KallistiO




Video Game Consoles

* Video game consoles are essentially locked down general purpose
computers

* The same kinds of components go into their makeup — from the
CPUs on down to the optical disc drives

« Usually largely non-upgradable/non-serviceable black boxes to users
though.




Video Game Consoles

e Current generation consoles look a lot more like PCs, both

iNn hardware and in their software stacks, but even older
consoles had their similarities.

e |tis only fairly recently that operating systems on these
consoles have become so apparent to the consumer




Operating Systems on Past
Video Game Consoles

 The “BIOS” of most older consoles isn't really what one
would typically refer to as an OS

e Usually provides little to no services to applications
running on the console




Operating Systems on Past
Video Game Consoles

* Older consoles were often very limited compared to
what Is expected today

e Very little RAM

 Slow CPUs




A Retrospective...

* Letustake alook at one
particular video game
‘console: The Sega Dreamcast

< )

Dreamcast



Dreamcast

e Very limited hardware by today’'s standards:
e CPU: 200 MHz (single core) Hitachi SuperH 4
RAM: 16 MB (essentially PC100 SDRAM)

 Video: NEC/VideolLogic PowerVR 2DC (HOLLY) @ 100MHz, 8MB RAM

. Sound ARI\/I7DI (nomrnally 22 25I\/|Hz aotual performance muoh Worse)




So... What?

No operating system was provided on the console —
games functioned as their own OSes through SDK libraries!



Katana and Windows CE

« Two SDKs were available for this console to licensed developers

* The most widely used was Sega’s “Katana” SDK, named after the codename of the
Dreamcast

* Provided extensive hardware support and debugging functionality

« No explicit threading model or support for loadable code modules, etc.

*+ Microsoft Windows CE was also available as an SDK



Homebrew Development

e Early on, it was discovered that it was possible to

run un
“vulne

icensed code on the Dreamcast through a

rability” in the console’s boot up sequence

e Specially written CD-Rs can be used to load




Kallist

» The most widely used homebrew “SDK” for the
Dreamcast is known as KallistiOS

* More or less continuously developed since 2000

* Has been used many freely-available homebrew
games, as well as commercially produced indie
games

« Contains no Sega-copyrighted code — based
completely on reverse engineering of the
Y ‘; o % f et B T LA




What is KOS?

* A “pseudo real-time OS”
* Provides a monolithic kernel with the ability to dynamically load modules

* A fairly small codebase

* Hardware management




What KOS doesn’t do...

e Full POSIX-compliance

e Provides basic functionality, eschewing features not useful/relevant
to gaming

e Multi-tasking

reads are prov

.:f




How Is that an OS?

* Think back to the beginning of the semester...

* The two most important tasks of an OS?




Structure of KOS

« KOS is a monolithic kernel, with the ability to use dynamically
loaded modules

e Divided into several interdependent layers:

e Hardware access layer




Programming with KOS

» Designed to be as simple for developers familiar with PC programming to pick up as
possible

» Includes several ported libraries and convenience functionality like an OpenGL-like
video stack

» Direct hardware access, through the built-in functionality for those more experienced with
the system or who want more performance

« Kernel is statically linked to user binaries




