CMSC 411

Instruction-level Parallelism,
Dynamic Pipeline Scheduling

Slides courtesy Patterson & Hennessey

Instruction-Level Parallelism (ILP)

Pipelining: executing multiple instructions in
parallel

To increase ILP
Deeper pipeline
Less work per stage = shorter clock cycle
Multiple issue
Replicate pipeline stages = multiple pipelines
Start multiple instructions per clock cycle
CPIl < 1, so use Instructions Per Cycle (IPC)
E.g., 4GHz 4-way multiple-issue
16 BIPS, peak CPI =0.25, peak IPC =4
But dependencies reduce this in practice

Chapter 4 — The Processor — 2

Multiple Issue

Static multiple issue
Compiler groups instructions to be issued together
Packages them into “issue slots”
Compiler detects and avoids hazards

Dynamic multiple issue

CPU examines instruction stream and chooses
Instructions to issue each cycle

Compiler can help by reordering instructions

CPU resolves hazards using advanced techniques at
runtime

Chapter 4 — The Processor — 3

Speculation

“Guess” what to do with an instruction
Start operation as soon as possible

Check whether guess was right
If so, complete the operation
If not, roll-back and do the right thing

Common to static and dynamic multiple issue

Examples
Speculate on branch outcome
Roll back if path taken is different

Speculate on load
Roll back if location is updated

Chapter 4 — The Processor — 4

Compiler/Hardware Speculation

Compliler can reorder instructions
e.g., move load before branch

Can include “fix-up” instructions to recover
from Incorrect guess

Hardware can look ahead for instructions
to execute

Buffer results until it determines they are
actually needed

Flush buffers on incorrect speculation

Chapter 4 — The Processor — 5

Speculation and Exceptions

What If exception occurs on a
speculatively executed instruction?

e.g., speculative load before null-pointer
check

Static speculation
Can add ISA support for deferring exceptions

Dynamic speculation

Can buffer exceptions until instruction
completion (which may not occur)

Chapter 4 — The Processor — 6

Static Multiple Issue

Compiler groups instructions into “issue
packets”

Group of instructions that can be issued on a
single cycle
Determined by pipeline resources required

Think of an issue packet as a very long
Instruction

Specifies multiple concurrent operations
= Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 7

Scheduling Static Multiple Issue

Compiler must remove some/all hazards
Reorder instructions into issue packets
No dependencies with a packet

Possibly some dependencies between
packets

Varies between ISAs; compiler must know!
Pad with nop If necessary

Chapter 4 — The Processor — 8

MIPS with Static Dual Issue

Two-issue packets
One ALU/branch instruction
One load/store instruction

64-bit aligned
ALU/branch, then load/store
Pad an unused instruction with nop

Address | Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n+4 Load/store IF ID EX MEM WB

n+38 ALU/branch IF ID EX MEM WB

n+12 Load/store IF ID EX MEM WB

n+16 ALU/branch IF ID EX MEM wWB
n+ 20 Load/store IF ID EX MEM WB

Chapter 4 — The Processor — 9

MIPS with Static Dual Issue

— Y
o =_ > M] —
u -
4 j Y
> ~ ALU—| >
e
- » M
a | Registers u .
80000180 - pcil,. | Instruction —» N .
memory [| [> 9 |
> ” > 1 Write
> data
Data
ALUl—| | I I
> memory
Address
M
> = M
> > u . "
—_— - L= X . _
o N — —

MORGAN KAUFMANN

; M(Chapter 4 — The Processor — 10

Hazards in the Dual-Issue MIPS

More instructions executing in parallel

EX data hazard

Forwarding avoided stalls with single-issue

Now can’t use ALU result in load/store in same packet

add , $s0, $s1
load $s2, 0(5t0)

Split into two packets, effectively a stall

Load-use hazard
Still one cycle use latency, but now two instructions

More aggressive scheduling required

Chapter 4 — The Processor — 11

Scheduling Example

Schedule this for dual-issue MIPS

Loop: Tw , 0(%s1) # $tO=array element
addu $tO, , $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0($s1) 1

addi $s1, $s1,-4 2
addu $t0, , $s2 3
bne $s1, $zero, Loop [sw $t0, 4($sl) 4

IPC =5/4 =1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 12

Loop Unrolling

Replicate loop body to expose more
parallelism

Reduces loop-control overhead

Use different registers per replication
Called “register renaming”

Avoid loop-carried “anti-dependencies’
Store followed by a load of the same register

Aka “name dependence’
Reuse of a register name

Chapter 4 — The Processor — 13

Loop Unrolling Example

ALU/branch Load/store cycle
Loop: | addi $s1, $s1,-16 Tw , 0($sD) 1
Tw , 12($s1) 2
addu $tO0, , $s2 Tw , 8($s1) 3
addu $t1, , $s2 Tw , 4($s1) 4
addu $t2, , $s2 sw $t0, 16($sl) 5
addu $t3, , $s2 sw $tl, 12($s1) 6
sw $t2, 8($sl) 7
bne $s1, $zero, Loop |sw $t3, 4($sD) 8
PC=14/8=1.75

Closer to 2, but at cost of registers and code size

Chapter 4 — The Processor — 14

Dynamic Multiple Issue

“Superscalar” processors

CPU decides whether to issue 0, 1, 2, ...
each cycle

Avoiding structural and data hazards

Avoids the need for compiler scheduling
Though it may still help
Code semantics ensured by the CPU

Chapter 4 — The Processor — 15

Dynamic Pipeline Scheduling

Allow the CPU to execute instructions out
of order to avoid stalls

But commit result to registers in order

Example
Tw , 20(%$s2)
addu $t1, , $t2

sub $s4, $s4, $t3
sTti $t5, $s4, 20

Can start sub while addu is waiting for Iw

Chapter 4 — The Processor — 16

Dynamically Scheduled CPU

/ Preserves

dependencies

Instruction fetch
and decode unit

In-order issue

P

Y Y

Reservation | | Reservation Reservation || Reservation | <~ Hold pending
station station S station station operands

Functional || o Integer Floating Load- | oyt-of-order execute

units T point store

—
Results also sent
l to any waiting
reservation stations
— Commit In-order commit

Reorders buffer for unit

register writes

g Can supply

operands for
issued instructions

/g\ M(Chapter 4 — The Processor — 17

MORGAN KAUFMANN

Register Renaming

Reservation stations and reorder buffer
effectively provide register renaming

On Instruction Issue to reservation station

If operand Is available in register file or
reorder buffer
Copied to reservation station

No longer required In the register; can be
overwritten

If operand Is not yet available

It will be provided to the reservation station by a
function unit

Register update may not be required

Chapter 4 — The Processor — 18

Speculation

Predict branch and continue issuing

Don’t commit until branch outcome
determined

Load speculation

Avoid load and cache miss delay
Predict the effective address
Predict loaded value
Load before completing outstanding stores
Bypass stored values to load unit

Don’t commit load until speculation cleared

Chapter 4 — The Processor — 19

Why Do Dynamic Scheduling?

Why not just let the compiler schedule
code?

Not all stalls are predicable
e.g., cache misses

Can’t always schedule around branches
Branch outcome is dynamically determined

Different implementations of an ISA have
different latencies and hazards

Chapter 4 — The Processor — 20

Does Multiple Issue Work?

Yes, but not as much as we'd like
Programs have real dependencies that limit ILP

Some dependencies are hard to eliminate
e.g., pointer aliasing

Some parallelism Is hard to expose
Limited window size during instruction issue

Memory delays and limited bandwidth
Hard to keep pipelines full

Speculation can help if done well

Chapter 4 — The Processor — 21

Power Efficiency

Complexity of dynamic scheduling and
speculations requires power

Multiple simpler cores may be better

Microprocessor Year Clock Rate | Pipeline Issue | Out-of-order/ | Cores Power
Stages width Speculation
1486 1989 25MHz 5 1 No 1 SW
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W
Core 2006 2930MHz 14 4 Yes 2 75W
UltraSparc Il 2003 1950MHz 14 4 No 1 90w
UltraSparc T1 2005 1200MHz 6 1 No 8 70W

Chapter 4 — The Processor — 22

Cortex A8 and Intel 17

Market

Thermal design power
Clock rate

Cores/Chip

Floating point?

Multiple issue?

Peak instructions/clock cycle
Pipeline stages

Pipeline schedule

Branch prediction

1st level caches/core

2"d |evel caches/core

3'd level caches (shared)

Personal Mobile Device Server, cloud

2 Watts

1 GHz

1

No

Dynamic

2

14

Static in-order

2-level
32 KiB I, 32 KiB D
128-1024 KiB

130 Watts
2.66 GHz
4

Yes
Dynamic
4

14

Dynamic out-of-order

with speculation
2-level

32KiB 1,32 KiB D
256 KiB

2- 8 MB

Chapter 4 — The Processor — 2

ARM Cortex-A8 Pipeline

FO F1 F2 Do D1 D2 D3 D4 EO E1 E2 E3 E4 E5
Branch mispredict
penalty=13 cycles Instruction execute and load/store
|
Instruction > [ALU/MUL pipe 0 BP
S pIpe
fetch 1 & b update
AGU RAM +12f—en|'t‘ry > | t i q g E I
+ etc nstruction decode ~ . BP
]: TLB [®| queue . .. %_ » ALU pipe 1 update
BTB » T 3
GHB = : BP
RS © [LS pipe O or 1 update

Chapter 4 — The Processor — 24

ARM Cortex-A8 Performance

6.00
Memory hierarchy stalls -1
500 ——— M Pipeline stalls 8
M Ideal CPI
4.00 B

3.00

2.00

185
1 41 1.63 6 1.70
"R I 1 l I

twolf I::-2|p2 gzip parser gap perlbmk gce crafty vpr w::-rtex

Chapter 4 — The Processor — 25

Core 17 Pipeline

128-Entry Jrl 32 KB Inst. cache (four-way assooiative) [«
inst. TLB |4 v
(four-way) 16-Byte pre-decode+macro-op
+ fusion, fetch buffer

1 v
Instruction

fotch | | _ 1B-E:.try Inltmctiunhq.lem _ |
hardware |™ -1 » &

Complex Simple Simple Simple

macro-op Masro-op Macno-op macro-op
bz //' decoder decoder decoder decoder

ode by v v v
28-Entry micro-op loop stream detect buffer

| Register alias table and allocator |
Retirement L 2
register fle |7 128-Entry reorder buffer
v
e 35-Entry reservation station
v v v v v v
ALL ALU Load Store Store ALU
shift shift address | | address data ehift
I I I
S5E SSE v v v SSE
shuffle shuffle Memory order buffer shuffle
ALL ALU ALU
| | |
128-hit 128-hit 128-bit
FMUL FMUL Store FMUL
FDIV FDIV & load FOIV
I I T
YYVYY J
512-Entry unified | 84-Entry data TLE 32-KB dual-ported data 256 KB unified |12
L2TLE (4-way) | (4-way associative) | | cache (8-way associative) " cache (eight-wany)
v 4
8 MB all core shared and inclusive L3 —— Uncore arbiter (handles scheduling and
cache (18-way associative) R clock/power state differences)

MORGAN KAUFMANN

; M< Chapter 4 — The Processor — 26

Core 17 Performance

e
Stalls, mlsspeculatlon 26 Branch misprediction % ® Wasted work %

BT
H [deal CPI QO === == mmmm e e
25 ° 38% 3%
35% oo s -

212 =

B0% - B -

2_ __ —— .
25% 4 -m-m oo D4 —mm - mmm = . -

2%
o B __ 20% t-----mmmmmm o s - e - - ---- -
S 1.5
1.23 159% 4o . N NN BN NN .
1.08 1%
1.02
e o ol e 0% e S SRR -al - - ---- -
0.8z %
0es 074 07 o % = N - m-N B B B B R
059 061

Chapter 4 — The Processor — 27

MORGAN KAUFMANN

Matrix Multiply

Unrolled C code

#include <x86intrin.h>
#define UNROLL (4)

{
for (int 1 = 0; 1 < n; i1+=UNROLL*4)
for (int jJ = 0; J < n; J++) {

1
2
3
4 void dgemm (int n, double* A, double* B, double* C)
5
6
7
8 __m256d c[4];

9 for (int x = 0; x < UNROLL; x++)

10 cl[x] = mm256 load pd(C+i+x*4+3j*n);

11

12 for(int k = 0; k < n; k++)

13 {

14 ~ m256d b = mm256 broadcast sd(B+k+j*n);
15 for (int x = 0; x < UNROLL; x++)

16 cl[x] = mm256 add pd(c[x],

17 - mm256 mul pd(mm256 load pd(A+n*k+x*4+1i), b));
18 }

19

20 for (int x = 0; x < UNROLL; x++)

21 ~mm256_ store pd(C+i+x*4+j*n, c[x]);
22}

23 1}

Chapter 4 — The Processor — 28

MORGAN KAUFMANN

Matrix Multiply

Assembly code:

1 vmovapd (%rll), $Symmé # Load 4 elements of C into %ymm4
2 mov %rbx,%rax # register %Srax = %rbx

3 xor %ecx, %ecx # register %$ecx = 0

4 vmovapd 0x20(%rll), Symm3 # Load 4 elements of C into %ymm3
5 vmovapd 0x40(%rll), Symm2 # Load 4 elements of C into %ymm2
6 vmovapd 0x60 (%rll), symml # Load 4 elements of C into %ymml
7 vbroadcastsd (%rcx,%r9,1), SymmO # Make 4 copies of B element

8 add $0x8,%rcx # register %$rcx = %$rcx + 8

9 vmulpd (%rax),%ymmO, $ymmb5 # Parallel mul %$ymml,4 A elements
10 vaddpd %ymmb5, $ymm4, $ymmé # Parallel add %ymm5, $ymm4

11 vmulpd 0x20 (%$rax), $ymmO, $ymmb # Parallel mul %$ymml,4 A elements
12 vaddpd %ymmb5, $ymm3, $ymm3 # Parallel add %ymm5, $ymm3

13 vmulpd 0x40 (%$rax), $ymmO, $ymmb # Parallel mul %$ymml,4 A elements
14 vmulpd 0x60 (%$rax), $ymmO, $ymm0O # Parallel mul %$ymml,4 A elements
15 add %r8, %rax # register %S$rax = %rax + %r8

16 cmp %$rl0, $rcx # compare %r8 to %$rax

17 vaddpd $ymm5, $ymm2, $ymm2 # Parallel add $ymm5, $ymm2

18 vaddpd $ymmO, $ymml, $ymml # Parallel add %$ymm0O, $ymml

19 jne 68 <dgemm+0x68> # jump if not %r8 != %Srax

20 add $0x1, %$esi # register % esi = % esi + 1

21 vmovapd %ymm4, ($rll) # Store Symm4 into 4 C elements
22 vmovapd %Symm3,0x20 (%rll) # Store $ymm3 into 4 C elements
23 vmovapd %Symm2,0x40 (%rll) # Store %Symm2 into 4 C elements
24 vmovapd %Symml,O0x60 (%rll) # Store %Symml into 4 C elements

M(Chapter 4 — The Processor — 29

MORGAN KAUFMANN

Performance Impact

GFLOPS

16.0 1

12.0 7

8.0 1

4.0 -

unoptimized

AVX

AVX+unroll

Chapter 4 — The Processor — 30

Fallacies

Pipelining is easy (!)
The basic idea Is easy
The devil is in the detalils
e.g., detecting data hazards

Pipelining is independent of technology

So why haven’t we always done pipelining?

More transistors make more advanced techniques
feasible

Pipeline-related ISA design needs to take account of

technology trends
e.g., predicated instructions

Chapter 4 — The Processor — 31

Pitfalls

Poor ISA design can make pipelining
harder
e.g., complex instruction sets (VAX, 1A-32)

Significant overhead to make pipelining work
|A-32 micro-op approach

e.g., complex addressing modes
Register update side effects, memory indirection

e.g., delayed branches
Advanced pipelines have long delay slots

Chapter 4 — The Processor — 32

Concluding Remarks

SA influences design of datapath and control
Datapath and control influence design of ISA

Pipelining iImproves instruction throughput
using parallelism
More instructions completed per second
Latency for each instruction not reduced
Hazards: structural, data, control

Multiple issue and dynamic scheduling (ILP)
Dependencies limit achievable parallelism
Complexity leads to the power wall

Chapter 4 — The Processor — 33

