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Lecture 27

Interfacing I/O Devices



Lecture’s Overview
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 Previous Lecture:

• Memory to processor interconnect

 Definition of bus structure

 Bus transactions

Types of buses

 Bus Standards

• Bus Performance and Protocol

 Synchronous versus Asynchronous buses

 Bandwidth optimization factors

• Bus Access

 Single versus multiple master bus

 Bus arbitration approaches

 This Lecture:

• Interfacing I/O devices to memory, processor and OS
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 The connection between the I/O devices, processor, and memory are  

usually called (local or internal) buses

Communication among the devices and the processor use both bus  

protocols and interrupts
* Figure is courtesy of Dave Patterson

Common performance  

metrics:

• Throughput: I/O bandwidth

• Response time: Latency



Giving Commands to I/O Devices

* Slide is courtesy of Dave Patterson
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Two methods are used to address the device:

 Special I/O instructions: (Intel 80X86, IBM 370)

 Specify both the device number and the command word

• Device number: the processor communicates this via a  

set of wires normally included as part of the I/O bus

• Command word: this is usually send on the bus’s data lines

• Each devices maintain status register to indicate progress

 Instructions are privileged to prevent user tasks from directly accessing  

the I/O devices

Memory-mapped I/O: (Motorola/IBM PowerPC)

 Portions of the address space are assigned to I/Odevice

 Read and writes to those addresses are interpreted as commands to  

the I/O devices

 User programs are prevented from issuing I/O operations directly:

• The I/O address space is protected by the address translation



Communicating with I/O Devices

 The OS needs to know when:

 The I/O device has completed an operation

 The I/O operation has encountered an error

 This can be accomplished in two different ways:

 Polling:

• The I/O device put information in a status register

• The OS periodically check the status register

 I/O Interrupt:

• An I/O interrupt is an externally stimulated event, asynchronous to  

instruction execution but does NOT prevent instruction completion

• Whenever an I/O device needs attention from the processor, it  

interrupts the processor from what it is currently doing

• Some processors deals with interrupts as special exceptions

These schemes requires heavy processor’s involvement and  

suitable only for low bandwidth devices such as the keyboard
* Slide is partially a courtesy of Dave Patterson
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Polling: Programmed I/O

 Advantage:

 Simple: the processor is totally in control and does all the work

 Disadvantage:

 Polling overhead can consume a lot of CPU time
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* Slide is courtesy of Dave Patterson
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Interrupt Driven Data Transfer

 Advantage:

 User program progress is only halted during actual transfer

 Disadvantage: special hardware is needed to:

 Cause an interrupt (I/O device)

 Detect an interrupt (processor)

 Save the proper states to resume after the interrupt (processor)
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* Slide is courtesy of Dave Patterson
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I/O Interrupt vs. Exception

* Slide is courtesy of Dave Patterson
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 An I/O interrupt is just like the exceptions except:

 An I/O interrupt is asynchronous

 Further information needs to be conveyed

 Typically exceptions are more urgent than interrupts

 An I/O interrupt is asynchronous with respect to instruction execution:

 I/O interrupt is not associated with any instruction

 I/O interrupt does not prevent any instruction from completion

• You can pick your own convenient point to take an interrupt

 I/O interrupt is more complicated than exception:

 Needs to convey the identity of the device generating the interrupt

 Interrupt requests can have different urgencies:

• Interrupt request needs to be prioritized

• Priority indicates urgency of dealing with the interrupt

• high speed devices usually receive highest priority



Direct Memory Access
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 Direct Memory Access (DMA):

 External to the CPU

 Use idle bus cycles (cycle stealing)

 Act as a master on the bus

 Transfer blocks of data to or from memory  

without CPU intervention

 Efficient for large data transfer, e.g. from disk

Cache usage allows the processor to leave  

enough memory bandwidth for DMA

 How does DMA work?:

 CPU sets up and supply device id, memory  

address, number of bytes

 DMA controller (DMAC) starts the access  

and becomes bus master

 For multiple byte transfer, the DMAC  

increments the address

 DMAC interrupts the CPU upon completion

For multiple bus system, each bus controller often contains DMA control logic

* Figure is courtesy of Dave Patterson
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DMA Problems
 With virtual memory systems: (pages would have physical and virtual addresses)

 Physical pages re-mapping to different virtual pages during DMA operations

 Multi-page DMA cannot assume consecutive addresses

Solutions:
 Allow virtual addressing based DMA

 Add translation logic to DMA controller

 OS allocated virtual pages to DMA prevent re-mapping until DMA completes

 Partitioned DMA
 Break DMA transfer into multi-DMA operations, each is single page

 OS chains the pages for the requester

 In cache-based systems: (there can be two copies of data items)

 Processor might not know that the cache and memory pages are different

Write-back caches can overwrite I/O data or makes DMA to read wrong data

Solutions:

 Route I/O activities through the cache
 Not efficient since I/O data usually is not demonstrating temporal locality

 OS selectively invalidates cache blocks before I/O read or force write-back prior  

to I/O write
 Usually called cache flushing and requires hardware support

DMA allows another path to main memory with no cache and address translation
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I/O Processor
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* Slide is courtesy of Dave Patterson

 An I/O processor (IOP) offload the CPU

 Some of the new processors, e.g.

Motorola 860, include special purpose  

IOP for serial communication



Operating System’s Role
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 Operating system acts as an interface between I/O hardware and programs

 Important characteristics of the I/O systems:

 The I/O system is shared by multiple program using the processor

 I/O systems often use interrupts to communicate information about I/O

• Interrupts must be handled by OS because they cause a transfer to supervisor mode

 The low-level control of an I/O device is complex:

• Managing a set of concurrent events

• The requirements for correct device control are very detailed

 Operating System’s Responsibilities

 Provide protection to shared I/O resources

• Guarantees that a user’s program can only access allowed set of I/O services

 Provides abstraction for accessing devices:

• Supply routines that handle low-level device operation

 Handles the interrupts generated by I/O devices

 Provide equitable access to the shared I/O resources

• All user programs must have equal access to the I/O resources

 Schedule accesses in order to enhance system throughput



Conclusion
 Summary

 Commanding I/O devices
• Memory-mapped I/O

• I/O instructions

 Communication with I/O devices
• Device polling

• I/O interrupts

• Direct memory mapping

• I/O processor

 Operating System’s role
• I/O device interfacing

• Protection and scheduling accesses to shared devices

 Next Lecture

 Introduction to Multi-processor Systems

Read sections 6.6 in 4th Ed. of the textbook
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