Logistic Regression

\square Learn the conditional distribution $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$
\square Let $p_{y}(\mathbf{x} ; \mathbf{w})$ be our estimate of $\mathrm{P}(y \mid \mathbf{x})$, where \mathbf{w} is a vector of adjustable parameters. Assume only two classes $y=0$ and $y=1$, and

$$
\begin{aligned}
& p_{1}(\mathbf{x} ; \mathbf{w})=\frac{\exp \mathbf{w} \cdot \mathbf{x}}{1+\exp \mathbf{w} \cdot \mathbf{x}} \\
& p_{0}(\mathbf{x} ; \mathbf{w})=1-p_{1}(\mathbf{x} ; \mathbf{w}) .
\end{aligned}
$$

- On the homework, you will show that this is equivalent to

$$
\log \frac{p_{1}(\mathbf{x} ; \mathbf{w})}{p_{0}(\mathbf{x} ; \mathbf{w})}=\mathbf{w} \cdot \mathbf{x} .
$$

\square In other words, the log odds of class 1 is a linear function of \mathbf{x}.

Why the exp function?

- One reason: A linear function has a range from $[-\infty, \infty]$ and we need to force it to be positive and sum to 1 in order to be a probability:

Deriving a Learning Algorithm

- Since we are fitting a conditional probability distribution, we no longer seek to minimize the loss on the training data. Instead, we seek to find the probability distribution h that is most likely given the training data
- Let S be the training sample. Our goal is to find h to maximize $\mathrm{P}(h \mid$ S):

$$
\begin{aligned}
\underset{h}{\operatorname{argmax}} P(h \mid S) & =\underset{h}{\operatorname{argmax}} \frac{P(S \mid h) P(h)}{P(S)} \quad \text { by Bayes' Rule } \\
& =\underset{h}{\operatorname{argmax}} P(S \mid h) P(h) \quad \text { because } P(S) \text { doesn't depend on } h \\
& =\underset{h}{\operatorname{argmax} P(S \mid h)} \quad \text { if we assume } P(h)=\text { uniform } \\
& =\underset{h}{\operatorname{argmax} \log P(S \mid h)} \quad \text { because log is monotonic }
\end{aligned}
$$

The distribution $\mathrm{P}(\mathrm{S} \mid h)$ is called the likelihood function. The log likelihood is frequently used as the objective function for learning. It is often written as $\ell(\mathbf{w})$.

The h that maximizes the likelihood on the training data is called the maximum likelihood estimator (MLE)

Computing the Likelihood

- In our framework, we assume that each training example ($\mathbf{x}_{\mathrm{i}}, y_{\mathrm{i}}$) is drawn from the same (but unknown) probability distribution $\mathrm{P}(\mathbf{x}, y)$. This means that the log likelihood of S is the sum of the log likelihoods of the individual training examples:

$$
\begin{aligned}
\log P(S \mid h) & =\log \prod_{i} P\left(\mathbf{x}_{i}, y_{i} \mid h\right) \\
& =\sum_{i} \log P\left(\mathbf{x}_{i}, y_{i} \mid h\right)
\end{aligned}
$$

Computing the Likelihood (2)

\square Recall that any joint distribution $\mathrm{P}(\mathrm{a}, \mathrm{b})$ can be factored as $P(a \mid b) P(b)$. Hence, we can write

$$
\begin{aligned}
\underset{h}{\operatorname{argmax} \log P(S \mid h)} & =\underset{h}{\operatorname{argmax}} \sum_{i} \log P\left(\mathbf{x}_{i}, y_{i} \mid h\right) \\
& =\underset{h}{\operatorname{argmax}} \sum_{i} \log P\left(y_{i} \mid \mathbf{x}_{i}, h\right) P\left(\mathbf{x}_{i} \mid h\right)
\end{aligned}
$$

- In our case, $\mathrm{P}(\mathbf{x} \mid h)=\mathrm{P}(\mathbf{x})$, because it does not depend on h, so

$$
\begin{aligned}
\underset{h}{\operatorname{argmax}} \log P(S \mid h) & =\underset{h}{\arg \max } \sum_{i} \log P\left(y_{i} \mid \mathbf{x}_{i}, h\right) P\left(\mathbf{x}_{i} \mid h\right) \\
& =\underset{h}{\arg \max } \sum_{i} \log P\left(y_{i} \mid \mathbf{x}_{i}, h\right)
\end{aligned}
$$

Log Likelihood for Conditional Probability Estimators

- We can express the log likelihood in a compact form known as the cross entropy.
\square Consider an example ($\mathbf{x}_{\mathrm{i}}, y_{\mathrm{i}}$)
- If $y_{i}=0$, the log likelihood is $\log \left[1-p_{1}(x ; w)\right]$
- if $y_{i}=1$, the \log likelihood is $\log \left[p_{1}(\mathbf{x} ; \mathbf{w})\right]$
- These cases are mutually exclusive, so we can combine them to obtain:

$$
\ell\left(y_{i} ; \mathbf{x}_{i} ; \mathbf{w}\right)=\log P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}\right)=\left(1-y_{i}\right) \log \left[1-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right]+y_{i} \log p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)
$$

- The goal of our learning algorithm will be to find w to maximize

$$
J(w)=\sum_{i} \ell\left(y_{i} ; x_{i}, w\right)
$$

Fitting Logistic Regression by Gradient Ascent

$$
\begin{aligned}
\frac{\partial J(\mathbf{w})}{\partial w_{j}} & =\sum_{i} \frac{\partial}{\partial w_{j}} \ell\left(y_{i} ; \mathbf{x}_{i}, \mathbf{w}\right) \\
\frac{\partial}{\partial w_{j}} \ell\left(y_{i} ; \mathbf{x}_{i}, \mathbf{w}\right) & =\frac{\partial}{\partial w_{j}}\left(\left(1-y_{i}\right) \log \left[1-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right]+y_{1} \log p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right) \\
& =\left(1-y_{i}\right) \frac{1}{1-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}\left(-\frac{\partial p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}{\partial w_{j}}\right)+y_{i} \frac{1}{p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}\left(\frac{\partial p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}{\partial w_{j}}\right) \\
& =\left[\frac{y_{i}}{p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}-\frac{\left(1-y_{i}\right)}{1-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}\right]\left(\frac{\partial p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}{\partial w_{j}}\right) \\
& =\left[\frac{y_{i}\left(1-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)-\left(1-y_{i}\right) p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}{p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\left(1-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)}\right]\left(\frac{\partial p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}{\partial w_{j}}\right) \\
& =\left[\frac{y_{i}-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}{p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\left(1-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)}\right]\left(\frac{\partial p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}{\partial w_{j}}\right)
\end{aligned}
$$

Gradient Computation (continued)

\square Note that p_{1} can also be written as

$$
p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)=\frac{1}{\left(1+\exp \left[-\mathbf{w} \cdot \mathbf{x}_{d}\right)\right.} .
$$

\square From this, we obtain:

$$
\begin{aligned}
\frac{\partial p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}{\partial w_{j}} & =-\frac{1}{\left(1+\exp \left[-\mathbf{w} \cdot \mathbf{x}_{i}\right]\right)^{2}} \frac{\partial}{\partial w_{j}}\left(1+\exp \left[-\mathbf{w} \cdot \mathbf{x}_{i}\right]\right) \\
& =-\frac{1}{\left(1+\exp \left[-\mathbf{w} \cdot \mathbf{x}_{i}\right]\right)^{2}} \exp \left[-\mathbf{w} \cdot \mathbf{x}_{i}\right] \frac{\partial}{\partial w_{j}}\left(-\mathbf{w} \cdot \mathbf{x}_{i}\right) \\
& =-\frac{1}{\left(1+\exp \left[-\mathbf{w} \cdot \mathbf{x}_{i}\right]\right)^{2}} \exp \left[-\mathbf{w} \cdot \mathbf{x}_{i}\right]\left(-x_{i j}\right) \\
& =p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\left(1-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right) x_{i j}
\end{aligned}
$$

Completing the Gradient Computation

- The gradient of the log likelihood of a single point is therefore

$$
\begin{aligned}
\frac{\partial}{\partial w_{j}} \ell\left(y_{i} ; \mathbf{x}_{i}, \mathbf{w}\right) & =\left[\frac{y_{i}-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}{p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\left(1-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)}\right]\left(\frac{\partial p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}{\partial w_{j}}\right) \\
& =\left[\frac{y_{i}-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)}{p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\left(1-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)}\right] p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\left(1-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right) x_{i j} \\
& =\left(y_{i}-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right) x_{i j}
\end{aligned}
$$

-The overall gradient is

$$
\frac{\partial J(\mathbf{w})}{\partial w_{j}}=\sum_{i}\left(y_{i}-p_{1}\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right) x_{i j}
$$

Batch Gradient Ascent for Logistic Regression

Given: training examples (x_{i}, y_{i}), $i=1 \ldots N$
Let $\mathrm{w}=(0,0,0,0, \ldots, 0)$ be the initial weight vector.
Repeat until convergence

$$
\begin{aligned}
& \text { Let } \mathbf{g}=(0,0, \ldots, 0) \text { be the gradient vector. } \\
& \text { For } i=1 \text { to } N \text { do } \\
& \quad p_{i}=1 /\left(1+\exp \left[-\mathbf{w} \cdot \mathbf{x}_{i}\right]\right) \\
& \quad \text { error }_{i}=y_{i}-p_{i} \\
& \quad \\
& \quad \text { For } j=1 \text { to } n \text { do } \\
& \quad g_{j}=g_{j}+\text { error } r_{i} \cdot x_{i j} \\
& \mathbf{w}:=\mathbf{w}+\eta \mathbf{g} \quad \text { step in direction of increasing gradient }
\end{aligned}
$$

- An online gradient ascent algorithm can be constructed, of course
- Most statistical packages use a second-order (Newton-Raphson) algorithm for faster convergence. Each iteration of the second-order method can be viewed as a weighted least squares computation, so the algorithm is known as Iteratively-Reweighted Least Squares (IRLS)

Logistic Regression Implements a Linear Discriminant Function

\square In the 2-class 0/1 loss function case, we should predict $\hat{y}=1$ if

$$
\begin{aligned}
E_{y \mid \mathbf{x}}[L(0, y)] & >E_{y \mid \mathbf{x}}[L(1, y)] \\
\sum_{y} P(y \mid \mathbf{x}) L(0, y) & >\sum_{y} P(y \mid \mathbf{x}) L(1, y) \\
P(y=0 \mid \mathbf{x}) L(0,0)+P(y=1 \mid \mathbf{x}) L(0,1) & >P(y=0 \mid \mathbf{x}) L(1,0)+P(y=1 \mid \mathbf{x}) L(1,1) \\
P(y=1 \mid \mathbf{x}) & >P(y=0 \mid \mathbf{x}) \\
\frac{P(y=1 \mid \mathbf{x})}{P(y=0 \mid \mathbf{x})} & >1 \quad \text { if } P(y=0 \mid X) \neq 0 \\
\log \frac{P(y=1 \mid \mathbf{x})}{P(y=0 \mid \mathbf{x})} & >0 \\
\mathbf{w} \cdot \mathbf{x} & >0
\end{aligned}
$$

\square A similar derivation can be done for arbitrary $L(0,1)$ and $L(1,0)$.

Extending Logistic Regression to K > 2 classes

- Choose class K to be the "reference class" and represent each of the other classes as a logistic function of the odds of class k versus class K :

$$
\begin{aligned}
\log \frac{P(y=1 \mid \mathbf{x})}{P(y=K \mid \mathbf{x})} & =\mathbf{w}_{1} \cdot \mathbf{x} \\
\log \frac{P(y=2 \mid \mathbf{x})}{P(y=K \mid \mathbf{x})} & =\mathbf{w}_{2} \cdot \mathbf{x} \\
\log \frac{P(y=K-1 \mid \mathbf{x})}{P(y=K \mid \mathbf{x})} & =\mathbf{w}_{K-1} \cdot \mathbf{x}
\end{aligned}
$$

- Gradient ascent can be applied to simultaneously train all of these weight vectors \mathbf{w}_{k}

Logistic Regression for K > 2 (continued)

\square The conditional probability for class $k \neq K$ can be computed as

$$
P(y=k \mid \mathbf{x})=\frac{\exp \left(\mathbf{w}_{k} \cdot \mathbf{x}\right)}{1+\sum_{\ell=1}^{K-1} \exp \left(\mathbf{w}_{\ell} \cdot \mathbf{x}\right)}
$$

- For class K , the conditional probability is

$$
P(y=K \mid \mathbf{x})=\frac{1}{1+\sum_{\ell=1}^{K-1} \exp \left(\mathbf{w}_{\ell} \cdot \mathbf{x}\right)}
$$

Summary of Logistic Regression

- Learns conditional probability distribution $\mathrm{P}(\mathrm{y} \mid \mathbf{x})$
\square Local Search
- begins with initial weight vector. Modifies it iteratively to maximize the log likelihood of the data
- Eager
- the classifier is constructed from the training examples, which can then be discarded
\square Online or Batch
- both online and batch variants of the algorithm exist

