Chapter 1: Introduction

What is an Operating System？
A program that acts as an intermediary between a user of a
computer and the computer hardware．
Operating system goals：
－Execute user programs and make solving user problems
easier．
－Make the computer system convenient to use．
Use the computer hardware in an efficient manner．
Computer System Structure

CPU, memory, I/O devices
perating system
Controls and coordinates use of hardware among various
applications and users
CPU, memory, I/O devices
erating system
Controls and coordinates use of hardware am
applications and users
CPdware - provides basic computing resources
erating system
Controls and coordinates use of hardware am
applications and users
Application programs - define the ways in which the system resources are used to solve the computing problems of the

- Word processors, compilers, web browsers, database systems, video games - Users
• People, machines, other computers
Four Components of a Computer System

Compuats samutup

Computer System Organization

Storage Structure
Main memory - only large storage media that the CPU can access
directly.
Secondary storage - extension of main memory that provides large
nonvolatile storage capacity.
Magnetic disks - rigid metal or glass platters covered with
magnetic recording material
Disk surface is logically divided into tracks, which are
subdivided into sectors.
The disk controller determines the logical interaction between
the device and the computer.
Storage Hilearchy
- Storage systems organized in hierarchy.
- Speed
- Cost
- Volatility
Caching - copying information into faster storage system; main
memory can be viewed as a last cache for secondary storage.
Storage-Device Hierarchy

Operating System Structure

$$
\begin{aligned}
& \text { Multiprogramming needed for efficiency } \\
& \text { - Single user cannot keep CPU and I/O devices busy at all times } \\
& \text { Multiprogramming organizes jobs (code and data) so CPU always has } \\
& \text { - A subset of total jobs in system is kept in memory } \\
& \text { - One job selected and run via job scheduling } \\
& \text { When it has to wait (for I/O for example), OS switches to another job } \\
& \text { Timesharing (multitasking) is logical extension in which CPU switches jobs } \\
& \text { creating interactive computing } \\
& \text { Response time should be < } 1 \text { second } \\
& \text { Each user has at least one program executing in memory } \Rightarrow \text { process } \\
& \text { If several jobs ready to run at the same time } \Rightarrow \text { CPU scheduling } \\
& \text { If processes don't fit in memory, swapping moves them in and out to } \\
& \text { run } \\
& \text { Virtual memory allows execution of processes not completely in } \\
& \text { memory }
\end{aligned}
$$

Operating-System Operations

$$
\begin{aligned}
& \text { Interrupt driven by hardware } \\
& \text { Software error or request creates exception or trap } \\
& \text { Division by zero, request for operating system service } \\
& \text { Other process problems include infinite loop, processes modifying } \\
& \text { each other or the operating system } \\
& \text { Dual-mode operation allows OS to protect itself and other system } \\
& \text { components } \\
& \text { User mode and kernel mode } \\
& \text { Mode bit provided by hardware } \\
& \text { Provides ability to distinguish when system is running user } \\
& \text { Some instructions designated as privileged, only } \\
& \text { executable in kernel mode } \\
& \text { System call changes mode to kernel, return from call resets } \\
& \text { it to user }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Set up before scheduling process to regain control or terminate } \\
& \text { program that exceeds allotted time }
\end{aligned}
$$

A process is a program in execution. It is a unit of work within the system. Program is a passive entity, process is an active entity. Process needs resources to accomplish its task CPU, memory, I/O, files
Initialization data
Process termination requires reclaim of any reusable resources Single-threaded process has one program counter specifying location of next instruction to execute
Process executes instructions sequentially, one at a time, until completion
Multi-threaded process has one program counter per thread
Typically system has many processes, some user, some operating system running concurrently on one or more CPUs
Concurrency by multiplexing the CPUs among the processes / threads
Management Activities

Memory Management

All instructions in memory in order to execute

Optimizing CPU utilization and computer response to users
Memory management activities

- Keeping track of which parts of memory are currently being
used and by whom
- Deciding which processes (or parts thereof) and data to move
Allocating and deallocating memory space as needed
Storage Management

Mass-Storage Management
- Usually disks used to store data that does not fit in main memory or data
that must be kept for a "long" period of time.
- Proper management is of central importance
Entire speed of computer operation hinges on disk subsystem and its
algorithms
OS activities Free-space management Varies between WORM (write-once, read-many-times) and RW (read-
write)
Caching

Migration of Integer A from Disk to Register

vo subssystem

Protection and Security
Protection - any mechanism for controlling access of processes or users to resources defined by the OS Security - defense of the system against internal and external attacks Systems generally first distinguish among users, to determine who
can do what
User identities (user IDs, security IDs) include name and
associated number, one per user
User ID then associated with all files, processes of that user to
determine access control

$$
\begin{aligned}
& \text { Group identifier (group ID) allows set of users to be defined } \\
& \text { and controls managed, then also associated with each } \\
& \text { process, file } \\
& \text { Privilege escalation allows user to change to effective ID with } \\
& \text { more rights }
\end{aligned}
$$

