Dimensionality Reduction: Linear Discriminant Analysis and Principal Component Analysis

CMSC 678

UMBC
March 5 ${ }^{\text {th }}, 2018$

Outline

Linear Algebra/Math Review

Two Methods of Dimensionality Reduction
Linear Discriminant Analysis (LDA, LDiscA)
Principal Component Analysis (PCA)

Covariance

covariance: how (linearly) correlated are variables

Covariance

covariance: how (linearly) correlated are variables

$$
\sigma_{i j}=\sigma_{j i}
$$

$$
\Sigma=\left(\begin{array}{ccc}
\sigma_{11} & \cdots & \sigma_{1 K} \\
\vdots & \ddots & \vdots \\
\sigma_{K 1} & \cdots & \sigma_{K K}
\end{array}\right)
$$

Eigenvalues and Eigenvectors

for a given matrix operation (multiplication):
what non-zero vector(s) change linearly?
(by a single multiplication)

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

$$
A=\left(\begin{array}{ll}
1 & 5 \\
0 & 1
\end{array}\right) \quad\binom{x+5 y}{y}=\lambda\binom{x}{y}
$$

Outline

Linear Algebra/Math Review

Two Methods of Dimensionality Reduction
Linear Discriminant Analysis (LDA, LDiscA)
Principal Component Analysis (PCA)

Dimensionality Reduction

D input
features

Dimensionality Reduction

clarity of representation vs. ease of understanding
oversimplification: loss of important or relevant information

Why "maximize" the variance?

How can we efficiently summarize? We maximize the variance within our summarization

We don't increase the variance in the dataset

How can we capture the most information with the fewest number of axes?

Summarizing Redundant Information

Summarizing Redundant Information

$(2,1)=2 *(1,0)+1^{*}(0,1)$

Summarizing Redundant Information

$$
\begin{aligned}
& (2,1)=1^{*}(2,1)+0^{*}(2,-1) \\
& (4,2)=2^{*}(2,1)+0^{*}(2,-1)
\end{aligned}
$$

Summarizing Redundant Information

$(2,1)=1^{*}(2,1)+0^{*}(2,-1)$
$(4,2)=2^{*}(2,1)+0^{*}(2,-1)$

Outline

Linear Algebra/Math Review

Two Methods of Dimensionality Reduction
Linear Discriminant Analysis (LDA, LDiscA)
Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA, LDiscA) and Principal Component Analysis (PCA)

Summarize D-dimensional input data by uncorrelated axes

Uncorrelated axes are also called principal components

Use the first L components to account for as much variance as possible

Geometric Rationale of LDiscA \& PCA

Objective: to rigidly rotate the axes of the Ddimensional space to new positions (principal axes):
ordered such that principal axis 1 has the highest variance, axis 2 has the next highest variance, , and axis D has the lowest variance
covariance among each pair of the principal axes is zero (the principal axes are uncorrelated)

Remember: MAP Classifiers are Optimal for Classification

$$
\begin{gathered}
\min _{\mathbf{w}} \sum_{i} \mathbb{E}_{\widehat{y_{i}}}\left[\ell^{0 / 1}\left(y, \widehat{y_{i}}\right)\right] \rightarrow \max _{\mathbf{w}} \sum_{i} p\left(\widehat{y}_{i}=y_{i} \mid x_{i}\right) \\
P\left(\widehat{y}_{i}=y_{i} \mid x_{i}\right) \propto P\left(x_{i} \mid \widehat{y}_{i}\right) p\left(\widehat{y_{i}}\right) \\
\text { posterior }
\end{gathered}
$$

$x_{i} \in \mathbb{R}^{D}$

Linear Discriminant Analysis

MAP Classifier where:

1. class-conditional likelihoods are Gaussian
2. common covariance among class likelihoods

LDiscA: (1) What if likelihoods are Gaussian

$$
\begin{aligned}
& p\left(\widehat{y_{i}}=y_{i} \mid x_{i}\right) \propto p\left(x_{i} \mid \widehat{y_{i}}\right) p\left(\widehat{y_{i}}\right) \\
& \begin{array}{c}
p\left(x_{i} \mid k\right)=\mathcal{N}\left(\mu_{k}, \Sigma_{k}\right) \\
=\frac{\exp \left(-\frac{1}{2}\left(x_{i}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{i}-\mu_{k}\right)\right)}{(2 \pi)^{D / 2}\left|\Sigma_{k}\right|^{1 / 2}}
\end{array}
\end{aligned}
$$

LDiscA: (2) Shared Covariance

$$
\log \frac{p\left(\widehat{y}_{i}=k \mid x_{i}\right)}{p\left(\widehat{y}_{i}=l \mid x_{i}\right)}=\log \frac{p\left(x_{i} \mid k\right)}{p\left(x_{i} \mid l\right)}+\log \frac{p(k)}{p(l)}
$$

LDiscA: (2) Shared Covariance

$$
\begin{aligned}
& \log \frac{p\left(\widehat{y_{i}}=k \mid x_{i}\right)}{p\left(\widehat{y_{i}}=l \mid x_{i}\right)}=\log \frac{p\left(x_{i} \mid k\right)}{p\left(x_{i} \mid l\right)}+\log \frac{p(k)}{p(l)} \\
&= \log \frac{p(k)}{p(l)}+\log \left[\frac{\exp \left(-\frac{1}{2}\left(x_{i}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{i}-\mu_{k}\right)\right)}{(2 \pi)^{D / 2}\left|\Sigma_{k}\right|^{1 / 2}}\right. \\
&\left.\frac{\exp \left(-\frac{1}{2}\left(x_{i}-\mu_{l}\right)^{T} \Sigma_{l}^{-1}\left(x_{i}-\mu_{l}\right)\right)}{(2 \pi)^{D / 2}\left|\Sigma_{l}\right|^{1 / 2}}\right]
\end{aligned}
$$

LDiscA: (2) Shared Covariance

$$
\begin{aligned}
& \log \frac{p\left(\widehat{y_{i}}=k \mid x_{i}\right)}{p\left(\widehat{y_{i}}=l \mid x_{i}\right)}=\log \frac{p\left(x_{i} \mid k\right)}{p\left(x_{i} \mid l\right)}+\log \frac{p(k)}{p(l)} \\
&= \log \frac{p(k)}{p(l)}+\log \left[\frac{\exp \left(-\frac{1}{2}\left(x_{i}-\mu_{k}\right)^{T} \Sigma^{-1}\left(x_{i}-\mu_{k}\right)\right)}{\frac{(2 \pi) D / 2 \mid \Sigma^{1 / 1 / 2}}{}}\left[\frac{\exp \left(-\frac{1}{2}\left(x_{i}-\mu_{l}\right)^{T} \Sigma^{-1}\left(x_{i}-\mu_{l}\right)\right)}{\frac{(2 \pi)^{D / 2|\Sigma| 1 / 2}}{l|l|}}\right]\right. \\
& \Sigma_{l}=\Sigma_{k}
\end{aligned}
$$

LDiscA: (2) Shared Covariance

$$
\begin{aligned}
& \log \frac{p\left(\widehat{y_{i}}=k \mid x_{i}\right)}{p\left(\widehat{y_{i}}=l \mid x_{i}\right)}=\log \frac{p\left(x_{i} \mid k\right)}{p\left(x_{i} \mid l\right)}+\log \frac{p(k)}{p(l)} \\
= & \log \frac{p(k)}{p(l)}-\frac{1}{2}\left(\mu_{k}-\mu_{l}\right)^{T} \Sigma^{-1}\left(\mu_{k}-\mu_{l}\right)+x_{i}^{T} \Sigma^{-1}\left(\mu_{k}-\mu_{l}\right)
\end{aligned}
$$

linear in x_{i}
(check for yourself: why did the quadratic x_{i} terms cancel?)

LDiscA: (2) Shared Covariance

$$
\begin{gathered}
\log \frac{p\left(\widehat{y}_{i}=k \mid x_{i}\right)}{p\left(\hat{y}_{i}=l \mid x_{i}\right)}=\log \frac{p\left(x_{i} \mid k\right)}{p\left(x_{i} \mid l\right)}+\log \frac{p(k)}{p(l)} \\
=\log \frac{p(k)}{p(l)}-\frac{1}{2}\left(\mu_{k}-\mu_{l}\right)^{T} \Sigma^{-1}\left(\mu_{k}-\mu_{l}\right)+x_{i}^{T} \Sigma^{-1}\left(\mu_{k}-\mu_{l}\right) \\
=x_{i}^{T} \Sigma^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \Sigma^{-1} \mu_{k}+\log p(k) \\
+x_{i}^{T} \Sigma^{-1} \mu_{l}-\frac{1}{2} \mu_{l}^{T} \Sigma^{-1} \mu_{l}+\log p(l)
\end{gathered}
$$

linear in x_{i}
(check for yourself: why did the quadratic x_{i} terms cancel?)
rewrite only in terms of x_{i} (data) and single-class terms

Classify via Linear Discriminant Functions

$$
\delta_{k}\left(x_{i}\right)=x_{i}^{T} \Sigma^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \Sigma^{-1} \mu_{k}+\log p(k)
$$

$\arg \max$

$$
\delta_{k}\left(x_{i}\right) \xrightarrow[\text { to }]{\text { equivalent }}
$$

MAP classifier

LDiscA

Parameters to learn: $\{p(k)\}_{k},\left\{\mu_{k}\right\}_{k}, \Sigma$

$p(k) \propto N_{k}$
number of items
labeled with class k

LDiscA

Parameters to learn: $\{p(k)\}_{k},\left\{\mu_{k}\right\}_{k}, \Sigma$
$p(k) \propto N_{k}$

$$
\mu_{k}=\frac{1}{N_{k}} \sum_{i: y_{i}=k} x_{i}
$$

LDiscA

Parameters to learn: $\{p(k)\}_{k},\left\{\mu_{k}\right\}_{k}, \Sigma$

$$
p(k) \propto N_{k} \quad \mu_{k}=\frac{1}{N_{k}} \sum_{i: y_{i}=k} x_{i}
$$

$$
\left.\begin{array}{c}
\Sigma=\frac{1}{N-K} \sum_{k} \text { scatter }_{k}=\frac{1}{N-K} \sum_{k}\left[\sum_{\substack{i: y_{i}=k \\
\text { within-class covariance }}}\left(x_{i}-\mu_{k}\right)\left(x_{i}-\mu_{k}\right)^{T}\right] \\
\text { one option for } \Sigma
\end{array}\right]
$$

Computational Steps for FullDimensional LDiscA

1. Compute means, priors, and covariance

Computational Steps for FullDimensional LDiscA

1. Compute means, priors, and covariance
2. Diagonalize covariance

Computational Steps for FullDimensional LDiscA

1. Compute means, priors, and covariance
2. Diagonalize covariance

$$
\Sigma=\text { UDU }^{T}
$$

3. Sphere the data

$$
\mathrm{X}^{*}=D^{\frac{-1}{2}} U^{T} X
$$

Computational Steps for FullDimensional LDiscA

1. Compute means, priors, and covariance
2. Diagonalize covariance

$$
\Sigma=\mathrm{UDU}^{\mathrm{T}}
$$

3. Sphere the data (get unit covariance)

$$
\mathrm{X}^{*}=D^{\frac{-1}{2}} U^{T} X
$$

4. Classify according to linear discriminant functions $\delta_{k}\left(x_{i}^{*}\right)$

Two Extensions to LDiscA

Quadratic Discriminant Analysis (QDA)

Keep separate covariances per class

$$
\begin{gathered}
\delta_{k}\left(x_{i}\right)= \\
-\frac{1}{2}\left(x_{i}-\mu_{k}\right)^{\mathrm{T}} \Sigma_{\mathrm{k}}^{-1}\left(x_{i}-\mu_{k}\right) \\
+\log p(k)-\frac{\log \left|\Sigma_{k}\right|}{2}
\end{gathered}
$$

Two Extensions to LDiscA

Quadratic Discriminant Analysis (QDA)

Keep separate covariances per class

$$
\delta_{k}\left(x_{i}\right)=
$$

$$
-\frac{1}{2}\left(x_{i}-\mu_{k}\right)^{\mathrm{T}} \Sigma_{\mathrm{k}}^{-1}\left(x_{i}-\mu_{k}\right)
$$

$$
+\log p(k)-\frac{\log \left|\Sigma_{k}\right|}{2}
$$

Regularized LDiscA

Interpolate between shared covariance estimate (LDiscA) and class-specific estimate (QDA)

$$
\Sigma_{k}(\alpha)=\alpha \Sigma_{k}+(1-\alpha) \Sigma
$$

Vowel Classification

LDiscA (left) vs. QDA (right)

Vowel Classification

LDiscA (left) vs. QDA (right)

Regularized Discriminant Analysis on the Vowel Data

Regularized LDiscA

$$
\Sigma_{k}(\alpha)=\alpha \Sigma_{k}+(1-\alpha) \Sigma
$$

LDA for Dimensionality Reduction

Classifying D-dimensional inputs (features) into K-dimensional space (labels)

Can we view the data faithfully (optimally) in smaller dimensions?

Fisher's optimal: spread out the centroids (means)

Fisher's Argument

"Find a linear combination such that the between-class variance is maximized relative to the within-class variance" (ESL, 4.3)

Fisher's Argument

"Find a linear combination such that the between-class variance is maximized relative to the within-class variance" (ESL, 4.3)

L-Dimensional LDiscA

"Find a linear combination such that the between-class variance is maximized relative to the within-class variance" (ESL, 4.3)

$$
\begin{gathered}
\max \frac{u^{T} B u}{u^{T} \sum u} \\
\mathrm{~B}=\sum_{k}\left(\mu_{k}-\mu\right)\left(\mu_{k}-\mu\right)^{T} \\
\text { between-class scatter (covariance) }
\end{gathered}
$$

L-Dimensional LDiscA

"Find a linear combination such that the between-class variance is maximized relative to the within-class variance" (ESL, 4.3)

$$
\begin{gathered}
\max \frac{u^{T} B u}{u^{T} \Sigma u} \xrightarrow{\longrightarrow} \max u^{T} B u \text { s.t. } u^{T} \Sigma u=1 \\
B=\sum_{k}\left(\mu_{k}-\mu\right)\left(\mu_{k}-\mu\right)^{T} \\
\text { between-class scatter (covariance) }
\end{gathered}
$$

L-Dimensional LDiscA

"Find a linear combination such that the between-class variance is maximized relative to the within-class variance" (ESL, 4.3)
generalized eigenvalue problem

L-Dimensional LDiscA

"Find a linear combination such that the between-class variance is maximized relative to the within-class variance" (ESL, 4.3)
find the next largest eigenvector

$$
\begin{gathered}
\max u_{2}^{T} B u_{2} \\
\text { s.t. } u_{2}^{T} \Sigma u_{2}=1, u_{1}^{T} u_{2}=0
\end{gathered}
$$

L-Dimensional LDiscA

"Find a linear combination such that the between-class variance is maximized relative to the within-class variance" (ESL, 4.3)
and the next largest eigenvector....

$$
\begin{gathered}
\max u_{3}^{T} B u_{3} \\
\text { s. t. } u_{3}^{T} \Sigma u_{3}=1 \\
u_{1}^{T} u_{2}=0 \\
u_{1}^{T} u_{3}=0 \\
u_{2}^{T} u_{3}=0
\end{gathered}
$$

L-Dimensional LDiscA

1. Compute means μ, priors, and common covariance Σ

$$
\Sigma=\frac{1}{N-K} \sum_{k} \text { scatter }_{k}=\frac{1}{N-K} \sum_{k}\left[\sum_{i: y_{i}=k}\left(x_{i}-\mu_{k}\right)\left(x_{i}-\mu_{k}\right)^{T}\right]
$$

L-Dimensional LDiscA

1. Compute means μ, priors, and common covariance Σ

$$
\Sigma=\frac{1}{N-K} \sum_{k} \text { scatter }_{k}=\frac{1}{N-K} \sum_{k}\left[\sum_{i: y_{i}=k}\left(x_{i}-\mu_{k}\right)\left(x_{i}-\mu_{k}\right)^{T}\right]
$$

2. Compute the between-class scatter (covariance)

$$
\mathrm{B}=\sum_{k}\left(\mu_{k}-\mu\right)\left(\mu_{k}-\mu\right)^{T}
$$

L-Dimensional LDiscA

1. Compute means μ, priors, and common covariance Σ

$$
\Sigma=\frac{1}{N-K} \sum_{k} \text { scatter }_{k}=\frac{1}{N-K} \sum_{k}\left[\sum_{l_{i:}: y_{i}=k}\left(x_{i}-\mu_{k}\right)\left(x_{i}-\mu_{k}\right)^{T}\right]
$$

2. Compute the between-class scatter (covariance)

$$
\mathrm{B}=\sum_{k}\left(\mu_{k}-\mu\right)\left(\mu_{k}-\mu\right)^{T}
$$

3. Compute the eigen decomposition of B

$$
B=V D_{B} V^{T}
$$

L-Dimensional LDiscA

1. Compute means μ, priors, and common covariance Σ

$$
\Sigma=\frac{1}{N-K} \sum_{k} \text { scatter }_{k}=\frac{1}{N-K} \sum_{k}\left[\sum_{i: y_{i}=k}\left(x_{i}-\mu_{k}\right)\left(x_{i}-\mu_{k}\right)^{T}\right]
$$

2. Compute the between-class scatter (covariance)

$$
\mathrm{B}=\sum_{k}\left(\mu_{k}-\mu\right)\left(\mu_{k}-\mu\right)^{T}
$$

3. Compute the eigen decomposition of B

$$
B=V D_{B} V^{T}
$$

4. Take the top L eigenvectors from V

Vowel Classification

LDA and Dimension Reduction on the Vowel Data

Vowel Classification

Supervised \rightarrow Unsupervised

Supervised learning: learning with a teacher
You had training data which was (feature, label) pairs and the goal was to learn a mapping from features to labels

Supervised \rightarrow Unsupervised

Supervised learning: learning with a teacher
You had training data which was (feature, label) pairs and the goal was to learn a mapping from features to labels

Unsupervised learning: learning without a teacher
Only features and no labels

Why is unsupervised learning useful?
Visualization - dimensionality reduction
lower dimensional features might help learning
Discover hidden structures in the data: clustering

Outline

Linear Algebra/Math Review

Two Methods of Dimensionality Reduction
Linear Discriminant Analysis (LDA, LDiscA)
Principal Component Analysis (PCA)

Geometric Rationale of LDiscA \& PCA

Objective: to rigidly rotate the axes of the D-dimensional space to new positions (principal axes):
ordered such that principal axis 1 has the highest variance, axis 2 has the next highest variance, , and axis D has the lowest variance
covariance among each pair of the principal axes is zero (the principal
 axes are uncorrelated)

L-Dimensional PCA

1. Compute mean μ, priors, and common covariance Σ

$$
\Sigma=\frac{1}{N} \sum_{i: y_{i}=k}\left(x_{i}-\mu\right)\left(x_{i}-\mu\right)^{T} \quad \mu=\frac{1}{N} \sum_{i} x_{i}
$$

2. Sphere the data (zero-mean, unit covariance)
3. Compute the (top L) eigenvectors, from sphere-d data, via V

$$
X^{*}=V D_{B} V^{T}
$$

4. Project the data

2D Example of PCA

variables X_{1} and X_{2} have positive covariance $\&$ each has a similar variance

Configuration is Centered

subtract the component-wise mean

Compute Principal Components

PC 1 has the highest possible variance (9.88)
PC 2 has a variance of 3.03
PC 1 and PC 2 have zero covariance.

Compute Principal Components

PC 1 has the highest possible variance (9.88)
PC 2 has a variance of 3.03
PC 1 and PC 2 have zero covariance.

Variable X_{1}

PC axes are a rigid rotation of the original variables
PC 1 is simultaneously the direction of maximum variance and a least-squares "line of best fit" (squared distances of points away from PC 1 are minimized).

Generalization to p-dimensions

if we take the first k principal components, they define the k dimensional "hyperplane of best fit" to the point cloud
of the total variance of all p variables:

PCs 1 to k represent the maximum possible proportion of that variance that can be displayed in k dimensions

How many axes are needed?

does the $(k+1)^{\text {th }}$ principal axis represent more variance than would be expected by chance?
a common "rule of thumb" when PCA is based on correlations is that axes with eigenvalues > 1 are worth interpreting

PCA as Reconstruction Error

$$
Z=X U
$$

$$
\min _{U}\left|X-Z U^{T}\right|^{2}=
$$

NxD DxL

PCA as Reconstruction Error

$$
Z=X U
$$

$$
\min _{U}\left|X-Z U^{T}\right|^{2}=
$$

NxD DxL

$$
\min _{U}\left|X-X U U^{T}\right|^{2}=
$$

PCA as Reconstruction Error

$$
Z=X U
$$

$$
\min _{U}\left|X-Z U^{T}\right|^{2}=
$$

NxD DxL

$$
\begin{gathered}
\min _{U}\left|X-X U U^{T}\right|^{2}= \\
\min _{U} 2|X|^{2}-2 U^{T} X^{T} X U=
\end{gathered}
$$

PCA as Reconstruction Error

$$
\begin{array}{cc}
Z=X U & \min _{U}\left|X-Z U^{T}\right|^{2}= \\
\text { N×D DxL } & \min _{U}\left|X-X U U^{T}\right|^{2}= \\
\min _{U} 2|X|^{2}-2 U^{T} X^{T} X U= \\
\min _{U} C-2|X U|^{2}
\end{array}
$$

maximizing variance \leftrightarrow minimizing reconstruction error

Slides Credit

 https://www.mii.lt/zilinskas/uploads/visualization/lectures/le ct4/lect4 pca/PCA1.ppt