Security and Exploit
Mitigation

2 (] 2
‘. :l ' $ae 5t i . ‘. _h ;. = - _'L;~, '.'.:. . " "y } ~“; ‘-,.-‘. 4 "'. AT 1 » = s -y e of L : - » 4 i ~ L TETIN £ by L e -
d i L R wkis) g 3 . ol accuwiiies At ¥ ! el Y 4 - 2% ey = 4 e ¢)
R AN T /\') e -~ \L"" =y Al e 'l.' £y ._.-._g-, _-'.:‘,_. g - .'l‘. “‘*'.‘ A— _ ““ | _-:_q “-_‘ l,'_“ T ' 2 A . iy ~ald ‘.-—' s S el jL WS 4wt .<' 810 T et PR
R p N) - "\ } - n.‘ \ - S~ n P -] S o & e 3 P el A | s s R] - Pt
f g { . N ‘o an g . L B ¥i s T Al

Security Is of Supreme
Importance in Systems

 As we have seen In the past two classes, even with

sophisticated security systems, small failures can
snowball

* “You can break 20% of the security and [do] 100% of what
[they] don’t want you to do”

s\
1 R,

" i [: v. g
- | /] ; TNV N -l \ . m b VO (@) S L= a0 gi11 PV)
% anyv dirrerent goals: stealna @
4 A \ Al -\ \) <Y 4 I %) | | K N . ' - 31

What can be done”?

e As we have seen, many sophisticated technigues
have been proposed to deal with security in systems

Encryption and code-signing are two good ideas

. However they do not alone make for a Completely

| X - L 4 Y l.l
£ J iVt is o (%) m ﬂa Jirms _~ - g 145 L4 g i R >4 -. L L P e §om LS l‘ 18315 i : S48 55 c iy YLl
PRI : N ~ e r— -~ LN - 5 ¢ " -y Bt 5 .y .“- e) " [)
£ L R<g L r' qa’" & t ‘ D) V V| 3 ’.r.‘ et o “:;‘- b 107 Tt Y ne ,..:q'- ,"-vl ‘. g e R o e } s Vg \;. g .‘___ o D ... Y r ATy o
N { s - oo L pey - - R K, | [- v : e Fe - oy g y

SO...

e A variety of techniques have been discussed to deal
with security iIssues beyond the ideas of encryption

and code signing — each with their own benetits and
drawbacks

seaeatleanillid seussiiitecdocays i it

Buffer Overflows

« Buffer overtlows are one of the most prevalent
security flaws that are exploited by attackers
today

* Essentially, they allow an attacker to craft a

n | | n
S e ": Wi . - ".."") ’ A = | e s . ” X ' 4 " =12 ‘ ' o 44 .".—'_ Er -~ b S 17 ‘ l‘q ‘ ' --V - "._‘- "- 1 ‘ ol L2 £ ;; ~" 3 .\' =y :h.;-'w" :,’ E i'\r‘
> . .] = 1 — =L U N (C J L D) B (& ' P (G) y 4 N | W s : e : 0 »
5 " "7' 10) ot e i . ol = Ui “‘.' -/’,: ‘-"‘-' . L g ,‘~,"‘v.' [-':.l £ AA .",_'-‘..: ‘.-.’: 4'1 W I -‘- !""" I —) :) =t ". ~h - v,j~."' o 4 \:"n A WA . e [l ” A

2l

#1nclude <string.h>

void magic(const char *input) {
char buf[128];

[J
Y [
y ! _ A ¢‘" ' 4 Y — s g‘ " / f o, PR iy 3 3 oY J1 L& }-o L ") ~ ¢
e L e Wt y 4) » man i B | B (- AL Vs - - addead B et -l oy
pramtu| wi) AN eyt N uaty SRR QAN eeliirte it AN At (L et e Il

_magic:
sts.1 pr,@-ri5
mov.lL .LZ2,r0@
add #-128,r15

mov rd,r5
jsr @ro
mov rls,r4

mov. 1 .L3,r0
jsr @ro

mov rls, r4
add #64,r15
add #64 r15

> o Ll 's adnteg - - g e h ; :
e i T ' . X
| G T s Nase 0y P A X

What happens if input is
>128 bytes long”

Attacked Stack

Normal Stack Frame

182

—rame

S5 Input

Buffer guards are one
mitigation technique
* Canaries are widely deployed

e Special value is written to the stack between the local
data of the function and the data used for linkage

 This value is checked on function exit

Memory Protection

 When setting up pages for program use, various
protection bits are set in the page table/TLB

e Usually amongst these are bits for whether the page
should be readable, writeable, and/or executable

- * Page protection bits are checked by each memory

WAX
e WAX means Write XOR Execute

e That is to say, enforce that no pages that are writable
are ever executable as well

. ThIS ensures that an attacker can't fill memory buffers

~WIth code ana use a butrer overtlow on the stack to

\“ e A Sy
P l‘ Ll O e L S0 N 22 4
. 1

WAX

* Modity mprotect() such that the flags
PROT_EXEC | PROT_WRITE cause an error to
be returned and protection bits to not be set on

the page .

18
— .‘_;.:?
¢

WAX

« WAX Is a nice solution to several problems, but
has it's own drawbacks

e Some architectures do not provide for an
execute/no execute blt on their pages (16 blt

’ o Mbs n {w
e v ,-'--.o"-' p 9 _": N o - N
' ‘ ' .'1.. f on.) ﬁ p - ' B (w: ' ‘,:Q: A g \ ..! R 4_5.‘ ;ﬁ .. I, ﬂblﬂn :1\ A ” ! ‘ .. v.c -""'L"Q -“' " ' Y ".‘ q‘ r’-" \ \‘.

Address Space Layout
Randomization

 ASLR refers to a technique wherein the address
space of a program is randomized at runtime to

prevent attackers from reliably jumping to known
positions in code/data

e Usually, programs are compiled such that they always
- startat the same location In virtual memory, making

b &~ Ellidh it s
= W - AL I &

ASLR

e ASLR is not a be-all, end-all solution

. There |s still (usually) a I|m|ted wmdow of entropy

% Ll e el A] R T T i B f et £ o - S5 Lid \: X) gl
% Lo =] 4-.-. _:?.“r ﬁg l“ \ A A @ Qﬁ .4 ”b‘-o . f ﬁ : { " A L [‘.. e Cani. " & F “ .‘- d4 : : = .‘1.)-:..q"(- ,, L3R v‘n" JI‘*-""., _.:-,l.. v AT
. . oy \ - = patede s iin & Y AN AT

——) O 4 o 3 -~ i
: . . y = i

