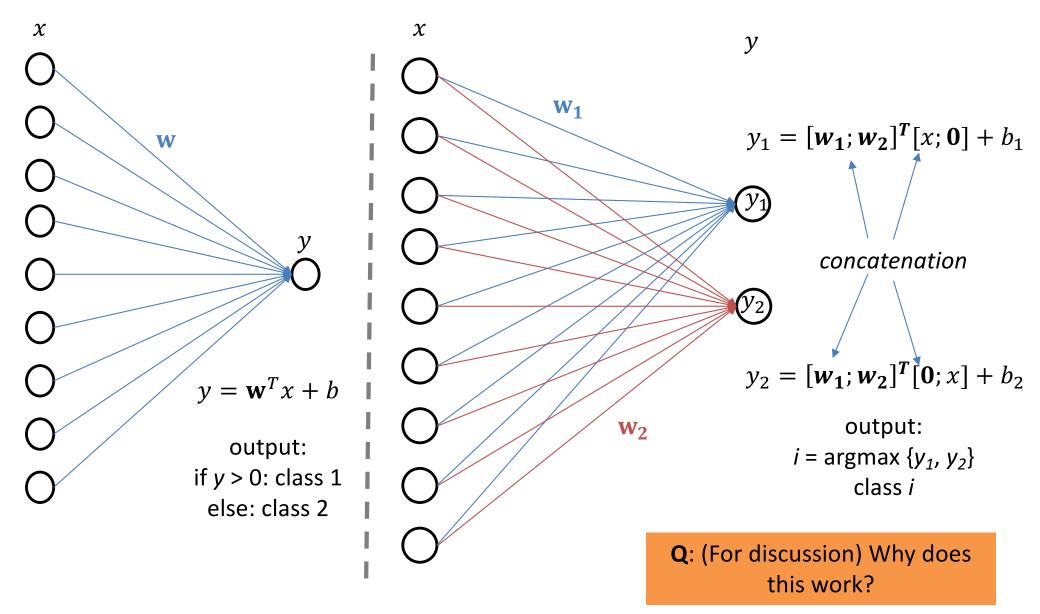
Multi-class Option 1: Linear Regression/Perceptron



Multi-class Option 1: Linear Regression/Perceptron: A Per-Class View



Multi-class Option 1: Linear Regression/Perceptron: A Per-Class View (alternative)



Option 1: Develop a multi- With C classes: class version

Option 2: Build a one-vsall (OvA) classifier

Option 3: Build an all-vsall (AvA) classifier

(there can be others)

Train C different binary classifiers $\gamma_c(x)$

 $\gamma_c(x)$ predicts 1 if x is likely class c, 0 otherwise

Option 1: Develop a multi- With C classes: class version

Option 2: Build a one-vsall (OvA) classifier

Option 3: Build an all-vsall (AvA) classifier

(there can be others)

Train C different binary classifiers $\gamma_c(x)$

 $\gamma_c(x)$ predicts 1 if x is likely class c, 0 otherwise

To test/predict a new instance z: Get scores $s^c = \gamma_c(z)$ Output the max of these scores, $\hat{y} = \operatorname{argmax}_c s^c$

Option 1: Develop a multiclass version With C classes:

Option 2: Build a one-vsall (OvA) classifier Train $\binom{c}{2}$ different binary classifiers $\gamma_{c_1,c_2}(x)$

Option 3: Build an all-vsall (AvA) classifier

(there can be others)

With C classes:

Option 1: Develop a multiclass version

Option 2: Build a one-vsall (OvA) classifier

Option 3: Build an all-vsall (AvA) classifier

(there can be others)

Train $\binom{C}{2}$ different binary classifiers $\gamma_{c_1,c_2}(x)$ $\gamma_{c_1,c_2}(x)$ predicts 1 if x is likely class c_1 , 0 otherwise (likely class c_2)

With C classes:

Option 1: Develop a multiclass version

Option 2: Build a one-vsall (OvA) classifier

Option 3: Build an all-vsall (AvA) classifier

(there can be others)

Train $\binom{C}{2}$ different binary classifiers $\gamma_{c_1,c_2}(x)$ $\gamma_{c_1,c_2}(x)$ predicts 1 if x is likely class c_1 , 0 otherwise (likely class c_2)

To test/predict a new instance z: Get scores or predictions $s^{c_1,c_2} = \gamma_{c_1,c_2}(z)$

With C classes:

Option 1: Develop a multiclass version

Option 2: Build a one-vs-all (OvA) classifier

Option 3: Build an all-vs-all (AvA) classifier

(there can be others)

Train $\binom{C}{2}$ different binary classifiers $\gamma_{c_1,c_2}(x)$ $\gamma_{c_1,c_2}(x)$ predicts 1 if x is likely class c_1 , 0 otherwise (likely class c_2)

To test/predict a new instance z: Get scores or predictions $s^{c_1,c_2} = \gamma_{c_1,c_2}(z)$ Multiple options for final prediction: (1) count # times a class c was

> predicted (2) margin-based approach

Option 1: Develop a multiclass version

Option 2: Build a one-vsall (OvA) classifier

Option 3: Build an all-vsall (AvA) classifier

(there can be others)

Q: (to discuss)

Why might you want to use option 1 or options OvA/AvA?

What are the benefits of OvA vs. AvA?

Option 1: Develop a multiclass version

Option 2: Build a one-vs-all (OvA) classifier

Option 3: Build an all-vs-all (AvA) classifier

(there can be others)

Q: (to discuss)

Why might you want to use option 1 or options OvA/AvA?

What are the benefits of OvA vs. AvA?

What if you start with a balanced dataset, e.g., 100 instances per class?

Outline

Experimental Design: Rule 1

Multi-class vs. Multi-label classification

Evaluation Regression Metrics Classification Metrics

Regression Metrics

(Root) Mean Square Error

$$RMSE = \sqrt{\frac{1}{N} \sum_{i}^{N} (y_i - \hat{y}_i)^2}$$

Regression Metrics

(Root) Mean Square Error

Mean Absolute Error

$$RMSE = \sqrt{\frac{1}{N} \sum_{i}^{N} (y_i - \hat{y}_i)^2} \qquad MAE = \frac{1}{N} \sum_{i}^{N} |y_i - \hat{y}_i|$$

Regression Metrics

(Root) Mean Square Error

Mean Absolute Error

$$RMSE = \sqrt{\frac{1}{N} \sum_{i}^{N} (y_i - \hat{y}_i)^2}$$

$$MAE = \frac{1}{N} \sum_{i}^{N} |y_i - \hat{y}_i|$$

A T

Q: How can these reward/punish predictions differently?

Regression Metrics

(Root) Mean Square Error

Mean Absolute Error

$$RMSE = \sqrt{\frac{1}{N} \sum_{i}^{N} (y_i - \hat{y}_i)^2}$$

Q: How can these reward/punish predictions differently?

$$MAE = \frac{1}{N} \sum_{i}^{N} |y_i - \hat{y}_i|$$

A: RMSE punishes outlier predictions more harshly

Outline

Experimental Design: Rule 1

Multi-class vs. Multi-label classification

Evaluation Regression Metrics Classification Metrics

Training Loss vs. Evaluation Score

In training, compute loss to update parameters

Sometimes loss is a computational compromise - surrogate loss

The loss you use might not be as informative as you'd like

Binary classification: 90 of 100 training examples are +1, 10 of 100 are -1

Some Classification Metrics

Accuracy

Precision Recall

AUC (Area Under Curve)

F1

Confusion Matrix

Classification Evaluation: the 2-by-2 contingency table						
	ActuallyActuallyCorrectIncorrect					
Selected/ Guessed						
Not selected/ not guessed						

	Actually Correct	Actually Incorrect
Selected/ Guessed	True Positive (TP) Guessed	
Not selected/ not guessed		

	ActuallyActuallyCorrectIncorrect			
Selected/ Guessed	True Positive (TP) Guessed	False Positive (FP) Guessed		
Not selected/ not guessed				

	Actually Correct	Actually Incorrect
Selected/ Guessed	True Positive (TP) Guessed	False Positive (FP) Guessed
Not selected/ not guessed	False Negative (FN) Guessed	

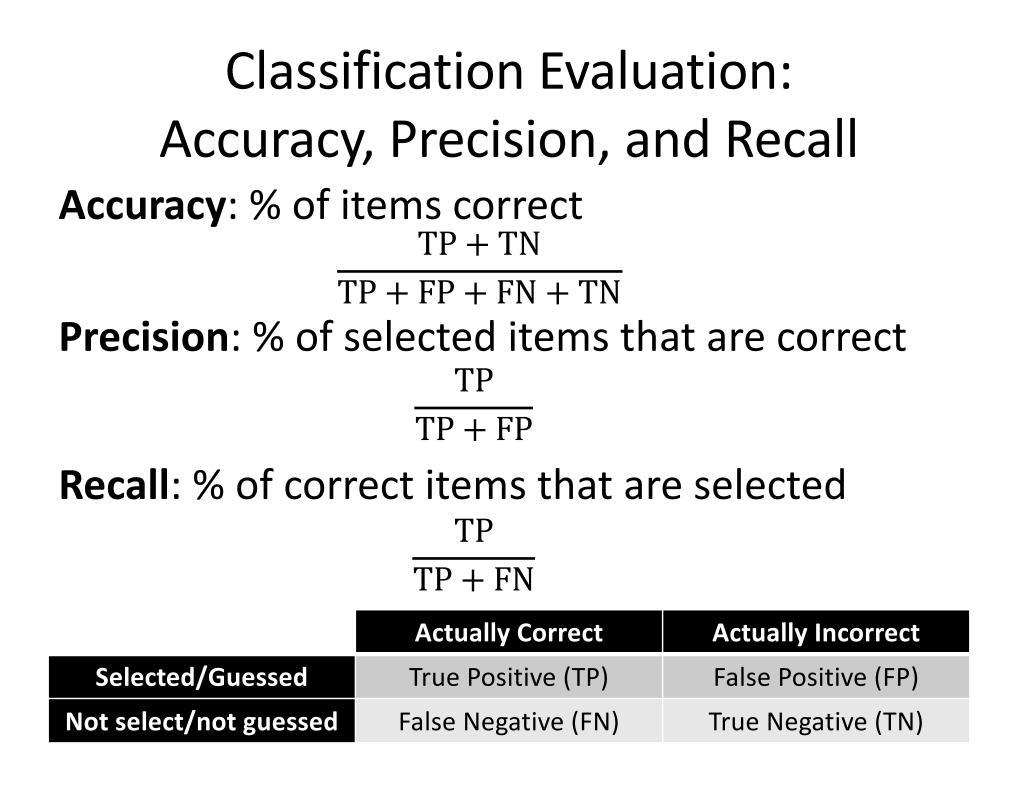
	ActuallyActuallyCorrectIncorrect			
Selected/ Guessed	True Positive (TP) Guessed	False Positive (FP) Guessed		
Not selected/ not guessed	False Negative (FN) Guessed	True Negative		

Classification Evaluation: Accuracy, Precision, and Recall Accuracy: % of items correct TP + TNTP + FP + FN + TN

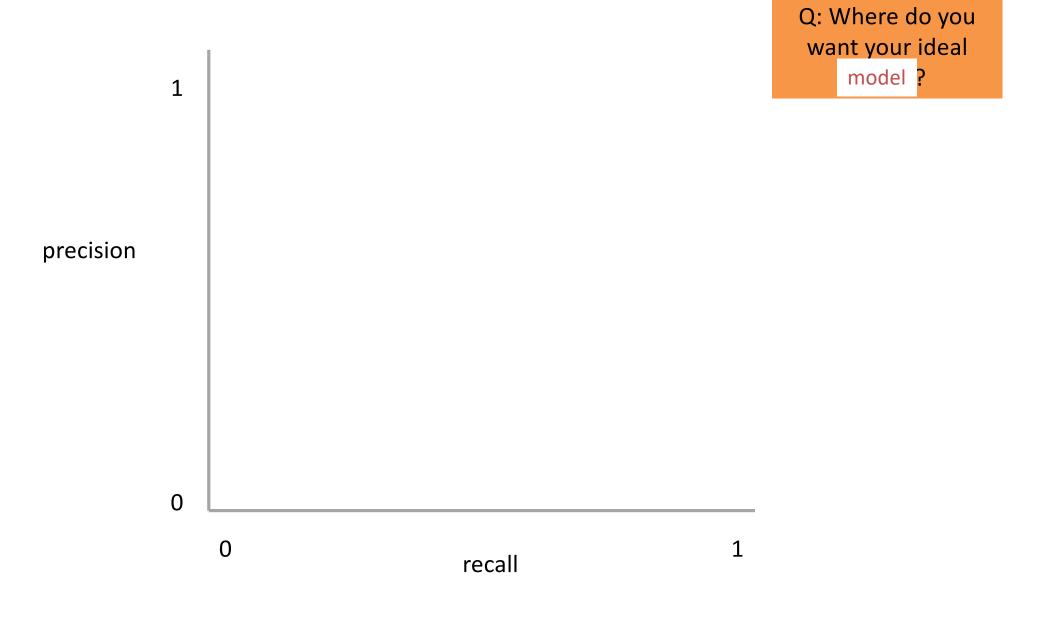
	Actually Correct	Actually Incorrect	
Selected/Guessed	True Positive (TP)	False Positive (FP)	
Not select/not guessed	False Negative (FN)	True Negative (TN)	

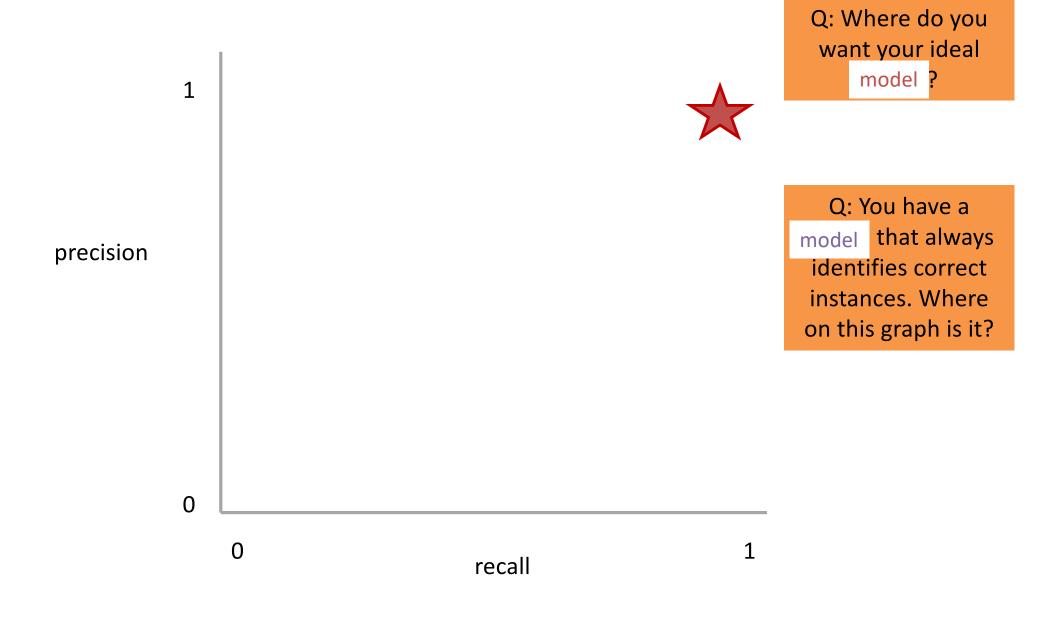
Classification Evaluation: Accuracy, Precision, and Recall Accuracy: % of items correct $\frac{TP + TN}{TP + FP + FN + TN}$ Precision: % of selected items that are correct $\frac{TP}{TP + FP}$

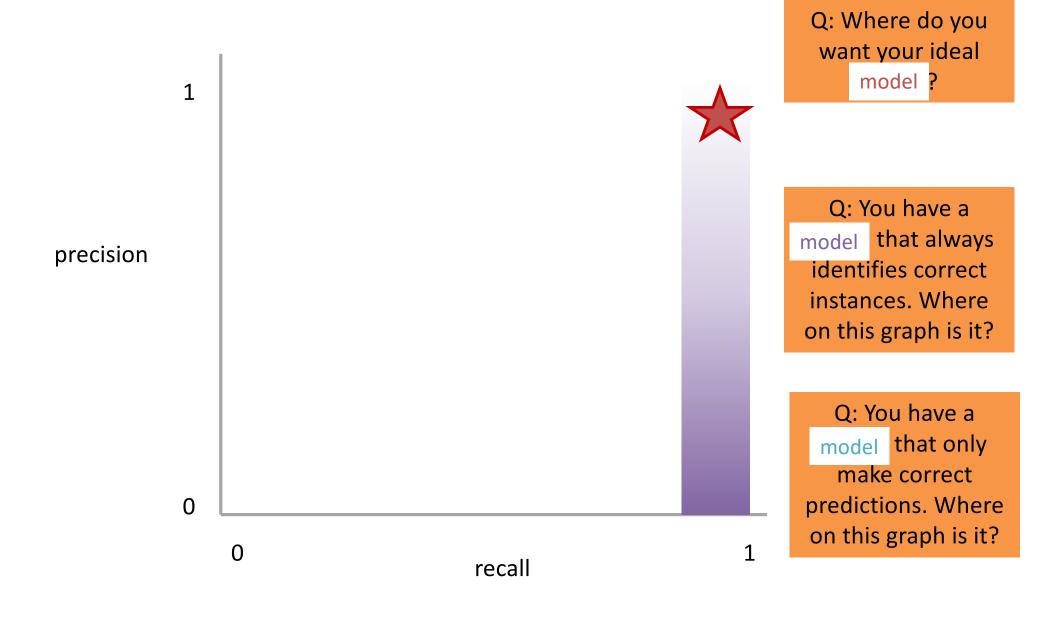
	Actually Correct	Actually Incorrect		
Selected/Guessed	True Positive (TP)	False Positive (FP)		
Not select/not guessed	False Negative (FN)	True Negative (TN)		

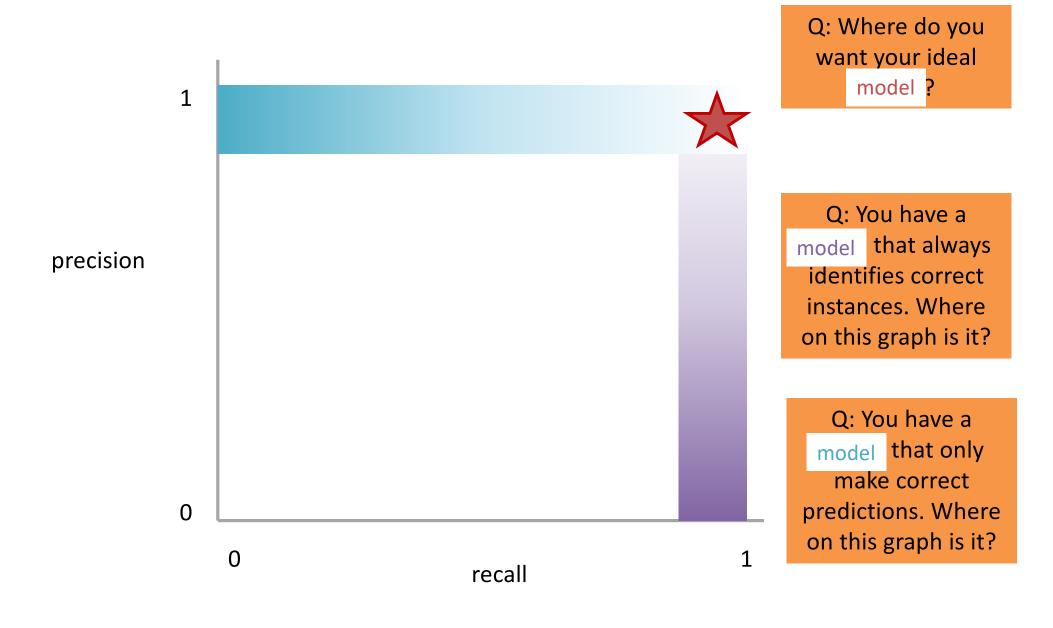


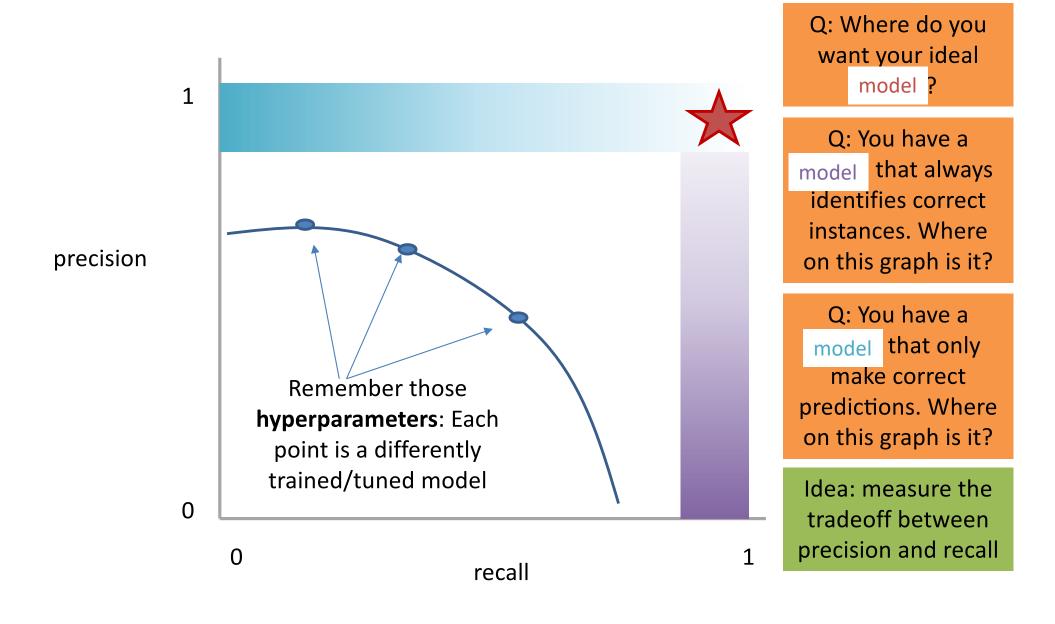
Classification Evaluation: Accuracy, Precision, and Recall Accuracy: % of items correct					
	TP + TN				
$\frac{TP + FN}{TP + FP + FN + TN}$					
Precision : % of seare correct	elected items that	Min: 0 😕 Max: 1 😄			
$\frac{TP}{TP + FP}$					
Recall : % of correstence selected	ect items that are TP $\overline{TP + FN}$				
	Actually Correct	Actually Incorrect			
$\frac{1}{\text{TP} + \text{FN}}$					
Not select/not guessed	False Negative (FN)	True Negative (TN)			

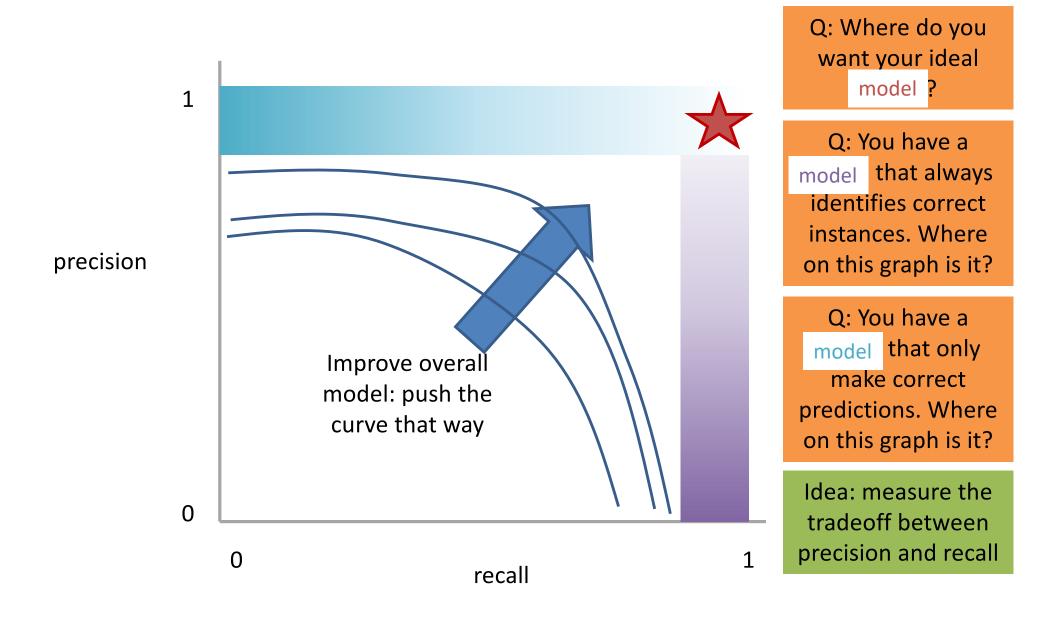




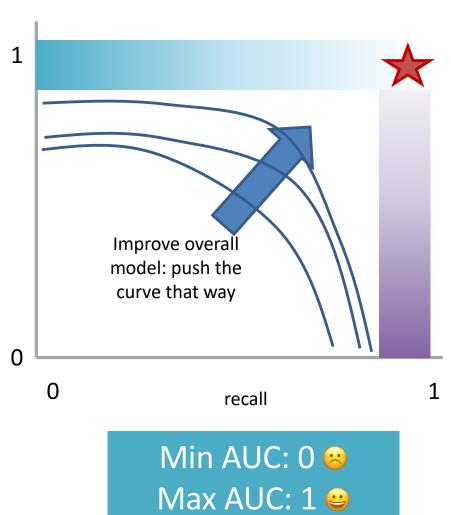






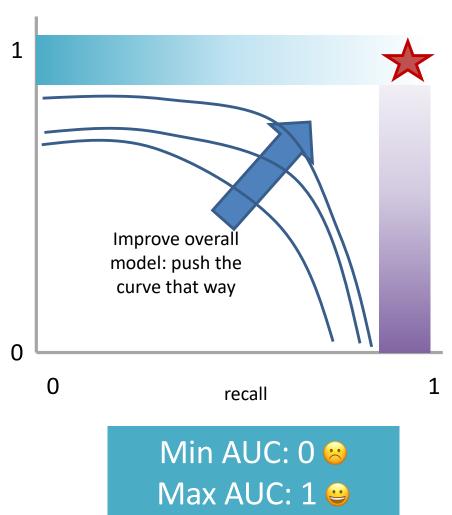


Measure this Tradeoff: Area Under the Curve (AUC)



AUC measures the area under this tradeoff curve

Measure this Tradeoff: Area Under the Curve (AUC)



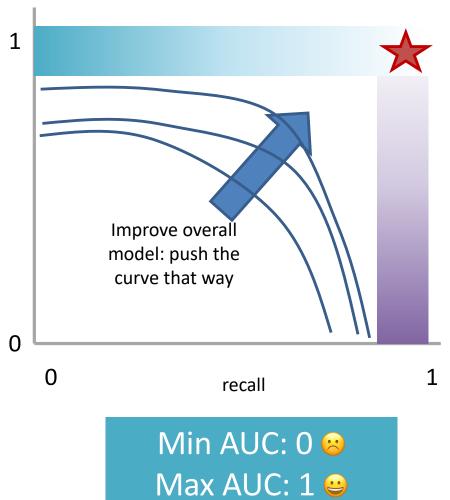
AUC measures the area under this tradeoff curve

 Computing the curve
You need true labels & predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute precision and recall

orecision

Measure this Tradeoff: Area Under the Curve (AUC)



AUC measures the area under this tradeoff curve

1. Computing the curve

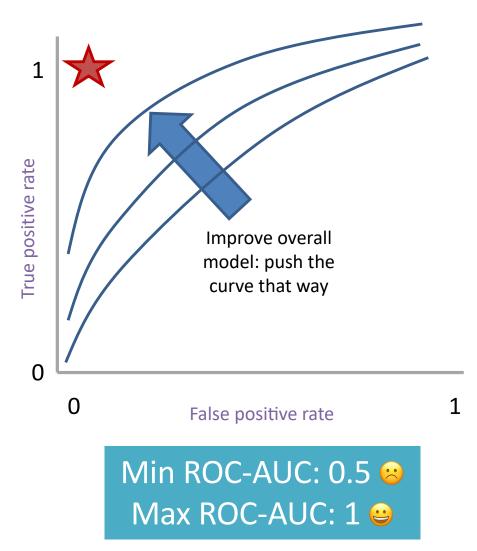
You need true labels & predicted labels with some score/confidence estimate Threshold the scores and for each threshold compute precision and recall

2. Finding the area

How to implement: trapezoidal rule (& others)

In practice: external library like the sklearn.metrics module

Measure A Slightly Different Tradeoff: ROC-AUC



AUC measures the area under this tradeoff curve

 Computing the curve You need true labels & predicted labels with some score/confidence estimate Threshold the scores and for each threshold compute metrics
Finding the area

How to implement: trapezoidal rule (& others)

In practice: external library like the sklearn.metrics module

Main variant: ROC-AUC

Same idea as before but with some flipped metrics

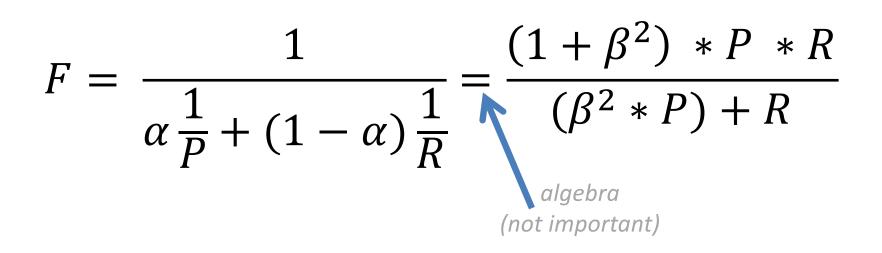
A combined measure: F

Weighted (harmonic) average of Precision & Recall

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

A combined measure: F

Weighted (harmonic) average of Precision & Recall



A combined measure: F

Weighted (harmonic) average of Precision & Recall

$$F = \frac{(1 + \beta^2) * P * R}{(\beta^2 * P) + R}$$

Balanced F1 measure:
$$\beta = 1$$

$$F_1 = \frac{2 * P * R}{P + R}$$

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

macroprecision =
$$\sum_{c} \frac{TP_{c}}{TP_{c} + FP_{c}} = \sum_{c} \text{precision}_{c}$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

when to prefer the macroaverage?

macroprecision =
$$\sum_{c} \frac{TP_{c}}{TP_{c} + FP_{c}} = \sum_{c} \text{precision}_{c}$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

when to prefer the microaverage?

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$

Micro-vs. Macro-Averaging: Example

Class 1

Class 2

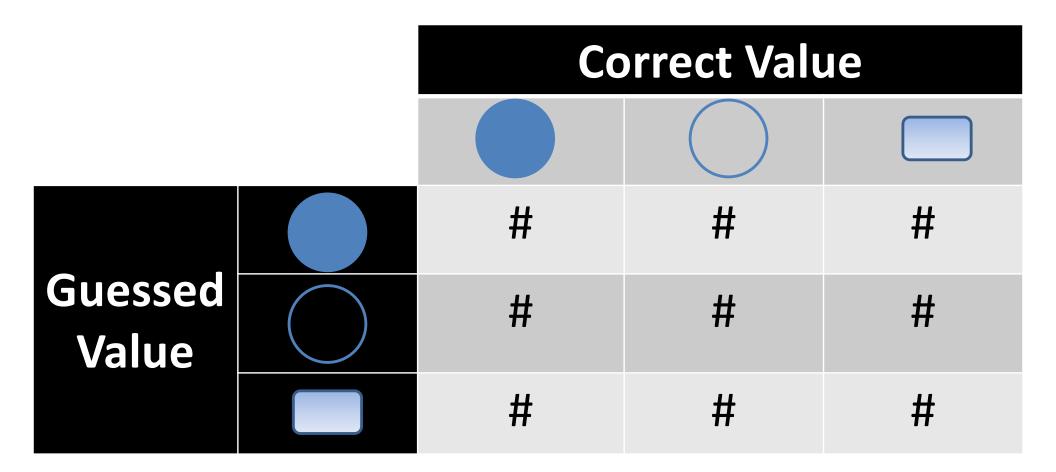
Micro Ave. Table

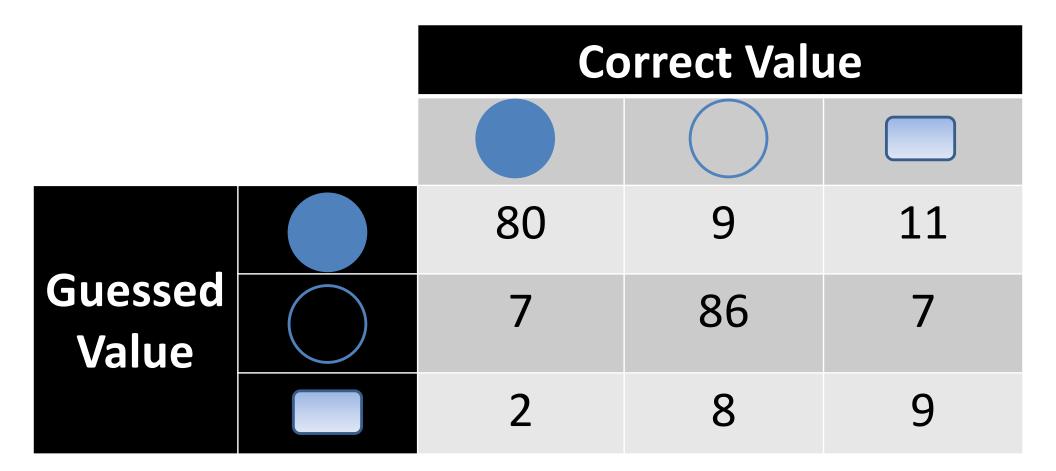
	Truth	Truth		Truth	Truth		Truth	Truth
	: yes	:no		: yes	: no		: yes	:no
Classifier: yes	10	10	Classifier: yes	90	10	Classifier: yes	100	20
Classifier:	10	970	Classifier:	10	890	Classifier:	20	1860
no			no			no		

Macroaveraged precision: (0.5 + 0.9)/2 = 0.7

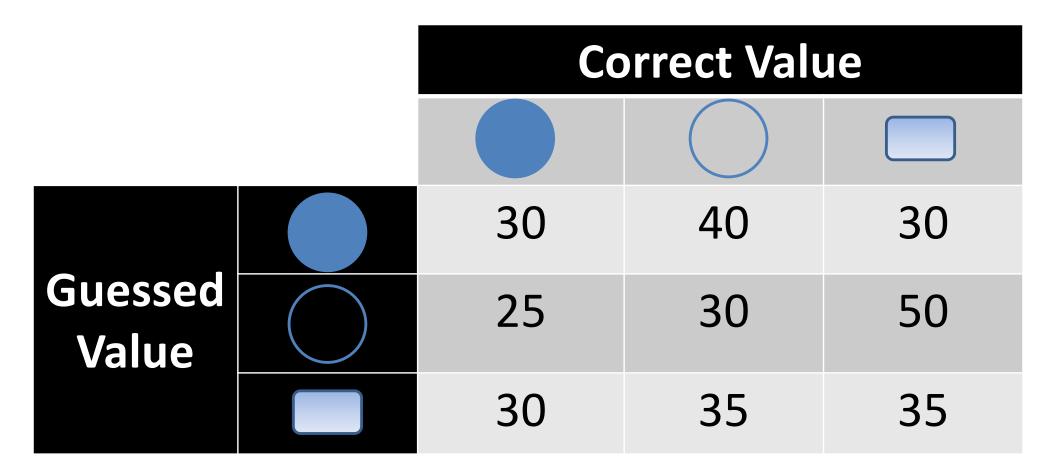
Microaveraged precision: 100/120 = .83

Microaveraged score is dominated by score on frequent classes

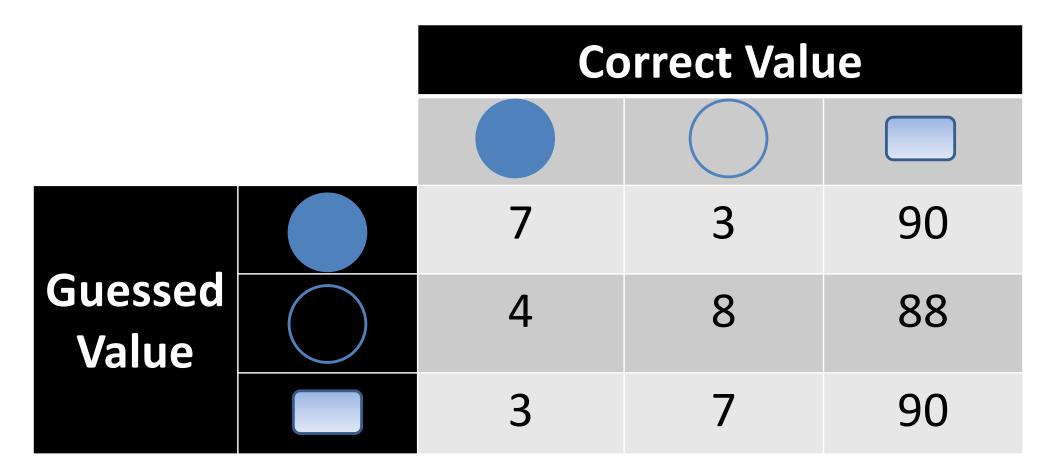




Q: Is this a good result?



Q: Is this a good result?



Q: Is this a good result?

Some Classification Metrics

Accuracy

Precision Recall

AUC (Area Under Curve)

F1

Confusion Matrix

Outline

Experimental Design: Rule 1

Multi-class vs. Multi-label classification

Evaluation Regression Metrics Classification Metrics