
Security and Exploit
Mitigation
CMSC 421 - Spring 2016

Lawrence Sebald

Security is of Supreme
Importance in Systems

• As we have seen in the past two classes, even with
sophisticated security systems, small failures can
snowball

• “You can break 20% of the security and [do] 100% of what
[they] don’t want you to do”

• Attackers motivated by many different goals: stealing
information, piracy, fame

• There is no fully secure system — any system that anyone
has access to (remotely or locally) cannot be secured
completely

What can be done?
• As we have seen, many sophisticated techniques

have been proposed to deal with security in systems

• Encryption and code-signing are two good ideas

• However, they do not alone make for a completely
secure system

• A chain of trust is needed

• But can often be broken, especially with physical
access to hardware

So…
• A variety of techniques have been discussed to deal

with security issues beyond the ideas of encryption
and code signing — each with their own benefits and
drawbacks

• We will discuss three today:

• Buffer/stack guards

• W^X

• ASLR (and KASLR)

Buffer Overflows
• Buffer overflows are one of the most prevalent

security flaws that are exploited by attackers
today

• Essentially, they allow an attacker to craft a
specific input that causes a write to a buffer to
go beyond the bounds of what that buffer would
normally hold

• Take the code on the next slide as an example…

#include <string.h>

void magic(const char *input) {
 char buf[128];

 strcpy(buf, input);
 do_cool_stuff(buf);
}

_magic:
sts.l pr,@-r15
mov.l .L2,r0
add #-128,r15
mov r4,r5
jsr @r0
mov r15,r4
mov.l .L3,r0
jsr @r0
mov r15,r4
add #64,r15
add #64,r15
lds.l @r15+,pr
rts
nop

.L4:
.align 2

.L2:
.long _strcpy

.L3:
.long _do_cool_stuff

What happens if input is
>128 bytes long?

pr
(4B)

buf
(128B)

Normal Stack Frame

???
(4B)

buf
(128B)

Attacked Stack Frame
132B input

The attacker has overwritten the return address of the
function magic()!

Buffer guards are one
mitigation technique

• Canaries are widely deployed

• Special value is written to the stack between the local
data of the function and the data used for linkage

• This value is checked on function exit

• If the check fails, program is terminated

• Canary values must be protected from disclosure to
attackers — or they could craft their buffer overflow
to include the canary!

Memory Protection
• When setting up pages for program use, various

protection bits are set in the page table/TLB

• Usually amongst these are bits for whether the page
should be readable, writeable, and/or executable

• Page protection bits are checked by each memory
access, and a protection violation is generated if the
access doesn’t comply with the flags set on the page

• Implemented in the mmap() and mprotect() system
calls in *nix systems

W^X
• W^X means Write XOR Execute

• That is to say, enforce that no pages that are writable
are ever executable as well

• This ensures that an attacker can’t fill memory buffers
with code and use a buffer overflow on the stack to
jump to it

• The destination of the jump would be marked as
non-executable, as the attacker was able to write to
it, thus the program would be terminated

W^X

• Modify mprotect() such that the flags
PROT_EXEC | PROT_WRITE cause an error to
be returned and protection bits to not be set on
the page

• Must also ensure that one cannot PROT_WRITE
a page, then later remove that privilege and add
PROT_EXEC

W^X
• W^X is a nice solution to several problems, but

has it’s own drawbacks

• Some architectures do not provide for an
execute/no-execute bit on their pages (16-bit
and 32-bit x86, ARM before ARMv6, several
others)

• Poses problems for Just-In-Time compilers and
other dynamic code generation techniques

Address Space Layout
Randomization

• ASLR refers to a technique wherein the address
space of a program is randomized at runtime to
prevent attackers from reliably jumping to known
positions in code/data

• Usually, programs are compiled such that they always
start at the same location in virtual memory, making
linking functions and such very simple

• ASLR breaks this assumption and changes the
location of the start of the program, as well as it’s data,
heap, stack, etc

ASLR

• ASLR is not a be-all, end-all solution

• There is still (usually) a limited window of entropy
for the randomization

• Can be defeated by multiple copies of data and
NOP-sleds

