
JavaScript III

Common JavaScript Objects

JavaScript has many built-in objects that take the place of libraries in other
languages

Math
Date
RegExp

Math

The Math object has properties that function as constants
Math.E
Math.PI

The methods of the math object provide many standard calculations
Math.round(x)
Math.random()
Math.cos(x)
Math.pow(x,y)

In []: %%script node

console.log("The area of a circle with radius 3 is " +

 Math.PI * Math.pow(3,2))

console.log("")

console.log("The cosine is (and all trig) expects radians " +

 Math.cos(Math.PI/2) + " " + Math.cos(0))

console.log("")

console.log("Enjoy this random number " + Math.random())

Date

The JavaScript Date object is used to both get the date, and interact with dates
To get a Date object, you must use the new operator

Calling Date() with out new returns a string
If you don't want a full blown object, and just need the current Unix time, call
Date.now()

javscript

var my_date = new Date();

In []: %%script node

var now = new Date()

console.log("Today is " + now)

console.log("Today is " + Date())

console.log("The current UNIX time is " + Date.now())

Common Date Methods

The various �elds of a date can be accessed and updated using getter and setter
methods

getYear(), setYear()
getMonth(), getDay() - Both of these start at 0!

Converting the Date to a string
toDateString() returns only the date part
toTimeString() returns only the time part
There is no easy way to specify a custom format

In []: %%script node

var now = new Date()

console.log("The date is " + now)

now.setFullYear(1900)

console.log("The date is " + now)

console.log(now.toDateString())

console.log(now.toTimeString())

Regular Expressions

Regular Expressions in JavaScript are almost PCRE
They can be created using

A perl style literal, e.g. /abc/i;
By using the RegExp object constructor

In []: %%script node

var my_reg = /\d\d\d-\d\d\d-\d\d\d\d/i;

var another_re = new RegExp("\\d\\d\\d-\\d\\d\\d-\\d\\d\\d\\d",

 "i");

RegExp Methods

regex.test returns a boolean if at least one match was found
regex.exec returns an array with various information about the �rst match found

If the regex was created with the g �ag, successive calls to regex.exec
will �nd additional matches
Any capture buffers are also included in this array

In []: %%script node

var my_reg = /(\d\d\d)-(\d\d\d)-\d\d\d\d/g;

var text = "410-555-1234 301-555-1234 443-555-1234";

var result

while((result = my_reg.exec(text)) !== null)

{

 console.log(result)

 text = "443-555-1234 301-555-1234"

}

In []: %%script node

var my_reg = new RegExp("(\\w+) .+? \\1 (\\w+)",'g');

var text = "Doe a deer a female deer ray a drop of golden sun me a name I call mys

elf";

var result;

while((result = my_reg.exec(text)) !== null)

{

 console.log(result)

}

String

The string object has two methods that accept regular expressions (in either
format)

split(separator)
replace(old,new)

In []: %%script node

var text = "Doe a deer a female deer ray a drop of golden sun me a name I call mys

elf";

console.log(text.split(/\s/));

console.log(text.split(RegExp("\\w\\w+")))

In []: %%script node

var text = "Doe a deer a female deer ray a drop of golden sun me a name I call mys

elf";

console.log(text.replace(/(\w)\1/,"**"))

console.log(text.replace(/(\w)\1/g,"**"))

console.log(text.replace("ee","**"))

Events

So far the programming we have been doing has focused on a set of instructions to
be executed roughly in sequence
Instead of providing the order to execution when programming, we can de�ne
handlers that will be executed in response to a speci�c event
Events are sent from a dispatcher

In the case of web programming, the dispatcher is the web browser
The dispatcher could be hardware based too, like a sensor (see

)
The alternative to using events would be to program an instruction to check the
status of something through out your code

NodeBots

http://nodebots.io/

Event Basics

In the JavaScript event system, we need three pieces of information to handle an
event

The object or objects on the page to get events from
The entire document, all paragraphs, a speci�c element, etc.

The event we want to handle
A mouse click, a key press, the copying of text, etc.

The function to call when the event happens, often called the handler

Event Propagation

For this discussion consider the following HTML:
<div>

 <p>

 <input type="text"/>

 </p>

</div>

Event Propagation

One event we can listen to is input that is �red when the input changes
This event can be captured from not only a listener on the input tag, but on the p
and div tags as well

The event moving up the HTML tree is known as event propagation.
It is also sometimes referred to as bubbling.
The order the handlers will be called in is always the element itself
followed by its closest parents

We can prevent this behavior if we wish

Issues with Event Programming

A webpage can generate hundreds of events a second
It is impossible to process them all as they come in
Events are stored in a queue for processing

Should all events be processed?
If you processed every change in the scrollbar position, your page would
lock up

How are events refered to
In JS they are strings, so a mistyped event won't cause a syntax or error

The Event Object

When the handler is executed, it recieves at least one object, which contains
properties about the event
The properties of this object depend on the event that produced it
The MDN page on is a good resource for this
Some common properties are:

screenX and screenY for events involving the mouse
key or keyCode for events from the keyboard
clipboardData for copy, cut, and paste events

events

https://developer.mozilla.org/en-US/docs/Web/Events

addEventListener

The addEventListener function can be called on any element
The this inside of a handler refers to the object that triggered the event

It takes two parameters
The event type as a string
The handler function
element.addEventListener('eventString',

function(event){

doSomething();

})

Click

One of the most commons events is responding to a mouse click
The event string for this is 'click'

In []: %%html

<html>

 <head>

 <script>

 function paragraphHandle(){

 this.style.background = "green"

 }

 document.querySelector('#one').addEventListener('click',paragraphHandl

e)

 document.querySelector('#two').addEventListener('click',paragraphHandl

e)

 document.querySelector('#three').addEventListener('click',paragraphHan

dle)

 document.querySelector('.contain').addEventListener('click',

 function(){

 this.style.background = "purple"

 })

 </script>

 </head>

 <body>

 <div class="contain">

 <p id="one"> A Paragraph</p>

 <p id="two"> A Second Paragraph</p>

 <p id="three"> A Third Paragraph</p>

 </div>

querySelectorAll Revisited

Having to put an id on every element that we want to add an event listener to is
cumbersome
document.querySelectorAll will return a NodeList of the matching elements
NodeList is not an Array

It does not have forEach (reliably across all browsers anyways)
We need to loop over it using old fashion C-style loops

In []: %%html

<html>

 <head>

 <script>

 function paragraphHandle(event){

 this.style.background = "green"

 event.stopPropagation()

 }

 var paragraphs = document.querySelectorAll('p')

 for(var i = 0; i < paragraphs.length; i++)

 {

 paragraphs[i].addEventListener('click',paragraphHandle)

 }

 document.querySelector('.contain2').addEventListener('click',

 function(){

 this.style.background = "purple"

 })

 </script>

 </head>

 <body>

 <div class="contain2">

 <p> A Paragraph</p>

 <p> A Second Paragraph</p>

 <p> A Third Paragraph</p>

 </div>

 </body>

</html>

Input

The input event is �red when ever the value of on input changes

In []: %%html

<html>

 <head>

 <script>

 document.querySelector("#theText").addEventListener('input',

 function(event)

 {

 var lastChar = this.value[this.value.length -1]

 var out = document.querySelector("#output")

 if(lastChar == 'a' || lastChar == 'e' ||

 lastChar == 'i' || lastChar == "o" ||

 lastChar == 'u')

 {

 out.innerHTML = "You typed a vowel"

 }

 else{

 out.innerHTML = "You typed a consonant"

 }

 })

 </script>

 </head>

 <body>

 <input id="theText" type="text" />

 <p id="output"></p>

 </body>

</html>

Keyboard Events

To respond to whats typed on they keyboard at any time, not just when the user is
in an input �eld, keyboard events are used
There are many keyboard events, including keyup, keypress, keydown.
The implementation of these events is one of the less standardized parts of
JavaScript to this day

In []: %%html

<html>

 <head>

 <script>

 document.addEventListener('keydown',

 function(event)

 {

 var output = document.querySelector("#output2")

 if(event.keyCode == 77 && event.ctrlKey == true)

 {

 output.style.border = "3px solid black"

 }

 else if(event.keyCode == 77 && event.altKey == true)

 {

 output.style.border = "3px dashed black"

 }

 else{

 output.style.border = "0px solid black"

 }

 })

 </script>

 </head>

 <body>

 <p id="output2">Watch This Space</p>

 </body>

</html>

Blur and Focus

Certain HTML elements are meant for the user to interact with: buttons, input
�elds, radios, etc.
Theoretically all HTML elements can recieve focus, but this is browser dependent
There are several visual cues in the default styles of browsers to show what event
is in focus

The soft blue glow around a text box is one
See for
examples

http://medialize.github.io/ally.js/tests/focus-outline-styles/

http://medialize.github.io/ally.js/tests/focus-outline-styles/index.html#style=focus&key=text,radio,checkbox,textarea,button,link,div&browser=firefox,chrome,safari,ie1

In []: %%html

<html>

 <head>

 <script>

 function getInputType(event)

 {

 document.querySelector("#inputType").innerHTML = this.type

 }

 document.querySelector("#in").addEventListener('focus',getInputType)

 document.querySelector("#aSelect").addEventListener('focus',getInputType)

 document.querySelector("input[type='email']").addEventListener('focus',get

InputType)

 </script>

 </head>

 <body>

 <h3>A Simple Form</h3>

 <p id="inputType">The Input Type Will Go Here</p>

 <p>

 <label>Name:</label> <input type="text" id="in"/>

 </p>

 <p>

 <label>Class Standing:</label>

 <select id="aSelect">

 <option>Freshman</option>

 <option>Sophmore</option>

 <option>Junior</option>

 <option>Senior</option>

 </select>

 </p>

 <p>

 <label>Email: </label> <input type="email"/>

 </p>

Mouse Movement

It is possible to �re an event when a mouse enter or leaves an element, or just
moves over it in general

In []: %%html

<html>

 <head>

 <style>

 #trackHere{width:100px;height:100px; border:1px solid blue;margin:10px

 auto}

 </style>

 <script>

 document.querySelector('#trackHere').addEventListener('mousemove',func

tion(event){

 document.querySelector("#point").innerHTML= event.screenX +

 "," + event.screenY

 })

 </script>

 </head>

 <body>

 <h1>A Random Heading</h1>

 <div id="trackHere"></div>

 <p id="point"></p>

 </body>

</html>

Live Coding Event Example

From
In�ate a balloon 10% when hitting the up arrow
De�ate a balloon 10% when hitting the down arrow
If the balloon is too big it should pop (💥)
Don't scroll!

In [2]:

https://eloquentjavascript.net/15_event.html

%%html

<p id="bal">🎈</p>

<script>

 // Your code here

</script>

🎈

https://eloquentjavascript.net/15_event.html

The Event Object Practice

Write JavaScript to let the user know while they are dragging selected text using
the drag event and the HTML below

In []: %%html

<html>

 <head>

 <script>

 </script>

 </head>

 <body>

 <div>

 Message:

 </div>

 <p id="toWatch">The giant anteater (Myrmecophaga tridactyla), also known a

s the ant bear, is a large insectivorous mammal native to Central and South Americ

a. It is one of four living species of anteaters and is classified with sloths in

 the order Pilosa. This species is mostly terrestrial, in contrast to other living

 anteaters and sloths, which are arboreal or semiarboreal. The giant anteater is t

he largest of its family, 182–217 cm (5.97–7.12 ft) in length, with weights of 33–

41 kg (73–90 lb) for males and 27–39 kg (60–86 lb) for females. It is recognizable

 by its elongated snout, bushy tail, long fore claws, and distinctively colored pe

lage.</p>

 <p><small>From the Wikipedia entry on the Giant Anteater</small></p>al and

 South America. It is one of four living species of anteaters and is classified wi

th sloths in the order Pilosa. This species is mostly terrestrial, in c

 </body>

</html>

Time Outs

Calling a handler everytime an event �res for events that �re in rapid suggestion
(mousemove, etc.) can freeze the browser
There is no way to tell the browser not to call the events so often, but we can
make sure the computationally expensive code is run only at certain intervals
We use a function in JavaScript called setTimeout to achieve this

In []: %%html

<!DOCTYPE html>

<!-- From Eloquent Javascript-->

<html>

<head>

 <style>

 #trackHereAgain{width:100px;height:100px; border:1px solid blue}

 </style>

<script>

 function displayCoords(event) {

 document.querySelector("#point2").textContent =

 "Mouse at " + event.pageX + ", " + event.pageY;

 }

 var scheduled = false, lastEvent;

 document.querySelector("#trackHereAgain").addEventListener("mousemove", function

(event) {

 lastEvent = event;

 if (!scheduled) {

 scheduled = true;

 setTimeout(function() {

 displayCoords(lastEvent);

 scheduled = false;

 }, 2000);

 }

 });

</script>

</head>

<body>

 <div id="trackHereAgain"></div>

 <p id="point2"></p>

</body>

</html>

SetInterval

Rather than setting a time out in a function, we can request that a function be run
every so many milliseconds
Usually called on the window object

In []: %%html

<!DOCTYPE html>

<html>

 <head>

 <script>

 window.setInterval(function(){

 document.getElementById('timeContainer').innerHTML = "The time is

 now " + Date()

 },2000);

 </script>

 </head>

 <body>

 <h1 id="timeContainer"></h1>

 </body>

</html>

Canvas

One of the most exciting parts of HTML is the <canvas> element
This provides a blank space to create programmatic

drawings
animations
interactive games

It must be scripted somehow, the HTML element just provides a place holder

The <canvas> tag

The <canvas> tag allows the width and height to be set in HTML
Anything placed between the opening and closing <canvas> tag will only be
displayed on browsers that do not support canvas

This provides a good fall back mechanism
Make sure to give it an id so you can interact with it through JavaScript

Basic Drawings

The canvas object only supports two types of drawings
Rectangles
Paths

All drawing is done through a context object
var my_canvas = document.getElementById("canvas1");

var context = my_canvas.getContext('2d');

In []: %%html

<!DOCTYPE html>

<html>

 <script>

 var my_canvas = document.getElementById("canvas1");

 var context = my_canvas.getContext('2d');

 context.fillRect(0,0,100,100);

 </script>

 <body>

 <canvas id="canvas1">Canvas is unsupported </canvas>

 </body>

</html>

Rectangles

Rectangles are drawn by calling either
�llRect(x,y,width,height)
strokeRect(x,y,width,height)

A rectangular portion of the canvas can be erased using
clearRect(x,y,width,height)

The x and y refer to the position of the upper left corner of the rectangle

In []: %%html

<!DOCTYPE html>

<html>

 <script>

 var my_canvas = document.getElementById("canvasa");

 var context = my_canvas.getContext('2d');

 context.strokeRect(0,0,100,100);

 context.fillRect(90,90,50,50);

 context.clearRect(100,100,25,25);

 context.fillRect(126,126,10000,10000);

 </script>

 <body>

 <canvas id="canvasa">Canvas is unsupported </canvas>

 </body>

</html>

Paths

Paths are more complex, �rst you must start the path using
beginPath

Then a combination of the following calls actually draw the lines
moveTo(x,y)

lineTo(x,y)

arc(x,y,startAng,endAng,direction)

Finally, call fill or stroke
fill automatically closes the path, adding a line from the current spot
to the �rst spot
stroke just draws the outline, so the path isn't automatically closed

In []: %%html

<!DOCTYPE html>

<html>

 <script>

 var my_canvas = document.getElementById("canvas2");

 var context = my_canvas.getContext('2d');

 context.beginPath();

 context.lineTo(100,100);

 context.lineTo(0,0);

 context.stroke();

 </script>

 <body>

 <canvas id="canvas2">Canvas is unsupported </canvas>

 </body>

</html>

In []: %%html

<!DOCTYPE html>

<html>

 <script>

 var my_canvas = document.getElementById("canvas3");

 var context = my_canvas.getContext('2d');

 context.beginPath();

 context.moveTo(50,50);

 context.lineTo(100,100);

 context.lineTo(100,50);

 context.fill();

 </script>

 <body>

 <canvas id="canvas3">Canvas is unsupported </canvas>

 </body>

</html>

In []: %%html

<!DOCTYPE html>

<html>

 <script>

 var my_canvas = document.getElementById("canvas4");

 var context = my_canvas.getContext('2d');

 context.beginPath();

 context.moveTo(50,50);

 context.lineTo(100,100);

 context.lineTo(100,50);

 context.stroke();

 context.beginPath();

 context.moveTo(150,150);

 context.lineTo(175,150);

 context.stroke()

 </script>

 <body>

 <canvas id="canvas4">Canvas is unsupported </canvas>

 </body>

</html>

In []: %%html

<!DOCTYPE html>

<html>

 <script>

 var my_canvas = document.getElementById("canvas5");

 var context = my_canvas.getContext('2d');

 context.beginPath();

 context.moveTo(50,50);

 context.lineTo(100,100);

 context.lineTo(100,50);

 context.closePath();

 context.stroke();

 </script>

 <body>

 <canvas id="canvas5">Canvas is unsupported </canvas>

 </body>

</html>

Style

Style is set on the entire context at once
Each drawing after this style is set will have the same style
The general pattern is change the style, draw somethings, repeat

The two main style properties are
�llStyle
strokeStyle

In []: %%html

<!DOCTYPE html>

<html>

 <script>

 var my_canvas = document.getElementById("canvas6");

 var context = my_canvas.getContext('2d');

 context.fillStyle="rgba(255,0,0,0.25)"

 context.fillRect(10,10,100,100);

 context.fillStyle="rgba(0,0,255,0.5)"

 context.fillRect(50,50,100,100);

 </script>

 <body>

 <canvas id="canvas6">Canvas is unsupported </canvas>

 </body>

</html>

Basic Animations

Basic animations can be created by clearing and drawing new things over and over
We could use setInterval for this

A better method is requestAnimationFrame, which knowns about
graphics and wont abuse the system
requestAnimationFrame takes a callback function

In []: %%html

<!DOCTYPE html>

<html>

 <script>

 var global_x = 0;

 var global_alpha = 1;

 function draw(){

 var my_canvas = document.getElementById("canvas7");

 var context = my_canvas.getContext('2d');

 context.clearRect(0, 0, 300, 150); // clear canvas

 global_alpha = global_alpha - 0.01;

 if (global_alpha < 0){

 global_alpha = 1

 }

 context.fillStyle="rgba(0,0,0," + global_alpha + ")";

 context.fillRect(global_x,10,50,50);

 if(global_x > 250){

 global_x = 0

 }

 else{

 global_x = global_x + 0.5;

 }

 window.requestAnimationFrame(draw);

 }

 window.requestAnimationFrame(draw);

 </script>

 <body>

 <canvas id="canvas7">Canvas is unsupported </canvas>

 </body>

</html>

