R

Introduction, Variables, Data Types

Brief History

e Rwas developed initially as an alternative implementation of a language known as
S
= Sfirstcameoutin 1975 and was originally developed at Bell Labs
e Workon R beganin 1993, the first paper was publish in 1996, and the language
reached version 1.0in 2000
= |ead by ateam at the University of Auckland in New Zealand originally
e Designed originally for statisticians, not for programmers

Running R

e Rcanberun
= From the command line, by using the command R

= Using the shebangline #! /usr/bin/Rscript

= |InJupyter using the IR kernel
= From inside the RStudio IDE

Limitations of R

e Code is generally slower than other languages
= This was an acceptable trade off given the ease of use
e Uses alot of memory
= No easy way to perform calculations in chunks, although some packages
are starting to provide support for this
= |s potentially a poor choice for big data

Assignment

e R supports two assignment operators: <- and =
e Although both are fine, most style guides and books suggest using <- is preferred

= There are many people that argue the exact oppostite however
e <- Canbereversed to be written as —> but this is not normally done

In [

In [

In [

]:

]:

]:

a <-1
b =1

1 -> ¢
a ==>
b == c

Variable Names

e Variables can contain letters, numbers, underscores, and the dot symbol
m Because of some historical weirdness, dots in R are often found instead
of underscores

a.long.name <- "String"

e The following names should not be used
c, 9, s, t, ¢, b, F, I, T

In

In

In

In

alongName <- 0
a long name <- 0
a.long.name <- 0

print (alongName)

print (a long name)

print (a.long.name)

Data Types and Data Structures

e R has datatypes, and they are important, but they take a back seat to the data

structures
m Avariable cannot be scalarinr

e The simplest data structure are vectors

= Every assignment that seems like a single number, string, etc. is actually a
single element vector

In

In

In

num <- 1
print (num)

string <- "String"
print (string)

bool <- TRUE
print (bool)

Data Types

e The data types supported by R are:
= integer
= double
= complex (Uses "i" rather than "j" as seen in python)

= character (This can hold strings of any length)
= |ogical

In

#Integers must be denoted by appending "L" to the number
#Otherwise they will be interpreted as a double by default

int <- 1L

#typeof () function returns the type as a string
print (typeof (1L))
print (typeof (1))

In

In

float.a <- 1
float.b <- 1.01

print (typeof (float.a))
print (typeof (float.b))

#Infinity and Not-a-Number are both represnted as doubles
float.c <- NaN

float.d <- Inf

float.e <- -Inf

print (typeof (float.c))
print (typeof (float.d))
print (typeof (float.e))

In

imaginary.a <- 1 + 11
imaginary.b <- 1 + 01

print (typeof (imaginary.a))
print (typeof (imaginary.b))

In

string.example.l <-
string.example.2 <-

print (typeof (string.
print (typeof (string.

string.example.2 <-

print (typeof (string.

"String"
'String'

example.1l))
example.2))

1
example.?2))

In

#Logical values are typed in all uppercase letters
logic.t <- TRUE
logic.f <- FALSE

print (typeof (logic.t))
print (typeof (logic.f))

Testing Data Types

e R has numerous predicate functions relating to data types
e There is one for each data type

" is.DATA TYPE NAME (x)

" eg. is.integer (x)
e Thereis also a generic number predicate

B jis.numeric (x)

In

print
print
print

print(lnt
(1
(1
(1
print (is

)

1nteger(1nt)
.double (int))
numeric(nt))
s.numeric ("1"))

)

Type Casting

e While data types will automatically be coerced in some situations, to explicitly
cast use variations of the as function
" as.DATA TYPE NAME (x)
B egas.integer (1.003)
e This pattern is used throughout R, not just with primitive data types

In

print
print
print
print
print
print

~ o~ o~ o~ o~ —~

as.
as.
as.
.double (1L))
as.
.numeric (TRUE))

as

as

character (1L))
integer (1.0004))
integer (Inf))

complex (1))

Data Structures

e Basic Data Structures in R can be described by the number of dimensions

supported, and the data types allowed
e From "Advanced R" by Hadley Wickham

Homogeneous | Heterogeneous
1-D | Vector List
2-D | Matrix DataFrame

N-D | Array

Vectors

e Avector can be created by using the c function

a.vector <- c(1,2,3,4)

e All elements of a vector must be the same. If multiple types are passed to the ¢
function, they will be coerced

In

In

a.vector <- c(1,2,3,4)
print (a.vector)

a.vector <- ¢ (1.001,2,3,4)
print (a.vector)

In

In

a.vector <- c¢(1.01,TRUE, 3, 4)
print (a.vector)

a.vector <- c(TRUE, "a",3,4)
print (a.vector)

Factors

e Factors are vectors that are limited to certain values
= Represent categorical data
= Helpful in statistical analysis
e Afactor can be created using the factor function, or converting an existing
vector by using as . factor

In

factor.l <- factor (c("UMBC", "UMCP", "UMUC", "UMB", "UB"))

print (factor.1)

cat ("\n")

factor.2 <- factor(c("Senior","Junior","Senior",
"Junior", "Sophmore"))

print (factor.2)

In []:| # Can use the levels keyword to specify all possible values

factor.3 <- factor(c("Senior","Junior","Senior",
"Junior", "Sophmore"),
levels=c ("Senior", "Junior",

"Sophmore", 'Freshman'))
print (factor.3)

cat (u\n")
factor.4 <- as.factor(c("Senior","Junior",

"Senior","Junior", "Sophmore"))
print (factor.4)

Lists

e Alistis aonedimensional (technically) data structure
= |t can hold a mixture of any data types
= |t canrecursively hold other lists and vectors

e Created usingthe 1ist function

a.list <- list("a",2,3.14,FALSE)

In

a.list <- list("a", 2, 3.14, FALSE)

#The str function will show the structure of a variable
#str DOES NOT stand for string, it stands for structure
str(a.list)

print (a.list)

In

]:

recursive.list <- list ("a",
str (recursive.list)

2,

3.

14,

list ("re","cursive"))

In [1:| # If you try to use c recursively, there is no error
Everything is just flattened
a.vector <- c¢(1,2,3,c(4,5))
str(a.vector)

#Applying ¢ to an arguments including at least one 1list
#coerces the entire structure to a 1list

coerced.list <- ¢ (1,2,3,1ist(4,5),1list(6,7))

str (coerced.list)

Attributes

e Under the surface, R is a very object-oriented language
= We will talk more about creating user-defined objects in a later lecture
e All data structures we will discuss today have attributes that can be assigned

values
e The general syntax s
attr (OBJECT, "ATTRIBUTE_NAME") <- ATTRIBUTE VALUE

In

obj <- ¢ (3,4,5,6)

print (attr (obj, "time created"))
attr (obj,"time created") <- date()
print (attr (obj, "time created"))
cat ("\n")

print (attributes (obj))

Special Attributes

e While an attribute name can be anything, a few special attributes exist that
modify the behavior of the object
= Names
= Dimensions
= Class
e These attributes are so important that they have dedicated functions to access
them, and cannot be access with the at t r function

Naming Indexes

e Anexisting list or vector can be given named indices by setting the names
attribute
e Just as before, we assign into what looks like function call
names (OBJECT) <- c(SERIES OF CHARACTERS)

e Alist or vector can also be created using named indices
VARIABLE <- c(a = 1, b = 2)

In

scores <- ¢ (80,75,80,100,95,85)

names (scores)

print (scores)

<- c("Regex HW","Regex Quiz",
"Shell HW","Shell Quiz",
"R le|, "R QuiZ")

Matrices

e Amatrixisa2-ddatastructure that is homogenous in type

= Usually numbers, but could be boolean or characters too
e Can by created by

= Using thematrix function

= Adding dimensions to an already existing vector

= Using the cbindor rbind functions

In []:| # Using the Matrix Function
m <- matrix(c¢(1,2,3,4,5,6,7,8,9,10,11,12),
nrow=3, ncol=4)
print (m)
cat ("\n")
m2 <- matrix(l:12,ncol=4)

print (m2)

In

#Creating a matrix of zeros
zeros <- matrix (0,nrow=3,ncol=4)
print (zeros)

cat ("\n")

print (dim(zeros))

In

#Adding Dimensions to an existing Vector
vec <- 1:12

print (vec)

print (dim(vec))

cat ("\n")

dim(vec) <- c(3,4)

print (vec)

In

#Using cbind
m3 < - Cbind(c(1,2,3),C(4,5,6),C(7,8,9),C(lO/ll/lZ))

print (m3)

cat ("\n")
m4 <- rbind(c(1l,4,7,10),c(2,5,8,11),c(3,6,9,12))

print (m4)

Data Frames

e Data Frames are 2-d data structures in which a given column of the data frame
must have the same type, but columns may have different types

e Eachrowis like arecord in asimple database

e |sgenerally the most common data structure encountered in R

Creating a Data Frame

e While Data Frames are often created by reading directly from a file, it is also
possible to create them programmatically.
e The general syntax s

df <- data.frame(COL1l = c(VALUES FOR COL 1),
COL2 = c(VALUES FOR CO12), ...,
COL_N = c (VALUES FOR COL_N))

]:

df <- data.frame (name=c ("UMBC", "UMCP", "Towson"),
zipcode=c (21250,20742,21252),
undergrad=c(11142,28472,19596),
graduate=c(2498,10611,3109))
print (df)

Common Functions on a Data Frame

e The function nrow returns the number of rows in the data frame

e The functionsncol and 1length both return the number of columns

e The names of the the rows can be accessed and changed using the row . names
function

In

print (nrow (df))

print (ncol (df))

row.names (df) <- c('A','B','C")
print (df)

Reading Data

e R has many built in functions to read data files into data frames
" read.table reads aspace separated file by default, and is the base to
many other functions
" read.csvreads acomma separated values file, is actually just a call to
read.table
e R supports many other formats through various libraries
= One of the most common libraries is foreign which reads in data from
many similar languages to R

In

In

usm <- read.table("data/usm.tsv", sep="\t", header=TRUE)
print (usm)

usm?2 <- read.csv("data/usm.csv",row.names=1)
print (usm2)

Writing Data

e Rsimilarly supports many different formats in which to write data to a file
" write.table
" write.csv

e By default, column and row names are printed to the file, to remove them set
col.names or row.names to FALSE

In

In

In

]:

]:

]:

write.csv (usm2, 'data/usm2.csv')

write.csv (usm2, 'data/usm2.csv', append=TRUE, col.names=FALSE)

write.table (usm2, 'data/usm2.csv', sep=","
, append=TRUE, col .names=FALSE)

Math

e Standard operations of +-/,and *

* Modulus operator is %%

e |nteger divisionis %/%

e Square root and absolute value are part of R's base package

In

#Addition

print (1

|

n
I
-
I

1)

1.0)

1i + 2)

1 + 31i)

31 + 4 + 51)

In

#Subtraction
print (3-2)
print (0-3)

#Multiplication
print (3 * 4)
print (3 * .12)

In

#Division
print (3/4)
print (0/4)
print (0/0)
print (3/0)
print (-3/0)

—_~ o~~~

In

Integer Division
print (3 %/% 4)
print (s
print (3 %/% 0
(0 5/% 0

In

In

#Modulus

print (3 %% 3)
print (10 %% 3)
print (0O %% 0)
print (3 %% 0)

print (3 © 3)
print (9 ~ 0.5)
print (10 ~ -2)

High-Dimensional Math

e Mathmatical operation on higher dimensional data structures is navtively part of
R
e For scalar operations, like mutiplying every value by 2, the dimensionality doesn't
matter
= For operations involving two data frames, two matrices, etc. the size
should match to prevent unintended outcomes
e |naddition, both matrices and data.frames can be transposed using the t function

In

#Vector / Scalar Math
vec <- 1:5

print (vec * 2)

print (vec / 10)

print (vec + 1)

In

#Vector addition
vec?2 <- 10:15
print (vec + vec2)
vec?2 <- 11:15
print (vec + vec2)

In

#Element-wise multiplication
print (vec * vec2)

cat ("\n")

#Dot Product

print (vec %$*% vec2)

#print (cvec,vec2))

In

#Matrix / Vector Operations
mat <- matrix(1:20,nrow=5)
print (mat)

print (mat / vec)

In

#Matrix / Vector Operations
mat?2 <- matrix(1:20,nrow=4)
print (mat2)

print (mat2 / vec)

In

#DataFrame Operations
print (usm)

cat ("\n")

print (usm * 2)

In []:| #Transposition
print (t (mat))
Cat("\n")

In []:| #what is the datastructure returned by this function?
print (t (usm))
print (as.data.frame (t (usm)))

Boolean Comparison

e Rsupportsthe standard boolean operatorsof <, >, <=, >=, == I=
= The and an or operators are & and | respectively

e When used between vectors or matrices, returns a object of the same size filled
with boolean values

In

##Standard Scalar Comparison
print (3 == 4)
print (3 < 4)
print(3 <4 & 5 < 10)
(3

print | 4 != 4)

In

Comparing Data Structures
print (vec)

print (vec2)

cat ("\n")

print (vec == vec2)

print (vec < vec2)

In

#Vector and Matrix Comparison
print (vec)

print (mat)

cat ("\n")

print (vec == mat)

Subsetting Vectors

e |ndexing starts at 1!

e Subsetting is done using square brackets ([])

e Subsetting is most commonly done with a vector of
= Positive Integers
= Negative Integers
= Boolean Values

In

Positive Integer Subsetting

e Positive integers denote which values to return

print (vec)

print (vec[1])

print (vec[2:3])
print (vec[c(1,5)])
#Can repeat indices
print (vec[c(2,2)])

C
C

In

Positive Integer Subsetting

e Negative integers denote which values to not return

print (vec)
print (v
print (v

(

ec
ec
ec
print (vec

Boolean Value Subsetting

e Values are returned when the subsetting vector contains TRUE
e To prevent unexpected errors, the vector used to subset should be the same
length as the vector being indexed into
= |f the index vector is shorter than the vector being indexed, the values
will repeat as many times as necessary

In []:| # Explicit Boolean Subsetting
print (vec)
print (vec[c (TRUE, FALSE, TRUE, FALSE, TRUE)])
cat ("\n")
#Using an expression
print (vec[vec %% 2 == 0])

Subsetting Lists

e Subsetting a list with the [] operator will return another list
= To return a specific value (as a vector) use [[]]
e The dollar operator is an alias for [[]], but only [[]] can use a variable to do the
subsetting

In

#Returns a list

1li <= list(a=1,b=2,c=3,d=4,e=5)
print (1i[2])

print (1i[[2]])

print (1i[['b"']11])

print (1i$b)

idx <- 'b'

cat ("\n")

print (1i[[idx]])

print (1i$idx)

—_~ o~~~

Subsetting Matrices

e Matrices can also be subset using the [] operator
= With matrices, two indices can be provided, in the order of row,column
= |fjust oneis provided, it treats the matrix like a vector

In

print (mat)

cat ("\n")

print (mat[5])
print (mat[5,])
print (mat([,4])
print (mat[5,4]
print

)

Py

mat[c(5,4),])

Subsetting Data Frames

e Subsetting Data Frames is very similar to matrices, but passing one index
considered a column
= The $ operator as used with lists can also be used to refer to a specific
column
e Rows (or observations) are selected by adding a comma after the row indices

In

print (usmf[1])

cat ("\n")

print (usm['Name'])

#This 1is a vector rather than a one column DF
print (usm$Name)

In

print (usm[usm|['Undergraduate.Enrollment"']
cat ("\n")

print (usm[usm|['Undergraduate.Enrollment"']
usm['total'] <- usm[3] + usm[4]

print (usm)

> 10000,1)

> 10000, "name'])

R’s built-in help system

e R has excellent built in help capabilities
= To access the documentation for a specific function, type ?
FUNCTION NAME
= To search all helpfiles for a keyword, use the ? 2 function

e Typing a function without any arguments or parentheses will at a minimum show
you the signature of the function
= |f code is not compiled, the code of the function will be displayed too

In [

]:

?read.table

In [

]:

read.table

