CMSC 411
Computer Architecture

| ecture 27

Interfacing I/O Devices

Courtesy of CMSC 411, Computer Architecture

MRA Ly~ om o N\t tom o

Lecture’s Overview
[Previous Lecture:
¢ Memory to pProcessor Interconnect
=» Definition of bus structure
=» Bus transactions

=> Types of buses
=» Bus Standards

* Bus Performance and Protocol
=» Synchronous versus Asynchronous buses
=» Bandwidth optimization factors

* Bus Access
=>» Single versus multiple master bus
=>» Bus arbitration approaches

U This Lecture:

* Interfacing I/O devices to memory, processor and OS

Ny Courtesy of CMSC 411, Computer Architecture

MRA Ly~ om o N\t tom o

Typical I1/O System

interrupts

Processor [

Cache

Common performance
metrics:

» Throughput: 1/0O bandwidth
* Response time: Latency

Main /O

Memory Controller

/O /O
Controller Controller

s

Graphics /\mk

O The connection between the 1/O devices, processor, and memory are
usually called (local or internal) buses

O Communication among the devices and the processor use both bus

* Figure is courtesy of Dave Patterson

protocols and interrupts

Courtesy of

MRA Ly~ om o N\t tom o

CMSC 411, Computer Architecture 3

Giving Commands to I/O Devices

Two methods are used to address the device:

O Special /O instructions: (Intel 80X86, IBM 370)

=» Specify both the device number and the command word

« Device number: the processor communicates this via a
set of wires normally included as part of the I/O bus

« Command word: this is usually send on the bus’s data lines
« Each devices maintain status register to indicate progress

=>» Instructions are privileged to prevent user tasks from directly accessing
the 1/O devices

® Memory-mapped I/O: (Motorola/IBM PowerPC)
=>» Portions of the address space are assigned to I/Odevice

= Read and writes to those addresses are interpreted as commands to
the I/O devices

=» User programs are prevented from issuing 1/O operations directly:
« The I/O address space is protected by the address translation

A * Slide is courtesy of Dave Patterson

o e (e gy

\“f Courtesy of CMSC 411, Computer Architecture 4

MRA Ly~ om o N\t tom o

Communicating with 1/O Devices

 The OS needs to know when:
=>» The 1/O device has completed an operation
=» The 1/O operation has encountered an error

1 This can be accomplished in two different ways:
=>» Polling:
 The I/O device put information in a status register
« The OS periodically check the status register
=> 1/O Interrupt:;
* An |/O interrupt is an externally stimulated event, asynchronous to
Instruction execution but does NOT prevent instruction completion

 Whenever an I/O device needs attention from the processor, it
Interrupts the processor from what it is currently doing

« Some processors deals with interrupts as special exceptions

These schemes requires heavy processor’s involvement and
suitable only for low bandwidth devices such as the keyboard

N * Slide is partially a courtesy of Dave Patterson

o e (e gy

N Courtesy of CMSC 411, Computer Architecture 5

MRA Ly~ om o N\t tom o

Polling: Programmed I/O
|

CPU
Is the | :
data busy wait loop
[— way to use the CPU
| es l no unless the device
Memory y Is very fast!
10¢ read
| data
but checks for 1/O
" completion can be
device - dispersed among
store computation
data intensive code

done? | no
U Advantage: yes

=>» Simple: the processor is totally in control and does all the work
4 Disadvantage:
=» Polling overhead can consume a lot of CPU time

A * Slide is courtesy of Dave Patterson

o e (e gy

N Courtesy of CMSC 411, Computer Architecture 6

MRA Ly~ om o N\t tom o

Polling in 80386

MOV EDX, 379H .Printer status port
MOV ECX, O
XYZ: INAL, [DX] ;Ask the printer if it is ready
CMP AL, 1 ;1 means it's ready
JNE XYZ If not try again
MOV AL, [ABC + ECX]
DEC EDX ;Data port is 378H
OUT [DX], AL ;Send one byte
INC ECX
INC EDX ;Put back the status port
CMP ECX, 100000
JL XYZ
Issues:

O Status registers (ports) allows handshaking between CPU and I/O devices
O Device status ports are accessible through the use of typical I/O instructions

O CPU is running at the speed of the printer (what a waste!!)
/2N

[P S —

\“f" Mohamed Younis CMCS 313, Computer Organization and Assembly Language 6

Interrupt Driven Data Transfer

CPU

|

Memory

4 Advantage:

|OC

'-
device

{add
P IS \user
and
(1) 1O] 57 program
interrup
nop /
(2) save PC
(3) interrupt
service addr
o TEad ~
store interrupt
.- service
(4)\ rti routine

memory

=>» User program progress is only halted during actual transfer
) Disadvantage: special hardware is needed to:
=>» Cause an interrupt (1/O device)
=>» Detect an interrupt (processor)
=>» Save the proper states to resume after the interrupt (processor)

£/c2\

* Slide is courtesy of Dave Patterson

o e (e gy

Ny Courtesy of

MRA Ly~ om o N\t tom o

CMSC 411, Computer Architecture

8

/O Interrupt vs. Exception

O An I/O interrupt is just like the exceptions except:
=> An I/O interrupt is asynchronous
=>» Further information needs to be conveyed
=>» Typically exceptions are more urgent than interrupts

d An I/O interrupt is asynchronous with respect to instruction execution:
=>» /O interrupt is not associated with any instruction

=> /O interrupt does not prevent any instruction from completion
* You can pick your own convenient point to take an interrupt

4 1/O interrupt is more complicated than exception:
=>» Needs to convey the identity of the device generating the interrupt

=>» Interrupt requests can have different urgencies:
« Interrupt request needs to be prioritized
« Priority indicates urgency of dealing with the interrupt
» high speed devices usually receive highest priority

A * Slide is courtesy of Dave Patterson

o e (e gy

N Courtesy of CMSC 411, Computer Architecture 9

MRA Ly~ om o N\t tom o

Direct Memory Access

O Direct Memory Access (DMA): CPU sends a starting address,
> External to the CPU direction, and length count
. : to DMAC. Then issues "start".
=>» Use idle bus cycles (cycle stealing) \
=» Act as a master on the bus
= Transfer blocks of data to or from memory CPU

without CPU intervention
=>» Efficient for large data transfer, e.g. from disk

** Cache usage allows the processor to leave I l]
enough memory bandwidth for DMA
Q How does DMAwork?: Memory| [DMAC 10C
=» CPU sets up and supply device id, memory /]
address, number of bytes _
= DMA controller (DMAC) starts the access device
and becomes bus master DMAC provides handshake

signals for Peripheral

=> For multiple byte transfer, the DMAC Controller, and Memory
Increments the address Addresses and handshake
= DMAC interrupts the CPU upon completion signals for Memory.

For multiple bus system, each bus controller often contains DMA control logic

@ * Figure is courtesy of Dave Patterson
Ny Courtesy of CMSC 411, Computer Architecture 10

MRA Ly~ om o N\t tom o

DMA Problems

O With virtual memory systems: (pages would have physical and virtual addresses)
=>» Physical pages re-mapping to different virtual pages during DMA operations
= Multi-page DMA cannot assume consecutive addresses

Solutions:

=>» Allow virtual addressing based DMA
» Add translation logic to DMA controller
» OS allocated virtual pages to DMA prevent re-mapping until DMA completes

=>» Partitioned DMA
» Break DMA transfer into multi-DMA operations, each is single page
» OS chains the pages for the requester

® In cache-based systems: (there can be two copies of data items)
=>» Processor might not know that the cache and memory pages are different
=>» Write-back caches can overwrite I/O data or makes DMA to read wrong data
Solutions:

=>» Route I/O activities through the cache
> Not efficient since 1/0 data usually is not demonstrating temporal locality
=>» OS selectively invalidates cache blocks before 1/0O read or force write-back prior

to 1/0O write
» Usually called cache flushing and requires hardware support

A DMA allows another path to main memory with no cache and address translation

o e (e gy

Ny Courtesy of CMSC 411, Computer Architecture

ALl o~ imm oom] N7t s b o

/O Processor

CPU IOP D1
main memory D2
Mem bus
—I| Dn
/O
bus

(1) Issues _~CPU, " (1) 10P interrupts

=>» An |/O processor (I0P) offload the CPU

=» Some of the new processors, e.g.
Motorola 860, include special purpose
|OP for serial communication

target device

/ where cmnds are
d

OP| Device | Address

instruction \ CPU when done

to IOP IOP

(2)
v&‘ memory

Device to/from memory
transfers are controlled
by the IOP directly.

|OP steals memory cycles.

IOP looks in memory for commands
Addr | Cnt| Other

what/ / \ \Special

to do requests

where how

to put much
data

* Slide is courtesy of Dave Patterson

Ny Courtesy of CMSC 411, Computer Architecture

MRA Ly~ om o N\t tom o

Operating System’s Role

O Operating system acts as an interface between I/O hardware and programs

O Important characteristics of the I/O systems:
=» The I/O system is shared by multiple program using the processor
=> 1/O systems often use interrupts to communicate information about I/O

Interrupts must be handled by OS because they cause a transfer to supervisor mode

=>» The low-level control of an 1/O device is complex:

Managing a set of concurrent events
The requirements for correct device control are very detailed

O Operating System’s Responsibilities
=>» Provide protection to shared I/O resources

Guarantees that a user’s program can only access allowed set of I/O services

=>» Provides abstraction for accessing devices:

Supply routines that handle low-level device operation

=» Handles the interrupts generated by I/O devices
=>» Provide equitable access to the shared 1/O resources

All user programs must have equal access to the I/O resources

=» Schedule accesses in order to enhance system throughput

£/c2\

o e (e gy

Ny Courtesy of CMSC 411, Computer Architecture

ALl o~ imm oom] N7t s b o

Conclusion
d Summary
= Commanding I/O devices

Memory-mapped I/O
 |/O instructions

= Communication with 1/O devices
« Device polling
* |/O interrupts

« Direct memory mapping
* |/O processor

=» Operating System’s role
« |/O device interfacing
« Protection and scheduling accesses to shared devices

J Next lecture
=» Introduction to Multi-processor Systems

Read sections 6.6 in 4t Ed. of the textbook

Ny Courtesy of CMSC 411, Computer Architecture

MRA Ly~ om o N\t tom o

