
KallistiOS
A Miniature Operating System for Video Games

UMBC CMSC 421 - Spring 2016

Video Game Consoles
• Video game consoles are essentially locked down general purpose

computers

• The same kinds of components go into their makeup — from the
CPUs on down to the optical disc drives

• Usually largely non-upgradable/non-serviceable black boxes to users
though.

• Two out of the three current-generation home video game consoles are
essentially PCs — they use x86 CPUs, relatively standard GPUs, and
share much of their architecture with normal PCs

• The Playstation 4 even runs a (modified) version of a normal PC
operating system (FreeBSD) and (at least originally) used the same
boot loader that we’ve been using for our Linux VMs

Video Game Consoles
• Current generation consoles look a lot more like PCs, both

in hardware and in their software stacks, but even older
consoles had their similarities.

• It is only fairly recently that operating systems on these
consoles have become so apparent to the consumer

• We take for granted things like multiprocessing and
built-in applications these days

• Older consoles usually had no user-facing operating
system, or an extremely limited “BIOS” that handled things
such as playing audio CDs and managing memory cards

Operating Systems on Past
Video Game Consoles

• The “BIOS” of most older consoles isn’t really what one
would typically refer to as an OS

• Usually provides little to no services to applications
running on the console

• It would be more apt to say that the games themselves on
these consoles were the operating system

• All hardware access is usually done directly by the
game itself, potentially through libraries provided with a
software development kit (although often in much older
consoles, even SDK libraries weren’t a given)

Operating Systems on Past
Video Game Consoles

• Older consoles were often very limited compared to
what is expected today

• Very little RAM

• Slow CPUs

• Very little or no writable secondary storage

• Many general-purpose operating system features
we’ve discussed are either useless or detrimental to
the user experience on such systems!

A Retrospective…

• Let us take a look at one
particular video game
console: The Sega Dreamcast

• Released in 1998 in Japan,
1999 in the US/Europe/
Australia

Dreamcast
• Very limited hardware by today’s standards:

• CPU: 200 MHz (single core) Hitachi SuperH 4

• RAM: 16 MB (essentially PC100 SDRAM)

• Video: NEC/VideoLogic PowerVR 2DC (HOLLY) @ 100MHz, 8MB RAM

• Sound: ARM7DI (nominally 22-25MHz, actual performance much worse) +
Yamaha AICA (descendant of the SCSP) w/ 2MB RAM

• No hard drive, all games run from Gigabyte Disc (GD-ROM) media.

• Various accessories including memory cards, network adapters, etc.

• No real built-in OS — very basic shell for managing memory cards and playing
audio CDs which provides very little in the way of services to applications

• Only service provided is a set of system calls for accessing the GD-ROM drive

So… What?
No operating system was provided on the console —

games functioned as their own OSes through SDK libraries!

Katana and Windows CE
• Two SDKs were available for this console to licensed developers

• The most widely used was Sega’s “Katana” SDK, named after the codename of the
Dreamcast

• Provided extensive hardware support and debugging functionality

• No explicit threading model or support for loadable code modules, etc.

• Microsoft Windows CE was also available as an SDK

• Based on the mobile OS that Microsoft had developed, with extensions ported
from the PC version of Windows, like DirectX

• Functioned much more like a traditional OS than Sega’s Katana and was much
more familiar to PC developers

• However, this had a detrimental impact on performance of games written with
this SDK

Homebrew Development
• Early on, it was discovered that it was possible to

run unlicensed code on the Dreamcast through a
“vulnerability” in the console’s boot up sequence

• Specially written CD-Rs can be used to load
code

• To this day, there is an active development
community, even though the console was
discontinued over 15 years ago

KallistiOS
• The most widely used homebrew “SDK” for the

Dreamcast is known as KallistiOS

• More or less continuously developed since 2000

• Has been used many freely-available homebrew
games, as well as commercially produced indie
games

• Contains no Sega-copyrighted code — based
completely on reverse engineering of the
hardware

• Distributed in the form of a library which provides
all functionality to user programs by statically
linking to the kernel

• User programs run in Kernel mode

• Originally written by largely by Dan Potter, now
maintained primarily by me, with many other
developers having contributed code

What is KOS?
• A “pseudo real-time OS”

• Provides a monolithic kernel with the ability to dynamically load modules

• A fairly small codebase

• Hardware management

• Interrupt handling, DMA, MMU support, threading, etc.

• Pseudo-POSIX layer

• Virtual Filesystem, Pthreads, libc, BSD Sockets API, etc.

• Hardware abstraction layer

• Video hardware access (including OpenGL-like functionality), and drivers for
most other hardware internal to the system or available as an add-on

What KOS doesn’t do…
• Full POSIX-compliance

• Provides basic functionality, eschewing features not useful/relevant
to gaming

• Multi-tasking

• Threads are provided, but not processes

• Memory protection

• No process model means that tasks can overwrite each other at will

• MMU support not on by default

• MMU support is available, if you really want memory protection…

How is that an OS?
• Think back to the beginning of the semester…

• The two most important tasks of an OS?

• Resource allocation

• Acting as a control program

• Does KOS do these? Of course!

Structure of KOS
• KOS is a monolithic kernel, with the ability to use dynamically

loaded modules

• Divided into several interdependent layers:

• Hardware access layer

• Including most platform-dependent pieces of the code, like
hardware drivers, crt0, task switching, etc.

• Virtual Filesystem, C library, and Pseudo-POSIX layer

• Threading System

• Network Stack and BSD Sockets

Programming with KOS
• Designed to be as simple for developers familiar with PC programming to pick up as

possible

• Includes several ported libraries and convenience functionality like an OpenGL-like
video stack

• Direct hardware access, through the built-in functionality for those more experienced with
the system or who want more performance

• Kernel is statically linked to user binaries

• No built-in distinction between user programs and the kernel — everything runs in
kernel mode for performance

• Uses a relatively standard compiler setup (GNU Binutils, GCC, Newlib libc/libm)

• Support for C, C++, Objective C, and SuperH Assembly programming languages

• Lua and Python have also been ported to the system, however these do not include
any direct hardware access and are generally meant for embedding into other code

