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Covariance

covariance: how (linearly) correlated are variables
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𝜎𝜎𝑖𝑖𝑗𝑗 = 𝜎𝜎𝑗𝑗𝑖𝑖 Σ =
𝜎𝜎11 ⋯ 𝜎𝜎1𝐾𝐾
⋮ ⋱ ⋮
𝜎𝜎𝐾𝐾1 ⋯ 𝜎𝜎𝐾𝐾𝐾𝐾



Eigenvalues and Eigenvectors

𝐴𝐴𝑥𝑥 = 𝜆𝜆𝑥𝑥
matrix

vector

scalar

for a given matrix operation (multiplication):

what non-zero vector(s) change linearly? 
(by a single multiplication) 
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𝐴𝐴𝑥𝑥 = 𝜆𝜆𝑥𝑥
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vector

scalar

𝐴𝐴 = 1 5
0 1



Eigenvalues and Eigenvectors

𝐴𝐴𝑥𝑥 = 𝜆𝜆𝑥𝑥
matrix

vector

scalar

𝐴𝐴 = 1 5
0 1

1 5
0 1

𝑥𝑥
𝑦𝑦 = 𝑥𝑥 + 5𝑦𝑦

𝑦𝑦

𝑥𝑥 + 5𝑦𝑦
𝑦𝑦 = 𝜆𝜆

𝑥𝑥
𝑦𝑦



Eigenvalues and Eigenvectors

𝐴𝐴𝑥𝑥 = 𝜆𝜆𝑥𝑥
matrix

vector

scalar

𝐴𝐴 = 1 5
0 1

only non-zero vector 
to scale 

1 5
0 1

1
0 = 1 1

0

𝑥𝑥 + 5𝑦𝑦
𝑦𝑦 = 𝜆𝜆

𝑥𝑥
𝑦𝑦
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Dimensionality Reduction

Original (lightly preprocessed 
data)

Compressed 
representation

N 
instances

D input 
features

L reduced 
features



Dimensionality Reduction

clarity of representation vs. ease of understanding

oversimplification: loss of important or relevant 
information

Courtesy Antano Žilinsko



Why “maximize” the variance?

How can we efficiently summarize? We 
maximize the variance within our summarization

We don’t increase the variance in the dataset

How can we capture the most information with 
the fewest number of axes?



Summarizing Redundant Information

(2,1)

(2,-1)(-2,-1)

(4,2)



Summarizing Redundant Information

(2,-1)(-2,-1)

(4,2)

(2,1) = 2*(1,0) + 1*(0,1)

(2,1)



Summarizing Redundant Information
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(2,-1)(-2,-1)

(4,2)

(2,1)

(2,-1)(-2,-1)

(4,2)

u1

u2

2u1

-u1

(2,1) = 1*(2,1) + 0*(2,-1)
(4,2) = 2*(2,1) + 0*(2,-1)



Summarizing Redundant Information

(2,1)

(2,-1)(-2,-1)

(4,2)

(2,1)

(2,-1)(-2,-1)

(4,2)

u1

u2

2u1

-u1

(2,1) = 1*(2,1) + 0*(2,-1)
(4,2) = 2*(2,1) + 0*(2,-1)

(Is it the most general? These 
vectors aren’t orthogonal)
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Linear Discriminant Analysis (LDA, LDiscA) 
and Principal Component Analysis (PCA)

Summarize D-dimensional input data by uncorrelated 
axes

Uncorrelated axes are also called principal 
components

Use the first L components to account for as much 
variance as possible



Geometric Rationale of LDiscA & PCA

Objective: to rigidly rotate the axes of the D-
dimensional space to new positions (principal axes):

ordered such that principal axis 1 has the highest 
variance, axis 2 has the next highest variance, .... , and 
axis D has the lowest variance

covariance among each pair of the principal axes is zero 
(the principal axes are uncorrelated)

Courtesy Antano Žilinsko



Remember: MAP Classifiers are Optimal for 
Classification

min
𝐰𝐰

�
𝑖𝑖

𝔼𝔼�𝑦𝑦𝑖𝑖[ℓ
0/1(𝑦𝑦, �𝑦𝑦𝑖𝑖)] → max

𝐰𝐰
�
𝑖𝑖

𝑝𝑝 �𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

𝑝𝑝 �𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 ∝ 𝑝𝑝 𝑥𝑥𝑖𝑖 �𝑦𝑦𝑖𝑖 𝑝𝑝(�𝑦𝑦𝑖𝑖)
posterior class-conditional 

likelihood class prior

𝑥𝑥𝑖𝑖 ∈ ℝ𝐷𝐷



Linear Discriminant Analysis

MAP Classifier where:

1. class-conditional likelihoods are Gaussian

2. common covariance among class likelihoods



LDiscA: (1) What if likelihoods are Gaussian

𝑝𝑝 �𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 ∝ 𝑝𝑝 𝑥𝑥𝑖𝑖 �𝑦𝑦𝑖𝑖 𝑝𝑝(�𝑦𝑦𝑖𝑖)

𝑝𝑝 𝑥𝑥𝑖𝑖 𝑘𝑘 =𝒩𝒩 𝜇𝜇𝑘𝑘 ,Σ𝑘𝑘

=
exp −12 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 𝑇𝑇Σ𝑘𝑘−1 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘

2𝜋𝜋 𝐷𝐷/2 Σ𝑘𝑘 1/2

https://upload.wikimedia.org/wikipedia/commons/5/57/Multivariate_Gaussian.png



LDiscA: (2) Shared Covariance
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= log
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+ log
𝑝𝑝(𝑘𝑘)
𝑝𝑝 𝑙𝑙
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Σ𝑙𝑙 = Σ𝑘𝑘



LDiscA: (2) Shared Covariance
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𝜇𝜇𝑘𝑘 − 𝜇𝜇𝑙𝑙 𝑇𝑇Σ−1 𝜇𝜇𝑘𝑘 − 𝜇𝜇𝑙𝑙 + 𝑥𝑥𝑖𝑖𝑇𝑇Σ−1(𝜇𝜇𝑘𝑘 − 𝜇𝜇𝑙𝑙)

linear in xi
(check for yourself: why did the 

quadratic xi terms cancel?)
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= 𝑥𝑥𝑖𝑖𝑇𝑇Σ−1𝜇𝜇𝑘𝑘 −
1
2
𝜇𝜇𝑘𝑘𝑇𝑇Σ−1𝜇𝜇𝑘𝑘 + log𝑝𝑝(𝑘𝑘)

+𝑥𝑥𝑖𝑖𝑇𝑇Σ−1𝜇𝜇𝑙𝑙 −
1
2
𝜇𝜇𝑙𝑙𝑇𝑇Σ−1𝜇𝜇𝑙𝑙 + log𝑝𝑝 𝑙𝑙

rewrite only in terms of xi
(data) and single-class terms



Classify via Linear Discriminant 
Functions

𝛿𝛿𝑘𝑘 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑇𝑇Σ−1𝜇𝜇𝑘𝑘 −
1
2
𝜇𝜇𝑘𝑘𝑇𝑇Σ−1𝜇𝜇𝑘𝑘 + log𝑝𝑝(𝑘𝑘)

argmax
𝑘𝑘

𝛿𝛿𝑘𝑘 𝑥𝑥𝑖𝑖 MAP classifierequivalent 
to



LDiscA

Parameters to learn: 𝑝𝑝 𝑘𝑘 𝑘𝑘 , 𝜇𝜇𝑘𝑘 𝑘𝑘 , Σ

𝑝𝑝 𝑘𝑘 ∝ 𝑁𝑁𝑘𝑘

number of items 
labeled with class k



LDiscA

Parameters to learn: 𝑝𝑝 𝑘𝑘 𝑘𝑘 , 𝜇𝜇𝑘𝑘 𝑘𝑘 , Σ

𝑝𝑝 𝑘𝑘 ∝ 𝑁𝑁𝑘𝑘 𝜇𝜇𝑘𝑘 =
1
𝑁𝑁𝑘𝑘

�
𝑖𝑖:𝑦𝑦𝑖𝑖=𝑘𝑘

𝑥𝑥𝑖𝑖



LDiscA

Parameters to learn: 𝑝𝑝 𝑘𝑘 𝑘𝑘 , 𝜇𝜇𝑘𝑘 𝑘𝑘 , Σ

𝑝𝑝 𝑘𝑘 ∝ 𝑁𝑁𝑘𝑘 𝜇𝜇𝑘𝑘 =
1
𝑁𝑁𝑘𝑘

�
𝑖𝑖:𝑦𝑦𝑖𝑖=𝑘𝑘

𝑥𝑥𝑖𝑖

Σ =
1

𝑁𝑁 − 𝐾𝐾
�
𝑘𝑘

scatter𝑘𝑘 =
1

𝑁𝑁 − 𝐾𝐾
�
𝑘𝑘

�
𝑖𝑖:𝑦𝑦𝑖𝑖=𝑘𝑘

𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 𝑇𝑇

within-class covarianceone option for 𝛴𝛴



Computational Steps for Full-
Dimensional LDiscA

1. Compute means, priors, and covariance



Computational Steps for Full-
Dimensional LDiscA

1. Compute means, priors, and covariance
2. Diagonalize covariance

Σ = UDUT

diagonal matrix of 
eigenvalues

K x K orthonormal 
matrix (eigenvectors)

Eigen decomposition



Computational Steps for Full-
Dimensional LDiscA

1. Compute means, priors, and covariance
2. Diagonalize covariance

3. Sphere the data

Σ = UDUT

X∗ = 𝐷𝐷
−1
2 𝑈𝑈𝑇𝑇𝑋𝑋



Computational Steps for Full-
Dimensional LDiscA

1. Compute means, priors, and covariance
2. Diagonalize covariance

3. Sphere the data (get unit covariance)

4. Classify according to linear discriminant 
functions 𝛿𝛿𝑘𝑘(𝑥𝑥𝑖𝑖∗)

Σ = UDUT

X∗ = 𝐷𝐷
−1
2 𝑈𝑈𝑇𝑇𝑋𝑋



Two Extensions to LDiscA
Quadratic Discriminant Analysis 
(QDA)

Keep separate covariances per 
class

𝛿𝛿𝑘𝑘 𝑥𝑥𝑖𝑖 =

−
1
2
𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 TΣk−1(𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘)

+ log𝑝𝑝 𝑘𝑘 −
log |Σ𝑘𝑘|
2



Two Extensions to LDiscA
Quadratic Discriminant Analysis 
(QDA)

Keep separate covariances per 
class

𝛿𝛿𝑘𝑘 𝑥𝑥𝑖𝑖 =

−
1
2
𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 TΣk−1(𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘)

+ log𝑝𝑝 𝑘𝑘 −
log |Σ𝑘𝑘|
2

Regularized LDiscA

Interpolate between shared 
covariance estimate (LDiscA) 
and class-specific estimate 
(QDA)

Σ𝑘𝑘 𝛼𝛼 = 𝛼𝛼Σ𝑘𝑘 + 1− 𝛼𝛼 Σ



Vowel Classification

LDiscA (left) vs. QDA (right)

ESL 4.3



Vowel Classification

LDiscA (left) vs. QDA (right)

Regularized LDiscA

ESL 4.3

Σ𝑘𝑘 𝛼𝛼 = 𝛼𝛼Σ𝑘𝑘 + 1− 𝛼𝛼 Σ



LDA for Dimensionality Reduction

Classifying D-dimensional inputs (features) into 
K-dimensional space (labels)

Can we view the data faithfully (optimally) in 
smaller dimensions?

Fisher’s optimal: spread out the centroids 
(means)



Fisher’s Argument

“Find a linear combination such that the between-class variance 
is maximized relative to the within-class variance” (ESL, 4.3)

separating the 
means isn’t 

enough

also consider 
the covariance



Fisher’s Argument

“Find a linear combination such that the between-class variance 
is maximized relative to the within-class variance” (ESL, 4.3)

separating the 
means isn’t 

enough

also consider 
the covariance



L-Dimensional LDiscA

B =�
𝑘𝑘

𝜇𝜇𝑘𝑘 − 𝜇𝜇 𝜇𝜇𝑘𝑘 − 𝜇𝜇 𝑇𝑇

max
𝑢𝑢𝑇𝑇𝐵𝐵𝑢𝑢
𝑢𝑢𝑇𝑇Σ𝑢𝑢

“Find a linear combination such that the between-class variance 
is maximized relative to the within-class variance” (ESL, 4.3)

between-class scatter (covariance)



L-Dimensional LDiscA

B =�
𝑘𝑘

𝜇𝜇𝑘𝑘 − 𝜇𝜇 𝜇𝜇𝑘𝑘 − 𝜇𝜇 𝑇𝑇

max
𝑢𝑢𝑇𝑇𝐵𝐵𝑢𝑢
𝑢𝑢𝑇𝑇Σ𝑢𝑢

“Find a linear combination such that the between-class variance 
is maximized relative to the within-class variance” (ESL, 4.3)

max𝑢𝑢𝑇𝑇𝐵𝐵𝑢𝑢 s. t.𝑢𝑢𝑇𝑇Σ𝑢𝑢 = 1

between-class scatter (covariance)



L-Dimensional LDiscA

max
𝑢𝑢𝑇𝑇𝐵𝐵𝑢𝑢
𝑢𝑢𝑇𝑇Σ𝑢𝑢

“Find a linear combination such that the between-class variance 
is maximized relative to the within-class variance” (ESL, 4.3)

max𝑢𝑢𝑇𝑇𝐵𝐵𝑢𝑢 s. t.𝑢𝑢𝑇𝑇Σ𝑢𝑢 = 1

generalized eigenvalue problem

first (largest) 
eigenvector



L-Dimensional LDiscA

“Find a linear combination such that the between-class variance 
is maximized relative to the within-class variance” (ESL, 4.3)

max𝑢𝑢2𝑇𝑇𝐵𝐵𝑢𝑢2
s. t.𝑢𝑢2𝑇𝑇Σ𝑢𝑢2 = 1,𝑢𝑢1𝑇𝑇𝑢𝑢2 = 0

find the next largest eigenvector



L-Dimensional LDiscA

“Find a linear combination such that the between-class variance 
is maximized relative to the within-class variance” (ESL, 4.3)

max𝑢𝑢3𝑇𝑇𝐵𝐵𝑢𝑢3
s. t.𝑢𝑢3𝑇𝑇Σ𝑢𝑢3 = 1,
𝑢𝑢1𝑇𝑇𝑢𝑢2 = 0,
𝑢𝑢1𝑇𝑇𝑢𝑢3 = 0,
𝑢𝑢2𝑇𝑇𝑢𝑢3 = 0

and the next largest eigenvector….



L-Dimensional LDiscA

1. Compute means 𝜇𝜇, priors, and common 
covariance Σ

Σ =
1
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scatter𝑘𝑘 =
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𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 𝑇𝑇



L-Dimensional LDiscA

1. Compute means 𝜇𝜇, priors, and common 
covariance Σ

2. Compute the between-class scatter 
(covariance)

Σ =
1

𝑁𝑁 − 𝐾𝐾
�
𝑘𝑘

scatter𝑘𝑘 =
1

𝑁𝑁 − 𝐾𝐾
�
𝑘𝑘

�
𝑖𝑖:𝑦𝑦𝑖𝑖=𝑘𝑘

𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 𝑇𝑇

B =�
𝑘𝑘

𝜇𝜇𝑘𝑘 − 𝜇𝜇 𝜇𝜇𝑘𝑘 − 𝜇𝜇 𝑇𝑇



L-Dimensional LDiscA

1. Compute means 𝜇𝜇, priors, and common 
covariance Σ

2. Compute the between-class scatter 
(covariance)

3. Compute the eigen decomposition of B 

Σ =
1

𝑁𝑁 − 𝐾𝐾
�
𝑘𝑘

scatter𝑘𝑘 =
1

𝑁𝑁 − 𝐾𝐾
�
𝑘𝑘

�
𝑖𝑖:𝑦𝑦𝑖𝑖=𝑘𝑘

𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 𝑇𝑇

𝐵𝐵 = 𝑉𝑉𝐷𝐷𝐵𝐵𝑉𝑉𝑇𝑇

B =�
𝑘𝑘

𝜇𝜇𝑘𝑘 − 𝜇𝜇 𝜇𝜇𝑘𝑘 − 𝜇𝜇 𝑇𝑇



L-Dimensional LDiscA
1. Compute means 𝜇𝜇, priors, and common covariance Σ

2. Compute the between-class scatter (covariance)

3. Compute the eigen decomposition of B 

4. Take the top L eigenvectors from V

Σ =
1

𝑁𝑁 − 𝐾𝐾
�
𝑘𝑘

scatter𝑘𝑘 =
1

𝑁𝑁 − 𝐾𝐾
�
𝑘𝑘

�
𝑖𝑖:𝑦𝑦𝑖𝑖=𝑘𝑘

𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 𝑇𝑇

𝐵𝐵 = 𝑉𝑉𝐷𝐷𝐵𝐵𝑉𝑉𝑇𝑇

B =�
𝑘𝑘

𝜇𝜇𝑘𝑘 − 𝜇𝜇 𝜇𝜇𝑘𝑘 − 𝜇𝜇 𝑇𝑇



Vowel Classification

ESL 4.3
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ESL 4.3



Supervised learning: learning with a teacher
You had training data which was (feature, label) pairs and the goal 
was to learn a mapping from features to labels

Supervised Æ Unsupervised



Supervised learning: learning with a teacher
You had training data which was (feature, label) pairs and the goal 
was to learn a mapping from features to labels

Unsupervised learning: learning without a teacher
Only features and no labels

Why is unsupervised learning useful?
Visualization — dimensionality reduction

lower dimensional features might help learning

Discover hidden structures in the data: clustering

Supervised Æ Unsupervised



Outline

Linear Algebra/Math Review

Two Methods of Dimensionality Reduction
Linear Discriminant Analysis (LDA, LDiscA)
Principal Component Analysis (PCA)



Geometric Rationale of LDiscA & PCA

Objective: to rigidly rotate the 
axes of the D-dimensional space 
to new positions (principal axes):

ordered such that principal axis 1 
has the highest variance, axis 2 has 
the next highest variance, .... , and 
axis D has the lowest variance

covariance among each pair of the 
principal axes is zero (the principal 
axes are uncorrelated)

Adapted from Antano Žilinsko



L-Dimensional PCA

1. Compute mean 𝜇𝜇, priors, and common 
covariance Σ

2. Sphere the data (zero-mean, unit covariance) 
3. Compute the (top L) eigenvectors, from 

sphere-d data, via V

4. Project the data

Σ =
1
𝑁𝑁

�
𝑖𝑖:𝑦𝑦𝑖𝑖=𝑘𝑘

𝑥𝑥𝑖𝑖 − 𝜇𝜇 𝑥𝑥𝑖𝑖 − 𝜇𝜇 𝑇𝑇

𝑋𝑋∗ = 𝑉𝑉𝐷𝐷𝐵𝐵𝑉𝑉𝑇𝑇

𝜇𝜇 =
1
𝑁𝑁
�
𝑖𝑖

𝑥𝑥𝑖𝑖
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2D Example of PCA
variables X1 and X2 have positive covariance & each has a similar variance

35.81 =X

91.42 =X

Courtesy Antano Žilinsko
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Configuration is Centered
subtract the component-wise mean
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Compute Principal Components
PC 1 has the highest possible variance (9.88)
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Compute Principal Components
PC 1 has the highest possible variance (9.88)
PC 2 has a variance of 3.03
PC 1 and PC 2 have zero covariance.
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PC 2

PC axes are a rigid rotation of the original variables
PC 1 is simultaneously the direction of maximum variance and a 
least-squares “line of best fit” (squared distances of points away 
from PC 1 are minimized).

Courtesy Antano Žilinsko



Generalization to p-dimensions

if we take the first k principal components, they define the k-
dimensional “hyperplane of best fit” to the point cloud

of the total variance of all p variables:

PCs 1 to k represent the maximum possible proportion of that 
variance that can be displayed in k dimensions

Courtesy Antano Žilinsko



How many axes are needed?

does the (k+1)th principal axis represent more 
variance than would be expected by chance?

a common “rule of thumb” when PCA is based 
on correlations is that axes with eigenvalues > 1 

are worth interpreting

Courtesy Antano Žilinsko



PCA as Reconstruction Error

min
𝑈𝑈

𝑋𝑋 − 𝑍𝑍𝑈𝑈𝑇𝑇 2 =𝑍𝑍 = 𝑋𝑋𝑈𝑈

NxD DxL



PCA as Reconstruction Error

min
𝑈𝑈

𝑋𝑋 − 𝑍𝑍𝑈𝑈𝑇𝑇 2 =𝑍𝑍 = 𝑋𝑋𝑈𝑈

min
𝑈𝑈

𝑋𝑋 − 𝑋𝑋𝑈𝑈𝑈𝑈𝑇𝑇 2 =
NxD DxL



PCA as Reconstruction Error

min
𝑈𝑈

𝑋𝑋 − 𝑍𝑍𝑈𝑈𝑇𝑇 2 =𝑍𝑍 = 𝑋𝑋𝑈𝑈

min
𝑈𝑈

𝑋𝑋 − 𝑋𝑋𝑈𝑈𝑈𝑈𝑇𝑇 2 =

min
𝑈𝑈
2 𝑋𝑋 2 − 2𝑈𝑈𝑇𝑇𝑋𝑋𝑇𝑇𝑋𝑋𝑈𝑈 =

NxD DxL



PCA as Reconstruction Error

min
𝑈𝑈

𝑋𝑋 − 𝑍𝑍𝑈𝑈𝑇𝑇 2 =𝑍𝑍 = 𝑋𝑋𝑈𝑈

min
𝑈𝑈

𝑋𝑋 − 𝑋𝑋𝑈𝑈𝑈𝑈𝑇𝑇 2 =

min
𝑈𝑈
2 𝑋𝑋 2 − 2𝑈𝑈𝑇𝑇𝑋𝑋𝑇𝑇𝑋𝑋𝑈𝑈 =

min
𝑈𝑈

𝐶𝐶 − 2 𝑋𝑋𝑈𝑈 2

maximizing variance ↔ minimizing reconstruction error

NxD DxL



Slides Credit

https://www.mii.lt/zilinskas/uploads/visualization/lectures/le
ct4/lect4_pca/PCA1.ppt

https://www.mii.lt/zilinskas/uploads/visualization/lectures/lect4/lect4_pca/PCA1.ppt
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