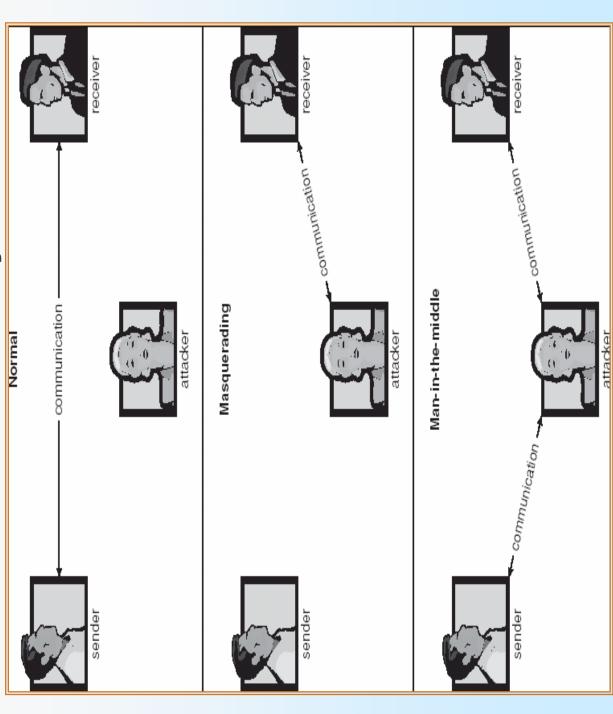


The Security Problem

- Security must consider external environment of the system, and protect the system resources
- Intruders (crackers) attempt to breach security
- Threat is potential security violation
- Attack is attempt to breach security
- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse

Chapter 15: Security

Security Violations


- Categories
- Breach of confidentiality
- Breach of integrity
- Breach of availability
- Theft of service
- Denial of service
- Methods
- Masquerading (breach authentication)
- Replay attack
- Message modification
- Man-in-the-middle attack
- Session hijacking

Operating System Concepts – 7th Edition, Jan 10, 2005

Operating System Concepts – 7th Edition, Jan 10, 2005

Security Measure Levels

- Security must occur at four levels to be effective:
- Physical
- Human

Avoid social engineering, phishing, dumpster diving

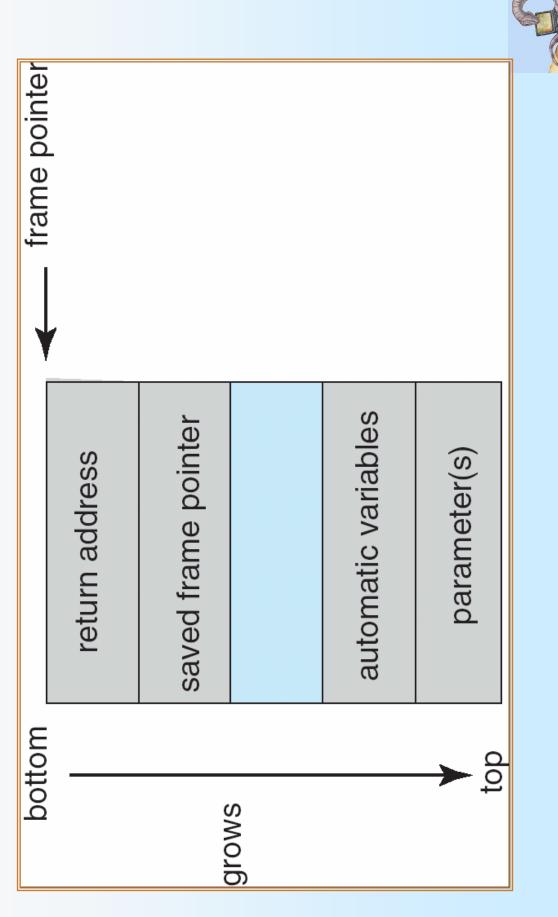
- Operating System
- Network
- Security is as weak as the weakest chain

Operating System Concepts – 7th Edition, Jan 10, 2005

Program Threats

- Trojan Horse
- Code segment that misuses its environment
- Exploits mechanisms for allowing programs written by users to be executed by other users
- Spyware, pop-up browser windows, covert channels
- Trap Door
- Specific user identifier or password that circumvents normal security procedures
- Could be included in a compiler
- Logic Bomb
- Program that initiates a security incident under certain circumstances
- Stack and Buffer Overflow
- Exploits a bug in a program (overflow either the stack or memory buffers)

C Program with Buffer-overflow Condition


#include <stdio.h>
#define BUFFER SIZE 256
#define BUFFER SIZE 256
int main(int argc, char *argv[])
{
 char buffer[BUFFER SIZE];
 if (argc < 2)
 return -1;
 return -1;
 else {
 strcpy(buffer,argv[1]);
 return 0;
 }
}</pre>

Operating System Concepts – 7th Edition, Jan 10, 2005

Layout of Typical Stack Frame

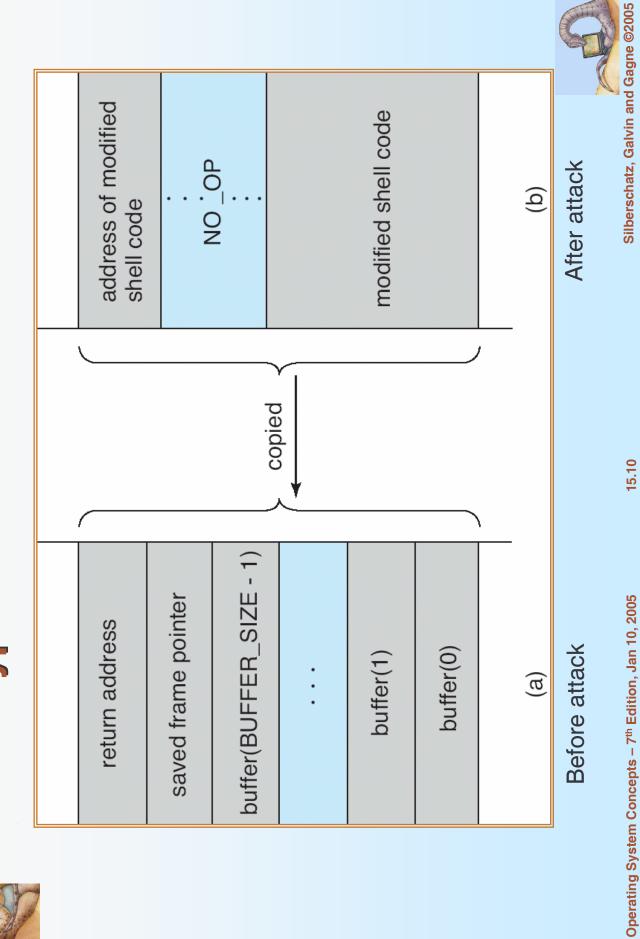
Operating System Concepts – 7th Edition, Jan 10, 2005

15.8

Silberschatz, Galvin and Gagne ©2005

Modified Shell Code

#include <stdio.h>
int main(int argc, char *argv[])


execvp(''\bin\sh'', ''\bin \sh'', NULL);

return 0;

Operating System Concepts – 7th Edition, Jan 10, 2005

Hypothetical Stack Frame

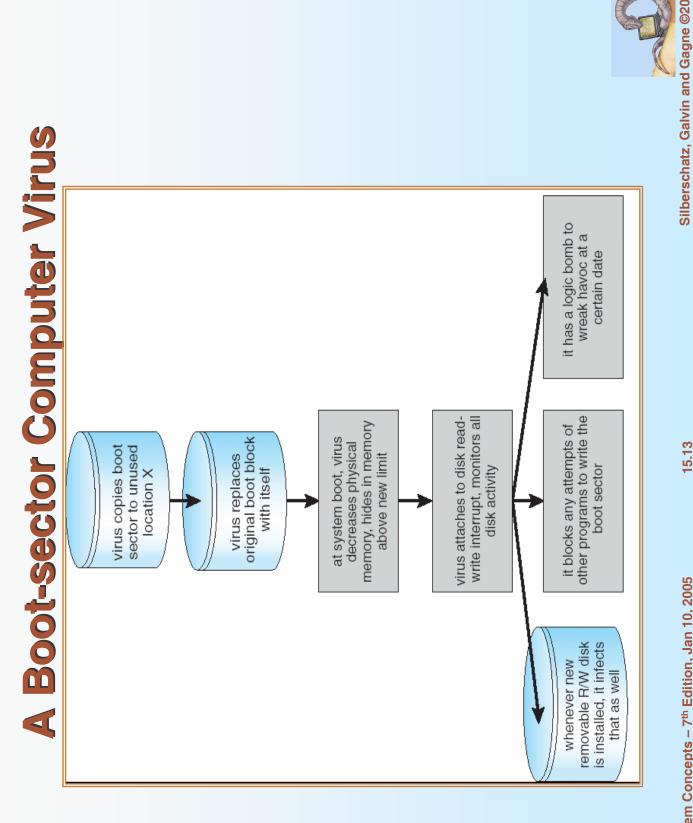
Program Threats (Cont.)

- Viruses
- Code fragment embedded in legitimate program
- Very specific to CPU architecture, operating system, applications
- Usually borne via email or as a macro
- Visual Basic Macro to reformat hard drive

```
CreateObject ('Scripting.FileSystemObject')
                                                                                                       vs = Shell(''c:command.com /k format
                                                                                                                             c:'', vbHide)
Sub AutoOpen()
                                                               Set oFS
                               Dim oFS
```

End Sub

Operating System Concepts – 7th Edition, Jan 10, 2005



Program Threats (Cont.)

- Virus dropper inserts virus onto the system
- Many categories of viruses, literally many thousands of viruses
- File
- Boot
- Macro
- Source code
- Polymorphic
- Encrypted
- Stealth
- Tunneling
- Multipartite
- Armored

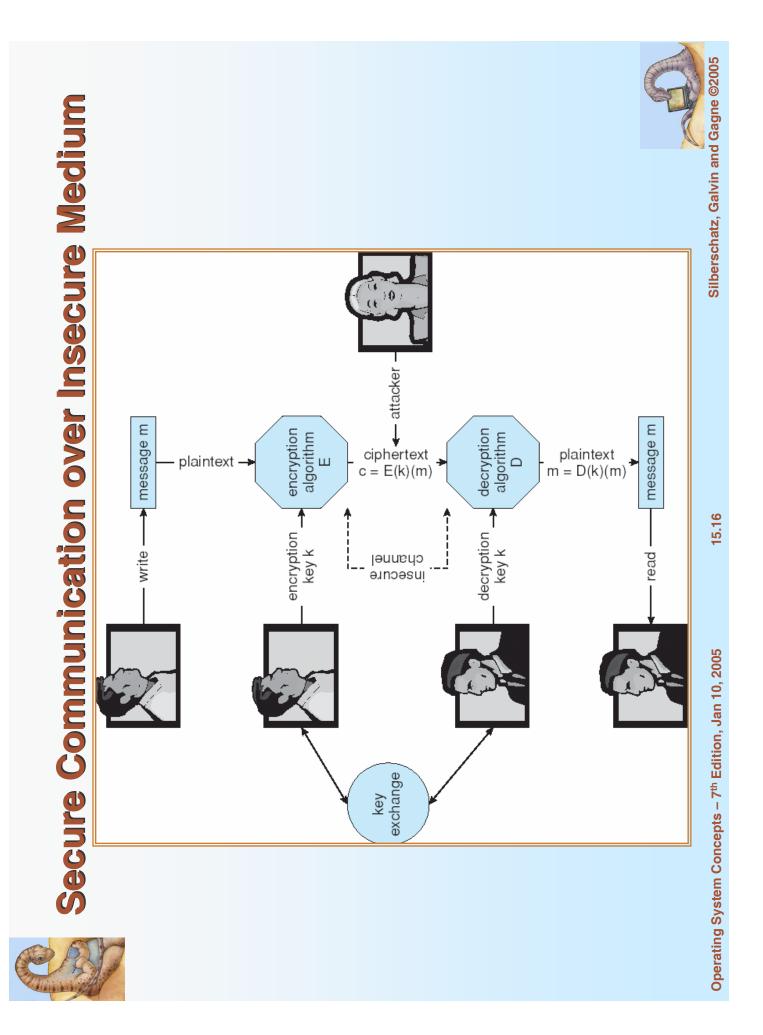
Operating System Concepts – 7th Edition, Jan 10, 2005

Operating System Concepts – 7th Edition, Jan 10, 2005

Silberschatz, Galvin and Gagne ©2005

System and Network Threats

- Worms use spawn mechanism; standalone program
- Internet worm
- Exploited UNIX networking features (remote access) and bugs in finger and sendmail programs
- Grappling hook program uploaded main worm program
- Port scanning
- Automated attempt to connect to a range of ports on one or a range of IP addresses
- Denial of Service
- Overload the targeted computer preventing it from doing any useful work
- Distributed denial-of-service (DDOS) come from multiple sites at once



Cryptography as a Security Tool

- Broadest security tool available
- Source and destination of messages cannot be trusted without cryptography
- Means to constrain potential senders (sources) and / or receivers (destinations) of messages
- Based on secrets (keys)

Encryption

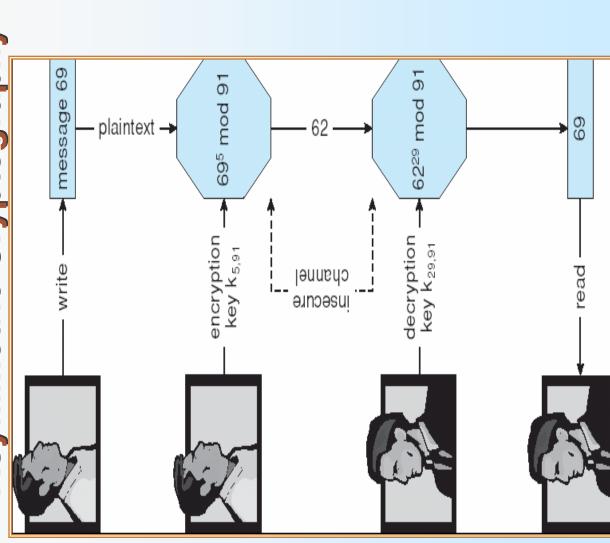
- Encryption algorithm consists of
- Set of K keys
- Set of M Messages
- Set of C ciphertexts (encrypted messages)
- A function $E : K \to (M \to C)$. That is, for each $k \in K$, E(k) is a function for generating ciphertexts from messages.
- Both E and E(k) for any k should be efficiently computable functions.
- A function $D: K \to (C \to M)$. That is, for each $k \in K$, D(k) is a function for generating messages from ciphertexts.
- Both D and D(k) for any k should be efficiently computable functions.
- An encryption algorithm must provide this essential property: Given a ciphertext $c \in C$, a computer can compute *m* such that E(k)(m) = c only if it possesses D(k).
- Thus, a computer holding D(k) can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding D(k) cannot decrypt ciphertexts.
- Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive D(k) from the ciphertexts

Symmetric Encryption

- Same key used to encrypt and decrypt
- *E(k)* can be derived from *D(k)*, and vice versa
- DES is most commonly used symmetric block-encryption algorithm (created by US Govt)
- Encrypts a block of data at a time
- Triple-DES considered more secure
- Advanced Encryption Standard (AES), twofish up and coming
- RC4 is most common symmetric stream cipher, but known to have vulnerabilities
- Encrypts/decrypts a stream of bytes (i.e wireless transmission)
- Key is a input to psuedo-random-bit generator
- Generates an infinite keystream

Asymmetric Encryption

- Public-key encryption based on each user having two keys:
- public key published key used to encrypt data
- private key key known only to individual user used to decrypt data
- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
- Most common is RSA block cipher
- Efficient algorithm for testing whether or not a number is prime
- No efficient algorithm is know for finding the prime factors of a number


Asymmetric Encryption (Cont.)

- from $E(k_e, N)$, and so $E(k_e, N)$ need not be kept secret and Formally, it is computationally infeasible to derive $D(k_{d}, N)$ can be widely disseminated
- $E(k_e, N)$ (or just k_e) is the **public key**
- D(k_d, N) (or just k_d) is the private key
- N is the product of two large, randomly chosen prime numbers *p* and *q* (for example, *p* and *q* are 512 bits each)
- Encryption algorithm is $E(k_e, N)(m) = m^{k_e} \mod N$, where k_e satisfies $k_e k_d \mod (p-1)(q-1) = 1$
- The decryption algorithm is then $D(k_d, N)(c) = c^{k_d} \mod N$

Encryption and Decryption using RSA Asymmetric Cryptography

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts – 7th Edition, Jan 10, 2005

Cryptography (Cont.)

- Note symmetric cryptography based on transformations, asymmetric based on mathematical functions
- Asymmetric much more compute intensive
- Typically not used for bulk data encryption

Authentication

- Constraining set of potential senders of a message
- Complementary and sometimes redundant to encryption
- Also can prove message unmodified
- Symmetric encryption used in message-authentication code (MAC) authentication algorithm
- Asymmetric encryption used in digital-signatures
- Why authentication if a subset of encryption?
- Fewer computations (except for RSA digital signatures)
- Authenticator usually shorter than message
- Sometimes want authentication but not confidentiality
- Signed patches et al
- Can be basis for non-repudiation

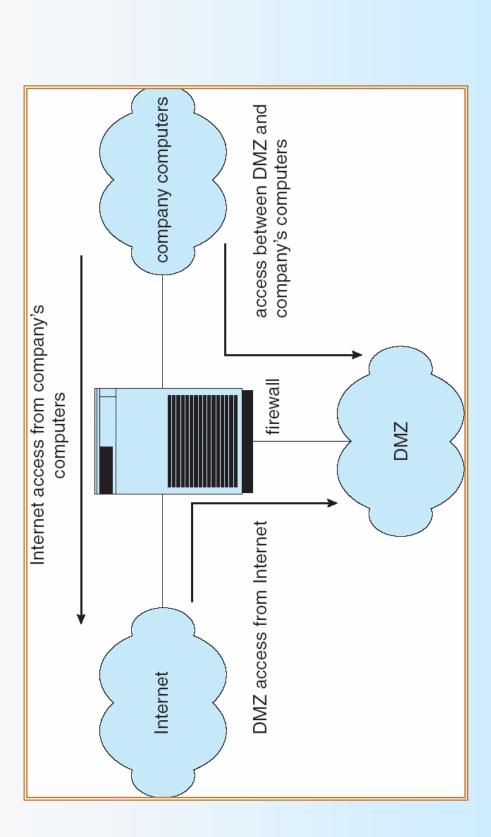
User Authentication

- Crucial to identify user correctly, as protection systems depend on user ID
- User identity most often established through passwords, can be considered a special case of either keys or capabilities
- Also can include something user has and /or a user attribute
- Passwords must be kept secret
- Frequent change of passwords
- Use of "non-guessable" passwords
- Log all invalid access attempts
- Passwords may also either be encrypted or allowed to be used only once

Implementing Security Defenses

- Defense in depth is most common security theory multiple layers of security
- Security policy describes what is being secured
- Vulnerability assessment compares real state of system / network compared to security policy
- Intrusion detection endeavors to detect attempted or successful intrusions
- Signature-based detection spots known bad patterns
- Anomaly detection spots differences from normal behavior
- Can detect zero-day attacks
- False-positives and false-negatives a problem
- Virus protection
- Auditing, accounting, and logging of all or specific system or network activities

0	AD
Calif.	


Firewalling to Protect Systems and Networks

- A network firewall is placed between trusted and untrusted hosts
- The firewall limits network access between these two security domains
- Can be tunneled or spoofed
- Tunneling allows disallowed protocol to travel within allowed protocol (i.e. telnet inside of HTTP)
- Firewall rules typically based on host name or IP address which can be spoofed
- Personal firewall is software layer on given host
- Can monitor / limit traffic to and from the host
- Application proxy firewall understands application protocol and can control them (i.e. SMTP)
- System-call firewall monitors all important system calls and apply rules to them (i.e. this program can execute that system call)

Network Security Through Domain Separation Via Firewall

Silberschatz, Galvin and Gagne ©2005

15.27

Operating System Concepts – 7th Edition, Jan 10, 2005

End of Chapter 15

