## EXAM I - Section 0201

CMSC-421

## Any and all forms of cheating will result in a net score of 0 .

## Question 1 (8 Points)

Most round robin schedulers use a fixed size quantum. Discuss the pros and cons of a small quantum and a large quantum.

## Question 2 ( 12 Points)

An OS supports two priority levels for processes, LO and HI. It implements the following scheduling algorithm:
a) If one or more HI processes are ready, schedule one at random;
b) Otherwise, pick at random a LO process and promote it to HI ; then go to step a).

Assume that all processes use a single quantum of time and that the processes arrival rate is a newcomer at each quantum, with $50 \%$ probability of it being LO or HI.

1. (2 points) Suppose that when the system is activated only two processes A (LO) and $\mathrm{B}(\mathrm{HI})$ are present. What is the probability that A is completed after one quantum?
2. ( $\mathbf{5}$ points) After two?
3. (5 points) Can we guarantee that process A will be ever executed? Why or why not? Discuss.

## Question (15 Points)

Two processes share the same critical section.
a) ( 5 points) What is the problem with the following code, assuming the syntax of the code below is correct and that we turn a blind eye to the busy wait condition?

```
repeat
    flag[i] = true;
    while flag[j] do nothing;
        .. critical section ..
    flag[i] = false;
        .. remainder section ..
until false;
```

b) ( $\mathbf{5}$ points) Another version is listed below. Do you see any problem?

```
repeat
    flag[i] = true;
    while flag[j]
            do begin
            flag[i] = false;
            delay random time
            flag[i] = true;
        end
    .. critical section ..
    flag[i] = false;
    .. remainder section ..
until false;
```

c) ( $\mathbf{5}$ points) Give a solution that eliminates problems seen in a), b) above. (Hint: Add another shared variable)

## Question (15 Points)

1. (8 points) Describe the four necessary simultaneous conditions in a system for deadlock to occur?
2. (7 points) Consider two resource types A, B where there are 12 instances of each. Given the following snapshot of the system determine whether it is deadlocked and give a safe sequence if it is not deadlocked.

|  | Allocation |  | Request |  | Available |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | A | B | A | B |
|  | 2 | 0 | 2 | 4 | 4 | 5 |
| P0 | 3 | 2 | 8 | 2 |  |  |
| P1 2 | 1 | 4 | 5 | 3 |  |  |
| P3 | 2 | 1 | 0 | 1 |  |  |
| P4 | 0 | 0 | 4 | 2 |  |  |

