
CMSC 411

Instruction-level Parallelism,

Dynamic Pipeline Scheduling

Slides courtesy Patterson & Hennessey

Chapter 4 — The Processor — 2

Instruction-Level Parallelism (ILP)

 Pipelining: executing multiple instructions in
parallel

 To increase ILP
 Deeper pipeline

 Less work per stage  shorter clock cycle

 Multiple issue
 Replicate pipeline stages  multiple pipelines

 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue

 16 BIPS, peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice

§
4
.1

0
 P

a
ra

lle
lis

m
 v

ia
 In

s
tru

c
tio

n
s

Chapter 4 — The Processor — 3

Multiple Issue

 Static multiple issue

 Compiler groups instructions to be issued together

 Packages them into “issue slots”

 Compiler detects and avoids hazards

 Dynamic multiple issue

 CPU examines instruction stream and chooses

instructions to issue each cycle

 Compiler can help by reordering instructions

 CPU resolves hazards using advanced techniques at

runtime

Chapter 4 — The Processor — 4

Speculation

 “Guess” what to do with an instruction

 Start operation as soon as possible

 Check whether guess was right

 If so, complete the operation

 If not, roll-back and do the right thing

 Common to static and dynamic multiple issue

 Examples

 Speculate on branch outcome

 Roll back if path taken is different

 Speculate on load

 Roll back if location is updated

Chapter 4 — The Processor — 5

Compiler/Hardware Speculation

 Compiler can reorder instructions

 e.g., move load before branch

 Can include “fix-up” instructions to recover

from incorrect guess

 Hardware can look ahead for instructions

to execute

 Buffer results until it determines they are

actually needed

 Flush buffers on incorrect speculation

Chapter 4 — The Processor — 6

Speculation and Exceptions

 What if exception occurs on a
speculatively executed instruction?

 e.g., speculative load before null-pointer
check

 Static speculation

 Can add ISA support for deferring exceptions

 Dynamic speculation

 Can buffer exceptions until instruction
completion (which may not occur)

Chapter 4 — The Processor — 7

Static Multiple Issue

 Compiler groups instructions into “issue

packets”

 Group of instructions that can be issued on a

single cycle

 Determined by pipeline resources required

 Think of an issue packet as a very long

instruction

 Specifies multiple concurrent operations

  Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 8

Scheduling Static Multiple Issue

 Compiler must remove some/all hazards

 Reorder instructions into issue packets

 No dependencies with a packet

 Possibly some dependencies between

packets

 Varies between ISAs; compiler must know!

 Pad with nop if necessary

Chapter 4 — The Processor — 9

MIPS with Static Dual Issue

 Two-issue packets

 One ALU/branch instruction

 One load/store instruction

 64-bit aligned

 ALU/branch, then load/store

 Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

Chapter 4 — The Processor — 10

MIPS with Static Dual Issue

Chapter 4 — The Processor — 11

Hazards in the Dual-Issue MIPS

 More instructions executing in parallel

 EX data hazard

 Forwarding avoided stalls with single-issue

 Now can’t use ALU result in load/store in same packet

 add $t0, $s0, $s1
load $s2, 0($t0)

 Split into two packets, effectively a stall

 Load-use hazard

 Still one cycle use latency, but now two instructions

 More aggressive scheduling required

Chapter 4 — The Processor — 12

Scheduling Example

 Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 13

Loop Unrolling

 Replicate loop body to expose more

parallelism

 Reduces loop-control overhead

 Use different registers per replication

 Called “register renaming”

 Avoid loop-carried “anti-dependencies”

 Store followed by a load of the same register

 Aka “name dependence”

 Reuse of a register name

Chapter 4 — The Processor — 14

Loop Unrolling Example

 IPC = 14/8 = 1.75

 Closer to 2, but at cost of registers and code size

ALU/branch Load/store cycle

Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3, $t4, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7

bne $s1, $zero, Loop sw $t3, 4($s1) 8

Chapter 4 — The Processor — 15

Dynamic Multiple Issue

 “Superscalar” processors

 CPU decides whether to issue 0, 1, 2, …

each cycle

 Avoiding structural and data hazards

 Avoids the need for compiler scheduling

 Though it may still help

 Code semantics ensured by the CPU

Chapter 4 — The Processor — 16

Dynamic Pipeline Scheduling

 Allow the CPU to execute instructions out

of order to avoid stalls

 But commit result to registers in order

 Example

lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

 Can start sub while addu is waiting for lw

Chapter 4 — The Processor — 17

Dynamically Scheduled CPU

Results also sent

to any waiting

reservation stations

Reorders buffer for

register writes
Can supply

operands for

issued instructions

Preserves

dependencies

Hold pending

operands

Chapter 4 — The Processor — 18

Register Renaming

 Reservation stations and reorder buffer
effectively provide register renaming

 On instruction issue to reservation station

 If operand is available in register file or
reorder buffer
 Copied to reservation station

 No longer required in the register; can be
overwritten

 If operand is not yet available
 It will be provided to the reservation station by a

function unit

 Register update may not be required

Chapter 4 — The Processor — 19

Speculation

 Predict branch and continue issuing

 Don’t commit until branch outcome

determined

 Load speculation

 Avoid load and cache miss delay

 Predict the effective address

 Predict loaded value

 Load before completing outstanding stores

 Bypass stored values to load unit

 Don’t commit load until speculation cleared

Chapter 4 — The Processor — 20

Why Do Dynamic Scheduling?

 Why not just let the compiler schedule

code?

 Not all stalls are predicable

 e.g., cache misses

 Can’t always schedule around branches

 Branch outcome is dynamically determined

 Different implementations of an ISA have

different latencies and hazards

Chapter 4 — The Processor — 21

Does Multiple Issue Work?

 Yes, but not as much as we’d like

 Programs have real dependencies that limit ILP

 Some dependencies are hard to eliminate

 e.g., pointer aliasing

 Some parallelism is hard to expose

 Limited window size during instruction issue

 Memory delays and limited bandwidth

 Hard to keep pipelines full

 Speculation can help if done well

The BIG Picture

Chapter 4 — The Processor — 22

Power Efficiency

 Complexity of dynamic scheduling and

speculations requires power

 Multiple simpler cores may be better

Microprocessor Year Clock Rate Pipeline

Stages

Issue

width

Out-of-order/

Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

Cortex A8 and Intel i7
Processor ARM A8 Intel Core i7 920

Market Personal Mobile Device Server, cloud

Thermal design power 2 Watts 130 Watts

Clock rate 1 GHz 2.66 GHz

Cores/Chip 1 4

Floating point? No Yes

Multiple issue? Dynamic Dynamic

Peak instructions/clock cycle 2 4

Pipeline stages 14 14

Pipeline schedule Static in-order Dynamic out-of-order

with speculation

Branch prediction 2-level 2-level

1st level caches/core 32 KiB I, 32 KiB D 32 KiB I, 32 KiB D

2nd level caches/core 128-1024 KiB 256 KiB

3rd level caches (shared) - 2- 8 MB

Chapter 4 — The Processor — 23

§
4
.1

1
 R

e
a
l S

tu
ff: T

h
e
 A

R
M

 C
o
rte

x
-A

8
 a

n
d
 In

te
l C

o
re

 i7
 P

ip
e
lin

e
s

ARM Cortex-A8 Pipeline

Chapter 4 — The Processor — 24

ARM Cortex-A8 Performance

Chapter 4 — The Processor — 25

Core i7 Pipeline

Chapter 4 — The Processor — 26

Core i7 Performance

Chapter 4 — The Processor — 27

Matrix Multiply

 Unrolled C code
1 #include <x86intrin.h>

2 #define UNROLL (4)

3

4 void dgemm (int n, double* A, double* B, double* C)

5 {

6 for (int i = 0; i < n; i+=UNROLL*4)

7 for (int j = 0; j < n; j++) {

8 __m256d c[4];

9 for (int x = 0; x < UNROLL; x++)

10 c[x] = _mm256_load_pd(C+i+x*4+j*n);

11

12 for(int k = 0; k < n; k++)

13 {

14 __m256d b = _mm256_broadcast_sd(B+k+j*n);

15 for (int x = 0; x < UNROLL; x++)

16 c[x] = _mm256_add_pd(c[x],

17 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));

18 }

19

20 for (int x = 0; x < UNROLL; x++)

21 _mm256_store_pd(C+i+x*4+j*n, c[x]);

22 }

23 }

Chapter 4 — The Processor — 28

§
4
.1

2
 In

s
tru

c
tio

n
-L

e
v
e
l P

a
ra

lle
lis

m
 a

n
d
 M

a
trix

 M
u
ltip

ly

Matrix Multiply

 Assembly code:
1 vmovapd (%r11),%ymm4 # Load 4 elements of C into %ymm4

2 mov %rbx,%rax # register %rax = %rbx

3 xor %ecx,%ecx # register %ecx = 0

4 vmovapd 0x20(%r11),%ymm3 # Load 4 elements of C into %ymm3

5 vmovapd 0x40(%r11),%ymm2 # Load 4 elements of C into %ymm2

6 vmovapd 0x60(%r11),%ymm1 # Load 4 elements of C into %ymm1

7 vbroadcastsd (%rcx,%r9,1),%ymm0 # Make 4 copies of B element

8 add $0x8,%rcx # register %rcx = %rcx + 8

9 vmulpd (%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements

10 vaddpd %ymm5,%ymm4,%ymm4 # Parallel add %ymm5, %ymm4

11 vmulpd 0x20(%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements

12 vaddpd %ymm5,%ymm3,%ymm3 # Parallel add %ymm5, %ymm3

13 vmulpd 0x40(%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements

14 vmulpd 0x60(%rax),%ymm0,%ymm0 # Parallel mul %ymm1,4 A elements

15 add %r8,%rax # register %rax = %rax + %r8

16 cmp %r10,%rcx # compare %r8 to %rax

17 vaddpd %ymm5,%ymm2,%ymm2 # Parallel add %ymm5, %ymm2

18 vaddpd %ymm0,%ymm1,%ymm1 # Parallel add %ymm0, %ymm1

19 jne 68 <dgemm+0x68> # jump if not %r8 != %rax

20 add $0x1,%esi # register % esi = % esi + 1

21 vmovapd %ymm4,(%r11) # Store %ymm4 into 4 C elements

22 vmovapd %ymm3,0x20(%r11) # Store %ymm3 into 4 C elements

23 vmovapd %ymm2,0x40(%r11) # Store %ymm2 into 4 C elements

24 vmovapd %ymm1,0x60(%r11) # Store %ymm1 into 4 C elements

Chapter 4 — The Processor — 29

§
4
.1

2
 In

s
tru

c
tio

n
-L

e
v
e
l P

a
ra

lle
lis

m
 a

n
d
 M

a
trix

 M
u
ltip

ly

Performance Impact

Chapter 4 — The Processor — 30

Chapter 4 — The Processor — 31

Fallacies

 Pipelining is easy (!)

 The basic idea is easy

 The devil is in the details

 e.g., detecting data hazards

 Pipelining is independent of technology

 So why haven’t we always done pipelining?

 More transistors make more advanced techniques

feasible

 Pipeline-related ISA design needs to take account of

technology trends

 e.g., predicated instructions

§
4
.1

4
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 4 — The Processor — 32

Pitfalls

 Poor ISA design can make pipelining

harder

 e.g., complex instruction sets (VAX, IA-32)

 Significant overhead to make pipelining work

 IA-32 micro-op approach

 e.g., complex addressing modes

 Register update side effects, memory indirection

 e.g., delayed branches

 Advanced pipelines have long delay slots

Chapter 4 — The Processor — 33

Concluding Remarks

 ISA influences design of datapath and control

 Datapath and control influence design of ISA

 Pipelining improves instruction throughput

using parallelism

 More instructions completed per second

 Latency for each instruction not reduced

 Hazards: structural, data, control

 Multiple issue and dynamic scheduling (ILP)

 Dependencies limit achievable parallelism

 Complexity leads to the power wall

§
4
.1

4
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

