
R

Packages and Graphics

TidyData

There are many ways to represent data in a data frame, and due to the history of
R, almost all of them are use
Recently there has been a push to create commonsense conventions, known as
having "Tidy Data"
Hadley Wickham (Major player in R and the tidy data movement) de�nes tidy data
as

Each variable is in a column.
Each observation is a row.
Each value is a cell.

TidyR

To promote and enable this, the package TidyR was released
It was spawned an entire family of packages, collectively known as the tidyverse

You can install just tidyR by using install.packages('tidyR')
The entire family can be installed with install.packages('tidyverse')

It contains many functions meant to manipulate data into a tidy form

The Pipe Operator

TidyR is commonly presented using the operator %>%, which comes from an
earlier package, magrittr

It is very similar to the pipe in bash, passing the output of one function as
the �rst argument to the next function
The following are eqiuvalent

apply(data,1,function)

data %>% apply(1,function)

Spreading

The spread function converts from long data to wide data
The syntax of the spread function is

Key is the column you want to use to form your new columns
Value is the column you want to use to �ll the cells

spread(data,key,value)

In []: library(DSR)

long <- table2

extra_wide_cases <- table4

combined <- table5

print(table2)

In []: library(tidyr)

print(as.data.frame(spread(long,key,value)))

Gathering

Gathering is the opposite of spread
While it is uncommon to need this, it is possible someone made a data
frame where not every column is a variable, and you need to collapse
things a bit
gather(data, COLUMN_NAME1, COLUMN_NAME2, cols_to_gather)

In []: #print(extra_wide_cases)

gathered_cases <- extra_wide_cases %>% gather("Year","Cases",2:3)

print(gathered_cases)

Separating and Uniting

Separating and Uniting allows us to create multiple columns from one, or bring
together columns that should never has been separated
separate(data,col_to_separate,new_columns)

 unite(data,col_to_add, from_columns)

In []: print(table5)

all_good <- table5 %>% unite("year",c("century","year"),sep="") %>%

separate("rate",c("cases",'population'),sep="/")

print(all_good)

DplyR

DplyR is another package in the tidyverse
Improves upon earlier packaged named plyr, which allowed easy
manipulation of data
Speci�cally designed to use with data frames

Just like TidyR, commonly uses pipes
All functions are verbs

Selecting Data

DplyR contains two functions to select data
Select selects columns/variables
Filter selects rows/observations

Both of these can take a list of names, but they are more useful with built-in
functions in DplyR

endsWith
startsWith
contains
one_of

In []: library(dplyr)

starwars <- as.data.frame(starwars)

row.names(starwars) <- starwars$name

head(starwars)

In []: ## Standard Boring Select

select(starwars,hair_color,skin_color, eye_color)

In []: ## Select with Pipes and Ends_with

starwars %>% select(ends_with('color'))

In []: starwars %>% select(-name)

In []: starwars %>% filter(species != "Human")

In []: starwars %>% filter(species %in% c('Wookiee','Ewok'))

Selection Practice

Print the names and planets of all characters who have a birth year of less than 50

Adding or Changing Variables

The mutate and transmute functions are used to add new variables as well as
update existing ones

mutate does not drop old variables
transmute drops everything except those in the function call

In []: starwars %>% mutate(height_inches = height * 0.393701)

In []: starwars %>% transmute(height_inches = height * 0.393701)

In []: starwars %>% filter(species %in% c('Wookiee','Ewok')) %>%

mutate(height = height * 0.393701)

Summarizing and Counting

In general, to perform an action over a dataframe, use the summarize function
summarize takes in as its parameters other functions that do the
calculations
The parameters to these inner functions should be the columns you
want summarized
Multiple summaries can be computed with one call to summarize

If all you want to do is count the frequency of values in certain column, use the
count function and pass a column to count

In []: print(starwars %>% summarize(n_distinct(species)))

In []: species_counts <- starwars %>% count(species)

print(as.data.frame(species_counts))

In []: species_counts <- starwars %>% count(species,sort=TRUE)

print(as.data.frame(species_counts))

In []: species_counts <- starwars %>% count(species,homeworld,sort=TRUE)

print(as.data.frame(species_counts))

Group By

The group_by function allows rows to be grouped based on their values in the
given columns or columns
This makes �nding averages and other summary data per group very easy
group_by(data,LIST_OF_COLUMNS)

In []: print(starwars %>% group_by(species,homeworld) %>%

 summarize(avg_height = mean(height)))

In []: print(starwars %>%

 group_by(species,homeworld) %>%

 summarize(avg_height = mean(height),

 min_height=min(height)))

GroupBy Practice

Find the number of species on each planet

Combining Data Tables

The various join functions offer database like functionality
Matching rows are joined together with their columns
Matching is done by default on any common variables, but can be
speci�ed

bind_rows and bind_columns offer a simpler concatenation style combination
Matches by position always

In []:

In []:

print(band_members)

print(band_instruments)

In []: print(full_join(band_members,band_instruments))

In []: print(inner_join(band_members,band_instruments))

In []: print(left_join(band_members,band_instruments))

In []: print(right_join(band_members,band_instruments))

In []: print(band_instruments2)

In []: print(full_join(band_members,band_instruments2,

 by=c("name" = "artist")))

In []: print(bind_cols(band_members,band_members))

In []: print(bind_rows(band_members,band_instruments))

ggplot2

R has long supported creating graphs from data, but the process was often messy
and confusing
ggplot2 is a widely used package that standardizes how graphs are created

Based on the Grammar of Graphics, a language independent theory on
how graphs should be created
A very large community with lots of extensions and enhancements
available
Works directly on data frames

The ggplot function

The ggplot function sets up the basics for our graph, including which data frame
to use, and how to use it

Aesthetics are what we see are the graph, and are de�ned using data frame
columns

x and y position
color
shape

ggplot(data_frame,aes(AESTHETICS))

In []: library(ggplot2)

ggplot(starwars,aes(x=height,y=mass))

Geometries

The base ggplot function sets up the graph and creates a ggplot object, but
doesn't produce anything visually
We need to specify how we want to display our data using geometries

geom_point
geom_boxplot
geom_histogram
geom_dist

Geometries, and every other speci�cation in ggplot2 is done by adding to the
original ggplot call

In []: ggplot(starwars,aes(x=height,y=mass)) + geom_point()

In []: ggplot(starwars,aes(x=height,y=mass)) + geom_histogram()

In []: ggplot(starwars) + geom_histogram(aes(height)) +

geom_histogram(aes(mass))

In []: ggplot(starwars) + geom_density(aes(height),fill="blue",alpha=0.3) +

geom_density(aes(mass))

In []: ggplot(starwars,aes(x=height,y=mass,color=species)) +

geom_point()

GGplot 2 Basics Practice

Draw a scatter plot that charts the number of species on a planet by the average
age on that planet

In []: interesting <- (starwars %>%

 filter(!is.na(species)) %>%

 group_by(species) %>%

 summarize(count = n()) %>%

 filter(count > 2))$species

print(interesting)

to_vis <- starwars %>%

 filter(species %in% interesting)

In []: base_plot <- ggplot(to_vis,aes(x=species,fill=species,y=height))

base_plot + geom_violin()

Modifying Other Aspects

ggplot has a function for almost every aspect of a graphs appearance
To add titles, use the functions

xlabs, ylabs, ggtitle, labs
To modify area shown, use

xlim, ylim, lims
To modify colors use one of the scale_ functions

In []: base_plot2 <- ggplot(to_vis,aes(x=mass,y=height,color=species))

scatter <- base_plot2 + geom_point()

plot(scatter)

In []: scatter + ggtitle("Height vs Mass of Starwars Characters")

In []: scatter + labs(title="Height vs Mass of Starwars Characters",

 x="Mass (kg)",y="Height (cm)")

In []: scatter + labs(title="Height vs Mass of Starwars Characters",

 x="Mass (kg)",y="Height (cm)") + xlim(0,175) +

ylim(0,240)

In []: scatter + labs(title="Height vs Mass of Starwars Characters",

 x="Mass (kg)",y="Height (cm)") + xlim(0,175) +

guides(color=guide_legend(title="Species"))

In []: scatter + labs(title="Height vs Mass of Starwars Characters",

 x="Mass (kg)",y="Height (cm)") + xlim(0,175) +

guides(color=guide_legend(title="Species")) +

scale_color_brewer(palette = "Set1")

Themes

Themes allow you to control things like font, gridline color, etc.
The elements of the theme can be modi�ed by using the theme function and
passing the appropriate parameters
More common is to download or use an existing theme, and add it to your plot
using + theme_NAME

In []: library(ggthemes)

almost_finished <- scatter +

labs(title="Height vs Mass of Starwars Characters",

 x="Mass (kg)",y="Height (cm)") +

xlim(0,175) + guides(color=guide_legend(title="Species"))

almost_finished + theme_fivethirtyeight()

In []: almost_finished + theme_wsj()

In []: almost_finished + theme_economist()

In []: almost_finished + theme_tufte()

Facet Grids

Facet Grids allow us to create "mini" plots, per categorical variable

After setting up your plot as your normally would, you add in the facet_grid()

facet_grid(ROWS ~ COLUMNS)

In []: almost_finished + facet_grid(. ~ eye_color)

In []:

In []:

almost_finished + facet_grid(hair_color ~ .)

almost_finished + facet_grid(hair_color ~ eye_color)

Saving Plots

While gpplot2 is very easy to use in a good R IDE, many times we want to share
our plots
The ggsave function by default will save the last plot to a given �le location
The type of �le is guessed from the name, but if you want to specify it, use the
device parameter
ggsave(file_name, plot = plot_var)

In []: my_final_plot <- almost_finished + theme_fivethirtyeight()

ggsave("final_plot.pdf",dpi=600,width=10)

