The Security Problem - Security must consider external environment of the system, and
protect the system resources

- Intruders (crackers) attempt to breach security
- Threat is potential security violation
- Attack is attempt to breach security
- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse

Standard Security Attacks Masquerading
Operating System Concepts - 7h $^{\text {th }}$ Edition, Jan 10, 2005
- Security must occur at four levels to be effective:
- Physical
- Human
- Operating social engineering, phishing, dumpster diving
- Network
Security is as weak as the weakest chain

Program Threats

Trojan Horse

- Code segment that misuses its environment
Exploits mechanisms for allowing programs written by users to be
executed by other users
- Spyware, pop-up browser windows, covert channels
Trap Door
- Specific user identifier or password that circumvents normal security
procedures
Could be included in a compiler
Logic Bomb
Program that initiates a security incident under certain circumstances
Stack and Buffer Overflow
Exploits a bug in a program (overflow either the stack or memory
buffers)
C Program with Buffer-overflow Condition

Layout of Typical Stack Frame

Modified Shell Code

Hyoontetialal Stack Frame

return address	$\}$ copied	address of modified shell code
saved frame pointer		
buffer(BUFFER_SIZE - 1)		-
buffer(1)		modified shell code
buffer(0)		
(a)		(b)

Program Threats (Cont.) Virus dropper inserts virus onto the system
Many categories of viruses, literally many thousands of viruses

- File
- Boot
- Sacro
- Source code
- Encrypted
- Stealth
- Tunneling
- Multipartite
- Armored

System and Network Threats
Worms - use spawn mechanism; standalone program
Internet worm
Exploited UNIX networking features (remote access) and bugs
in finger and sendmail programs
Grappling hook program uploaded main worm program
Port scanning
range of IP addresses
Denial of Service
Overload the targeted computer preventing it from doing any
useful work
Distributed denial-of-service (DDOS) come from multiple sites
at once
Cryptography as a Security Tool
- Broadest security tool available
- Source and destination of messages cannot be trusted without
cryptography
- Means to constrain potential senders (sources) and / or
receivers (destinations) of messages
Based on secrets (keys)
Medium

Expman

> Encryption algorithm consists of - Set of K keys - Set of M Messages - A function $E: K \rightarrow(M \rightarrow C)$. That is, for each $k \in K, E(k)$ is a function for generating ciphertexts from messages. Both E and $E(k)$ for any k should be efficiently computable functions. A function $D: K \rightarrow(C \rightarrow M)$. That is, for each $k \in K, D(k)$ is a function for generating messages from ciphertexts. Both D and $D(k)$ for any k should be efficiently computable functions. An encryption algorithm must provide this essential property: Given a ciphertext $c \in C$, a computer can compute m such that $E(k)(m)=c$ only if it possesses $D(k)$. Thus, a computer holding $D(k)$ can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding $D(k)$ cannot decrypt ciphertexts. - ince ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive $D(k)$ from the ciphertexts
Encryption
Symmetric

Asymmetric Encryption
Public-key encryption based on each user having two keys: - private key - key known only to individual user used to decrypt
data
Must be an encryption scheme that can be made public without
making it easy to figure out the decryption scheme Most common is RSA block cipher
Efficient algorithm for testing whether or not a number is prime
No efficient algorithm is know for finding the prime factors of a
number
Asymmetric Encryption (Cont.)
Formally, it is computationally infeasible to derive $D\left(k_{d}, M\right)$
from $E\left(k_{e}, M\right.$, and so $E\left(k_{e}, M\right)$ need not be kept secret and
can be widely disseminated

- $E\left(k_{e}, M\right.$ (or just $\left.k_{e}\right)$ is the public key
- $D\left(k_{d}, M\right.$ (or just $\left.k_{d}\right)$ is the private key
- N is the product of two large, randomly chosen prime
numbers p and q (for example, p and q are 512 bits
each)
- Encryption algorithm is $E\left(k_{e}, M(m)=m^{k} \bmod N\right.$, where
k_{e} satisfies $k_{e} k_{d} \bmod (p-1)(q-1)=1$
- The decryption algorithm is then $D\left(k_{d}, M(c)=c^{k_{d} d \bmod N}\right.$
RSA

Note symmetric cryptography based on transformations,
asymmetric based on mathematical functions
- Asymmetric much more compute intensive
- Typically not used for bulk data encryption
Authentication
Constraining set of potential senders of a message

Crucial to identify user correctly, as protection systems depend on
user ID
User identity most often established through passwords, can be
considered a special case of either keys or capabilities
- Also can include something user has and /or a user attribute
Passwords must be kept secret
- Frequent change of passwords
- Log all invalid access attempts
Passwords may also either be encrypted or allowed to be used
only once
Implementing Security Defenses
- Defense in depth is most common security theory - multiple
- Vulnerability assessment compares real state of system / network
- Intrusion detection endeavors to detect attempted or successful
intrusions - Signature-based detection spots known bad patterns
Anomaly detection spots differences from normal behavior
- False-positives and false-negatives a problem
Virus protection
Auditing, accounting, and logging of all or specific system or
network activities
A network firewall is placed between trusted and untrusted hosts - The firewall limits network access between these two security domains
- Can be tunneled or spoofed Tunneling allows disallowed protocol to travel within allowed
- Firewall rules typically based on host name or IP address which can be spoofed
Personal firewall is software layer on given host
- Can monitor / limit traffic to and from the host Application proxy firewall understands application protocol and
can control them (i.e. SMTP)
System-call firewall monitors all important system calls and apply
rules to them (i.e. this program can execute that system call) Application proxy firewall understands application protocol and
can control them (i.e. SMTP)
System-call firewall monitors all important system calls and apply
rules to them (i.e. this program can execute that system call) Application proxy firewall understands application protocol and
can control them (i.e. SMTP)
System-call firewall monitors all important system calls and apply
rules to them (i.e. this program can execute that system call)

[^0]Network Security Through Domain Separation Via Firewall

[^0]: that system call)

