
CMSC 411

Computer Architecture

Courtesy of
Mohamed Younis

CMSC 411, Computer Architecture 1

Lecture 27

Interfacing I/O Devices

Lecture’s Overview

Courtesy of
Mohamed Younis

CMSC 411, Computer Architecture 2

 Previous Lecture:

• Memory to processor interconnect

 Definition of bus structure

 Bus transactions

Types of buses

 Bus Standards

• Bus Performance and Protocol

 Synchronous versus Asynchronous buses

 Bandwidth optimization factors

• Bus Access

 Single versus multiple master bus

 Bus arbitration approaches

 This Lecture:

• Interfacing I/O devices to memory, processor and OS

Typical I/O System

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

I/O
Controller

I/O
Controller

GraphicsDisk Disk Network

interrupts

Courtesy of
Mohamed Younis

CMSC 411, Computer Architecture 3

 The connection between the I/O devices, processor, and memory are

usually called (local or internal) buses

Communication among the devices and the processor use both bus

protocols and interrupts
* Figure is courtesy of Dave Patterson

Common performance

metrics:

• Throughput: I/O bandwidth

• Response time: Latency

Giving Commands to I/O Devices

* Slide is courtesy of Dave Patterson

4Courtesy of
Mohamed Younis

CMSC 411, Computer Architecture

Two methods are used to address the device:

 Special I/O instructions: (Intel 80X86, IBM 370)

 Specify both the device number and the command word

• Device number: the processor communicates this via a

set of wires normally included as part of the I/O bus

• Command word: this is usually send on the bus’s data lines

• Each devices maintain status register to indicate progress

 Instructions are privileged to prevent user tasks from directly accessing

the I/O devices

Memory-mapped I/O: (Motorola/IBM PowerPC)

 Portions of the address space are assigned to I/Odevice

 Read and writes to those addresses are interpreted as commands to

the I/O devices

 User programs are prevented from issuing I/O operations directly:

• The I/O address space is protected by the address translation

Communicating with I/O Devices

 The OS needs to know when:

 The I/O device has completed an operation

 The I/O operation has encountered an error

 This can be accomplished in two different ways:

 Polling:

• The I/O device put information in a status register

• The OS periodically check the status register

 I/O Interrupt:

• An I/O interrupt is an externally stimulated event, asynchronous to

instruction execution but does NOT prevent instruction completion

• Whenever an I/O device needs attention from the processor, it

interrupts the processor from what it is currently doing

• Some processors deals with interrupts as special exceptions

These schemes requires heavy processor’s involvement and

suitable only for low bandwidth devices such as the keyboard
* Slide is partially a courtesy of Dave Patterson

5Courtesy of
Mohamed Younis

CMSC 411, Computer Architecture

Polling: Programmed I/O

 Advantage:

 Simple: the processor is totally in control and does all the work

 Disadvantage:

 Polling overhead can consume a lot of CPU time

CPU

IOC

device

Memory

read
data

store
data

y

done? no

yes

busy wait loop
not an efficient

way to use the CPU
unless the device

is very fast!

but checks for I/O
completion can be
dispersed among

computation
intensive code

Is the
data

ready?

es no

* Slide is courtesy of Dave Patterson

6Courtesy of
Mohamed Younis

CMSC 411, Computer Architecture

7

Interrupt Driven Data Transfer

 Advantage:

 User program progress is only halted during actual transfer

 Disadvantage: special hardware is needed to:

 Cause an interrupt (I/O device)

 Detect an interrupt (processor)

 Save the proper states to resume after the interrupt (processor)

memory

user
program(1) I/O

interrupt

(2) save PC

(3) interrupt
service addr

interrupt
service
routine(4)

CPU

IOC

device

Memory

add
sub
and
or
nop

read
store
... :
rti

* Slide is courtesy of Dave Patterson

8Courtesy of
Mohamed Younis

CMSC 411, Computer Architecture

I/O Interrupt vs. Exception

* Slide is courtesy of Dave Patterson

9Courtesy of
Mohamed Younis

CMSC 411, Computer Architecture

 An I/O interrupt is just like the exceptions except:

 An I/O interrupt is asynchronous

 Further information needs to be conveyed

 Typically exceptions are more urgent than interrupts

 An I/O interrupt is asynchronous with respect to instruction execution:

 I/O interrupt is not associated with any instruction

 I/O interrupt does not prevent any instruction from completion

• You can pick your own convenient point to take an interrupt

 I/O interrupt is more complicated than exception:

 Needs to convey the identity of the device generating the interrupt

 Interrupt requests can have different urgencies:

• Interrupt request needs to be prioritized

• Priority indicates urgency of dealing with the interrupt

• high speed devices usually receive highest priority

Direct Memory Access

CPU

IOC

device

Memory DMAC

CPU sends a starting address,
direction, and length count
to DMAC. Then issues "start".

DMAC provides handshake
signals for Peripheral
Controller, and Memory
Addresses and handshake
signals for Memory.

 Direct Memory Access (DMA):

 External to the CPU

 Use idle bus cycles (cycle stealing)

 Act as a master on the bus

 Transfer blocks of data to or from memory

without CPU intervention

 Efficient for large data transfer, e.g. from disk

Cache usage allows the processor to leave

enough memory bandwidth for DMA

 How does DMA work?:

 CPU sets up and supply device id, memory

address, number of bytes

 DMA controller (DMAC) starts the access

and becomes bus master

 For multiple byte transfer, the DMAC

increments the address

 DMAC interrupts the CPU upon completion

For multiple bus system, each bus controller often contains DMA control logic

* Figure is courtesy of Dave Patterson

10Courtesy of
Mohamed Younis

CMSC 411, Computer Architecture

DMA Problems
 With virtual memory systems: (pages would have physical and virtual addresses)

 Physical pages re-mapping to different virtual pages during DMA operations

 Multi-page DMA cannot assume consecutive addresses

Solutions:
 Allow virtual addressing based DMA

 Add translation logic to DMA controller

 OS allocated virtual pages to DMA prevent re-mapping until DMA completes

 Partitioned DMA
 Break DMA transfer into multi-DMA operations, each is single page

 OS chains the pages for the requester

 In cache-based systems: (there can be two copies of data items)

 Processor might not know that the cache and memory pages are different

Write-back caches can overwrite I/O data or makes DMA to read wrong data

Solutions:

 Route I/O activities through the cache
 Not efficient since I/O data usually is not demonstrating temporal locality

 OS selectively invalidates cache blocks before I/O read or force write-back prior

to I/O write
 Usually called cache flushing and requires hardware support

DMA allows another path to main memory with no cache and address translation

Courtesy of
Mohamed Younis

CMSC 411, Computer Architecture

I/O Processor

CPU IOP

Mem

D1

D2

Dn

. . .

main memory
bus

I/O
bus

CPU

IOP

(1) Issues
instruction
to IOP

memory(3)

Device to/from memory
transfers are controlled
by the IOP directly.

IOP steals memory cycles.

OP Device Address

target device
where cmnds are

IOP looks in memory for commands

OP Addr Cnt Other

what
to do

where
to put
data

how
much

special
requests

(4) IOP interrupts
CPU when done

(2)

Courtesy of
Mohamed Younis

CMSC 411, Computer Architecture

* Slide is courtesy of Dave Patterson

 An I/O processor (IOP) offload the CPU

 Some of the new processors, e.g.

Motorola 860, include special purpose

IOP for serial communication

Operating System’s Role

Courtesy of
Mohamed Younis

CMSC 411, Computer Architecture

 Operating system acts as an interface between I/O hardware and programs

 Important characteristics of the I/O systems:

 The I/O system is shared by multiple program using the processor

 I/O systems often use interrupts to communicate information about I/O

• Interrupts must be handled by OS because they cause a transfer to supervisor mode

 The low-level control of an I/O device is complex:

• Managing a set of concurrent events

• The requirements for correct device control are very detailed

 Operating System’s Responsibilities

 Provide protection to shared I/O resources

• Guarantees that a user’s program can only access allowed set of I/O services

 Provides abstraction for accessing devices:

• Supply routines that handle low-level device operation

 Handles the interrupts generated by I/O devices

 Provide equitable access to the shared I/O resources

• All user programs must have equal access to the I/O resources

 Schedule accesses in order to enhance system throughput

Conclusion
 Summary

 Commanding I/O devices
• Memory-mapped I/O

• I/O instructions

 Communication with I/O devices
• Device polling

• I/O interrupts

• Direct memory mapping

• I/O processor

 Operating System’s role
• I/O device interfacing

• Protection and scheduling accesses to shared devices

 Next Lecture

 Introduction to Multi-processor Systems

Read sections 6.6 in 4th Ed. of the textbook

Courtesy of
Mohamed Younis

CMSC 411, Computer Architecture

