
R

Introduction, Variables, Data Types

Brief History

R was developed initially as an alternative implementation of a language known as
S

S �rst came out in 1975 and was originally developed at Bell Labs
Work on R began in 1993, the �rst paper was publish in 1996, and the language
reached version 1.0 in 2000

Lead by a team at the University of Auckland in New Zealand originally
Designed originally for statisticians, not for programmers

Running R

R can be run
From the command line, by using the command R
Using the shebang line #!/usr/bin/Rscript
In Jupyter using the IR kernel
From inside the RStudio IDE

Limitations of R

Code is generally slower than other languages
This was an acceptable trade off given the ease of use

Uses a lot of memory
No easy way to perform calculations in chunks, although some packages
are starting to provide support for this
Is potentially a poor choice for big data

Assignment

R supports two assignment operators: <- and =
Although both are �ne, most style guides and books suggest using <- is preferred

There are many people that argue the exact oppostite however
<- Can be reversed to be written as -> but this is not normally done

In []:

In []:

In []:

a <- 1

b = 1

1 -> c

a == b

b == c

Variable Names

Variables can contain letters, numbers, underscores, and the dot symbol
Because of some historical weirdness, dots in R are often found instead
of underscores

The following names should not be used

a.long.name <- "String"

 c, q, s, t, C, D, F, I, T

In []:

In []:

In []:

In []:

aLongName <- 0

a_long_name <- 0

a.long.name <- 0

print(aLongName)

print(a_long_name)

print(a.long.name)

Data Types and Data Structures

R has data types, and they are important, but they take a back seat to the data
structures

A variable cannot be scalar in R
The simplest data structure are vectors

Every assignment that seems like a single number, string, etc. is actually a
single element vector

In []:

In []:

In []:

num <- 1

print(num)

string <- "String"

print(string)

bool <- TRUE

print(bool)

Data Types

The data types supported by R are:
integer
double
complex (Uses "i" rather than "j" as seen in python)
character (This can hold strings of any length)
logical

In []: #Integers must be denoted by appending "L" to the number

#Otherwise they will be interpreted as a double by default

int <- 1L

#typeof() function returns the type as a string

print(typeof(1L))

print(typeof(1))

In []:

In []:

float.a <- 1

float.b <- 1.01

print(typeof(float.a))

print(typeof(float.b))

#Infinity and Not-a-Number are both represnted as doubles

float.c <- NaN

float.d <- Inf

float.e <- -Inf

print(typeof(float.c))

print(typeof(float.d))

print(typeof(float.e))

In []: imaginary.a <- 1 + 1i

imaginary.b <- 1 + 0i

print(typeof(imaginary.a))

print(typeof(imaginary.b))

In []: string.example.1 <- "String"

string.example.2 <- 'String'

print(typeof(string.example.1))

print(typeof(string.example.2))

string.example.2 <- 1

print(typeof(string.example.2))

In []: #Logical values are typed in all uppercase letters

logic.t <- TRUE

logic.f <- FALSE

print(typeof(logic.t))

print(typeof(logic.f))

Testing Data Types

R has numerous predicate functions relating to data types
There is one for each data type

is.DATA_TYPE_NAME(x)

e.g. is.integer(x)
There is also a generic number predicate

is.numeric(x)

In []: print(int)

print(is.integer(int))

print(is.double(int))

print(is.numeric(int))

print(is.numeric("1"))

Type Casting

While data types will automatically be coerced in some situations, to explicitly
cast use variations of the as function

as.DATA_TYPE_NAME(x)

eg as.integer(1.003)
This pattern is used throughout R, not just with primitive data types

In []: print(as.character(1L))

print(as.integer(1.0004))

print(as.integer(Inf))

print(as.double(1L))

print(as.complex(1))

print(as.numeric(TRUE))

Data Structures

Basic Data Structures in R can be described by the number of dimensions
supported, and the data types allowed
From "Advanced R" by Hadley Wickham

Homogeneous Heterogeneous

1-D Vector List

2-D Matrix DataFrame

N-D Array

Vectors

A vector can be created by using the c function

All elements of a vector must be the same. If multiple types are passed to the c
function, they will be coerced

a.vector <- c(1,2,3,4)

In []:

In []:

a.vector <- c(1,2,3,4)

print(a.vector)

a.vector <- c(1.001,2,3,4)

print(a.vector)

In []:

In []:

a.vector <- c(1.01,TRUE,3,4)

print(a.vector)

a.vector <- c(TRUE,"a",3,4)

print(a.vector)

Factors

Factors are vectors that are limited to certain values
Represent categorical data
Helpful in statistical analysis

A factor can be created using the factor function, or converting an existing
vector by using as.factor

In []: factor.1 <- factor(c("UMBC","UMCP","UMUC","UMB","UB"))

print(factor.1)

cat("\n")

factor.2 <- factor(c("Senior","Junior","Senior",

 "Junior","Sophmore"))

print(factor.2)

In []: # Can use the levels keyword to specify all possible values

factor.3 <- factor(c("Senior","Junior","Senior",

 "Junior","Sophmore"),

 levels=c("Senior","Junior",

 "Sophmore",'Freshman'))

print(factor.3)

cat("\n")

factor.4 <- as.factor(c("Senior","Junior",

 "Senior","Junior","Sophmore"))

print(factor.4)

Lists

A list is a one dimensional (technically) data structure
It can hold a mixture of any data types
It can recursively hold other lists and vectors

Created using the list function
a.list <- list("a",2,3.14,FALSE)

In []: a.list <- list("a", 2, 3.14, FALSE)

#The str function will show the structure of a variable

#str DOES NOT stand for string, it stands for structure

str(a.list)

print(a.list)

In []: recursive.list <- list("a", 2, 3.14, list("re","cursive"))

str(recursive.list)

In []: # If you try to use c recursively, there is no error

Everything is just flattened

a.vector <- c(1,2,3,c(4,5))

str(a.vector)

#Applying c to an arguments including at least one list

#coerces the entire structure to a list

coerced.list <- c(1,2,3,list(4,5),list(6,7))

str(coerced.list)

Attributes

Under the surface, R is a very object-oriented language
We will talk more about creating user-de�ned objects in a later lecture

All data structures we will discuss today have attributes that can be assigned
values
The general syntax is
attr(OBJECT, "ATTRIBUTE_NAME") <- ATTRIBUTE_VALUE

In []: obj <- c(3,4,5,6)

print(attr(obj,"time_created"))

attr(obj,"time_created") <- date()

print(attr(obj,"time_created"))

cat("\n")

print(attributes(obj))

Special Attributes

While an attribute name can be anything, a few special attributes exist that
modify the behavior of the object

Names
Dimensions
Class

These attributes are so important that they have dedicated functions to access
them, and cannot be access with the attr function

Naming Indexes

An existing list or vector can be given named indices by setting the names
attribute
Just as before, we assign into what looks like function call

A list or vector can also be created using named indices

names(OBJECT) <- c(SERIES OF CHARACTERS)

VARIABLE <- c(a = 1, b = 2)

In []: scores <- c(80,75,80,100,95,85)

names(scores) <- c("Regex HW","Regex Quiz",

 "Shell HW","Shell Quiz",

 "R HW", "R Quiz")

print(scores)

Matrices

A matrix is a 2-d data structure that is homogenous in type
Usually numbers, but could be boolean or characters too

Can by created by
Using the matrix function
Adding dimensions to an already existing vector
Using the cbind or rbind functions

In []: # Using the Matrix Function

m <- matrix(c(1,2,3,4,5,6,7,8,9,10,11,12),

 nrow=3, ncol=4)

print(m)

cat("\n")

m2 <- matrix(1:12,ncol=4)

print(m2)

In []: #Creating a matrix of zeros

zeros <- matrix(0,nrow=3,ncol=4)

print(zeros)

cat("\n")

print(dim(zeros))

In []: #Adding Dimensions to an existing Vector

vec <- 1:12

print(vec)

print(dim(vec))

cat("\n")

dim(vec) <- c(3,4)

print(vec)

In []: #Using cbind

m3 <- cbind(c(1,2,3),c(4,5,6),c(7,8,9),c(10,11,12))

print(m3)

cat("\n")

m4 <- rbind(c(1,4,7,10),c(2,5,8,11),c(3,6,9,12))

print(m4)

Data Frames

Data Frames are 2-d data structures in which a given column of the data frame
must have the same type, but columns may have different types
Each row is like a record in a simple database
Is generally the most common data structure encountered in R

Creating a Data Frame

While Data Frames are often created by reading directly from a �le, it is also
possible to create them programmatically.
The general syntax is
df <- data.frame(COL1 = c(VALUES FOR COL 1),

 COL2 = c(VALUES FOR COl2), ...,

 COL_N = c(VALUES FOR COL_N))

In []: df <- data.frame(name=c("UMBC","UMCP","Towson"),

 zipcode=c(21250,20742,21252),

 undergrad=c(11142,28472,19596),

 graduate=c(2498,10611,3109))

print(df)

Common Functions on a Data Frame

The function nrow returns the number of rows in the data frame
The functions ncol and length both return the number of columns
The names of the the rows can be accessed and changed using the row.names
function

In []: print(nrow(df))

print(ncol(df))

row.names(df) <- c('A','B','C')

print(df)

Reading Data

R has many built in functions to read data �les into data frames
read.table reads a space separated �le by default, and is the base to
many other functions
read.csv reads a comma separated values �le, is actually just a call to
read.table

R supports many other formats through various libraries
One of the most common libraries is foreign which reads in data from
many similar languages to R

In []:

In []:

usm <- read.table("data/usm.tsv",sep="\t",header=TRUE)

print(usm)

usm2 <- read.csv("data/usm.csv",row.names=1)

print(usm2)

Writing Data

R similarly supports many different formats in which to write data to a �le
write.table

write.csv

By default, column and row names are printed to the �le, to remove them set
col.names or row.names to FALSE

In []:

In []:

In []:

write.csv(usm2,'data/usm2.csv')

write.csv(usm2,'data/usm2.csv',append=TRUE,col.names=FALSE)

write.table(usm2,'data/usm2.csv',sep=","

 ,append=TRUE,col.names=FALSE)

Math

Standard operations of +,-,*,/, and ^
Modulus operator is %%
Integer division is %/%
Square root and absolute value are part of R's base package

In []: #Addition

print(1 + 1)

print(1 + 1.0)

print(1 + 1i + 2)

print(2 + 1 + 3i)

print(2 + 3i + 4 + 5i)

In []:

In []:

#Subtraction

print(3-2)

print(0-3)

#Multiplication

print(3 * 4)

print(3 * .12)

In []: #Division

print(3/4)

print(0/4)

print(0/0)

print(3/0)

print(-3/0)

In []: # Integer Division

print(3 %/% 4)

print(12 %/% 5)

print(3 %/% 0)

print(0 %/% 0)

In []:

In []:

#Modulus

print(3 %% 3)

print(10 %% 3)

print(0 %% 0)

print(3 %% 0)

print(3 ^ 3)

print(9 ^ 0.5)

print(10 ^ -2)

High-Dimensional Math

Mathmatical operation on higher dimensional data structures is navtively part of
R

For scalar operations, like mutiplying every value by 2, the dimensionality doesn't
matter

For operations involving two data frames, two matrices, etc. the size
should match to prevent unintended outcomes

In addition, both matrices and data.frames can be transposed using the t function

In []: #Vector / Scalar Math

vec <- 1:5

print(vec * 2)

print(vec / 10)

print(vec + 1)

In []: #Vector addition

vec2 <- 10:15

print(vec + vec2)

vec2 <- 11:15

print(vec + vec2)

In []: #Element-wise multiplication

print(vec * vec2)

cat("\n")

#Dot Product

print(vec %*% vec2)

#print(cvec,vec2))

In []: #Matrix / Vector Operations

mat <- matrix(1:20,nrow=5)

print(mat)

print(mat / vec)

In []: #Matrix / Vector Operations

mat2 <- matrix(1:20,nrow=4)

print(mat2)

print(mat2 / vec)

In []: #DataFrame Operations

print(usm)

cat("\n")

print(usm * 2)

In []: #Transposition

print(t(mat))

cat("\n")

In []: #What is the datastructure returned by this function?

print(t(usm))

print(as.data.frame(t(usm)))

Boolean Comparison

R supports the standard boolean operators of <, >, <=, >=, == !=
The and an or operators are & and | respectively

When used between vectors or matrices, returns a object of the same size �lled
with boolean values

In []: ##Standard Scalar Comparison

print(3 == 4)

print(3 < 4)

print(3 < 4 & 5 < 10)

print(3 == 4 | 4 != 4)

In []: ## Comparing Data Structures

print(vec)

print(vec2)

cat("\n")

print(vec == vec2)

print(vec < vec2)

In []: #Vector and Matrix Comparison

print(vec)

print(mat)

cat("\n")

print(vec == mat)

Subsetting Vectors

Indexing starts at 1!
Subsetting is done using square brackets ([])
Subsetting is most commonly done with a vector of

Positive Integers
Negative Integers
Boolean Values

Positive Integer Subsetting

Positive integers denote which values to return

In []: print(vec)

print(vec[1])

print(vec[2:3])

print(vec[c(1,5)])

#Can repeat indices

print(vec[c(2,2)])

Positive Integer Subsetting

Negative integers denote which values to not return

In []: print(vec)

print(vec[-1])

print(vec[-2:-3])

print(vec[c(-1,-5)])

Boolean Value Subsetting

Values are returned when the subsetting vector contains TRUE
To prevent unexpected errors, the vector used to subset should be the same
length as the vector being indexed into

If the index vector is shorter than the vector being indexed, the values
will repeat as many times as necessary

In []: # Explicit Boolean Subsetting

print(vec)

print(vec[c(TRUE,FALSE,TRUE,FALSE,TRUE)])

cat("\n")

#Using an expression

print(vec[vec %% 2 == 0])

Subsetting Lists

Subsetting a list with the [] operator will return another list
To return a speci�c value (as a vector) use [[]]

The dollar operator is an alias for [[]], but only [[]] can use a variable to do the
subsetting

In []: #Returns a list

li <- list(a=1,b=2,c=3,d=4,e=5)

print(li[2])

print(li[[2]])

print(li[['b']])

print(li$b)

idx <- 'b'

cat("\n")

print(li[[idx]])

print(li$idx)

Subsetting Matrices

Matrices can also be subset using the [] operator
With matrices, two indices can be provided, in the order of row,column
If just one is provided, it treats the matrix like a vector

In []: print(mat)

cat("\n")

print(mat[5])

print(mat[5,])

print(mat[,4])

print(mat[5,4])

print(mat[c(5,4),])

Subsetting Data Frames

Subsetting Data Frames is very similar to matrices, but passing one index
considered a column

The $ operator as used with lists can also be used to refer to a speci�c
column

Rows (or observations) are selected by adding a comma after the row indices

In []: print(usm[1])

cat("\n")

print(usm['Name'])

#This is a vector rather than a one column DF

print(usm$Name)

In []: print(usm[usm['Undergraduate.Enrollment'] > 10000,])

cat("\n")

print(usm[usm['Undergraduate.Enrollment'] > 10000,'name'])

usm['total'] <- usm[3] + usm[4]

print(usm)

R's built-in help system

R has excellent built in help capabilities
To access the documentation for a speci�c function, type ?
FUNCTION_NAME

To search all help�les for a keyword, use the ?? function
Typing a function without any arguments or parentheses will at a minimum show
you the signature of the function

If code is not compiled, the code of the function will be displayed too

In []: ?read.table

In []: read.table

