
R

Strings, Performance, Misc

Base R String Functions

R has limited support for text processing
If this is the main purpose of a project, think about using another
language

Just like other functions in R, the string functions operate on vectors
Common string functions

strsplit
grep/ grepl
nchar
toupper / tolower
substr

In []: print(nchar(c("I'm a little teapot","short and stout")))

print(nchar(c("I'm a little teapot", 14)))

print(nchar("I the only string"))

In []: str_vector <- c("I'm a little teapot","short and stout",14,

 FALSE)

print(toupper(str_vector))

print(tolower(str_vector))

Substring in R

substr and substring take in 3 arguments, any of which can be vectors

If start or end is longer than the other, the values of the shorter one are recycled
Only substring repeats the strings

substr(strings, start, end)

 substring(strings, first, last)

In []: print(substr("Hello World",3,5))

In []: print(substr("Hello World",1:3,1:3))

print(substring("Hello World",1:3,1:3))

print(substring("Hello World",c(1,2,3),c(1,2,3)))

print(substring("Hello World",5:20,10))

print(substring("Hello World",4,10:15))

In []: str_vector <- c("I'm a little teapot","short and stout",14,FALSE)

print(substr(str_vector,2,1000L))

cat("\n")

print(substr(str_vector,1:5,1000L))

cat("\n")

In []: print(substring(str_vector,1:5,1000L))

cat("\n")

print(substring(str_vector,1:15,1000))

Regex in R

Both strsplit as well as grep and grepl can take regular expressions
By default, these are POSIX style regular expressions
Pass perl=TRUE to use PCRE

grep returns the indexes in the vector the match was found at
grepl returns a logic vector indicating if an element of the vector matched

In []: strings_with_spaces <- c("I am a string",

 "I am one too",

 "This also has spaces")

print(strsplit(strings_with_spaces,split=' '))

In []: strings_with_spaces <- c("I am a string",

 "I am one too",

 "This also has spaces")

print(strsplit(strings_with_spaces,split="\\s",perl=TRUE))

In []: strings_with_spaces <- c("I am a string","I am one too","This also has spaces")

print(strsplit(strings_with_spaces,split="\\W",perl=TRUE))

In []: strings_with_spaces <- c("I am a string",

 "I am one too",

 "This also has spaces")

idx <- grep('I',strings_with_spaces,perl=TRUE)

print(strings_with_spaces[idx])

In []: grep('I',strings_with_spaces,perl=TRUE,ignore.case=TRUE)

In []: grep('\\bI\\b',strings_with_spaces,perl=TRUE,ignore.case=TRUE)

In []: grepl('\\bI\\b',strings_with_spaces,perl=TRUE,ignore.case=TRUE)

The StringR library

StringR is based on an older library, called stringi
The aim is to

improve consistency in function calls
make common string manipulation tasks easy

Has robust multilingual support

In []: library(stringr)

In []: print(str_length(str_vector))

In []: print(str_sort(str_vector))

In []: print(str_to_title(str_vector))

In []: print(str_pad(str_vector,40))

In []: str_vector <- c("\n\rI am a string\t\t",

 "I am one\ntoo",

 "This also has spaces")

print(str_trim(str_pad(str_vector,40)))

In []: str_c(str_vector,",")

In []: str_c(str_vector,collapse=", ")

In []: str_detect(str_vector,'o')

In []: str_count(str_vector,'o')

Directory Traversal in R

Most scripting languages provided an easy way to iterate over �les in a directory
This is known as globbing
It also allows wildcards to be used

In R, the function is Sys.glob (note the uppercase)
Rather than returning an iterator, it returns a vector containing all the
�le names

In []: print(Sys.glob("*.html"))

The readr package

As an alternative to built-in data loading functions, some people use the readr
package

I �nd the built in functions good enough usually
readr provides the read_file and write_file functions

These read or write an entire �le into a string ,or vice versa
This is possible in base R, but cumbersome, because you must calculate
the length of the string �rst

In []:

In []:

In []:

library(readr)

contents <- read_file("index.html")

print(contents)

In []: print(str_extract_all(contents,'.*'))

Performance in R

R is commonly viewed as a slow language
Mostly because it is

We can still optimized and make sure to program in an R style
Avoid for loops if you can use a vectorized function
S4 methods are slower than S3, which is slower than a direct function
call
Consider bytecode compilation

Pro�ling your code

The microbenchmark library provides the microbenchmark function
Takes in several functions, runs them all, and prints statistics

For line-by-line pro�ling, use the profvis package
Uses a web browser to show results

In []: library(microbenchmark)

nums <- matrix(c(1:5000),nrow=100)

print(

 microbenchmark(

 colMeans(nums),

 apply(nums,2,mean)

)

)

In []: ## Needs to be run in RStudio

library(profvis)

print(

 profvis(

 {

 nums <- matrix(c(1:50000),nrow=100)

 apply(nums,2,mean)

}

))

Parallelism

Because of its functional design, R is a perfect language for parallelization
The library parallel provides a mutlicore versions of mapply and lapply,

mclapply

mcmapply

mclapply(vector,function,mc.cores=N_CORES)

 mclapply(vector,function,axis,mc.cores=N_CORES)

In []:

In []:

library(parallel)

print(detectCores())

seed_strings <- c("asdf","ghhjk",'qerwet',

 'uopi','zxcv','asdgf')

lots_of_strings <- rep(seed_strings,20000)

print(

 microbenchmark(

 lapply(lots_of_strings,str_length),

 mclapply(lots_of_strings,str_length,mc.cores=7)

)

)

In []: cl <- makeCluster(8)

print(

 microbenchmark(

 colMeans(nums),

 apply(nums,2,mean),

 parCapply(cl,nums,mean)

)

)

stopCluster(cl)

Presenting Data

R is often used in the analysis phase of research
Especially to produce nice graphics

Packages exist that allow papers to be written in R, combined with code
knitr is a very popular one

KnitR

knitR allows a document to be written in
R-style Markdown
HTML
LaTeX

R code is set off in these documents using various conventions
Code is executed and results displayed inline correctly

In []: library(knitr)

knit('005-latex.Rtex')

Loading Libraries from Non Default Locations

By default, R tries to install and looks for packages in a location that needs sudo
access to write
You can change where libraries are installed by adding the lib parameter to
install.packages

There are numerous ways to tell where to look for libraries, including in the
library function

The most consistent way is to set the environmental variable
R_LIBS_USER in your shell before calling R

