
CMSC 411

Computer Architecture

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 1

Lecture 13

Introduction to Pipelining

Lecture’s Overview

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 2

 Previous Lecture

 Micro-programmed control
• PLA versus ROM based control unit design

• Horizontal versus vertical micro-coding

• Designing a micro-instruction set

 Processor exceptions
• Exceptions are the hardest part of control

• MIPS interrupts and exceptions support

• Detecting exceptions by the control unit

 This Lecture

 An overview of Pipelining

 A pipelined datapath

 Pipelined control

Sequential Laundry

Washer takes 30 min, Dryer takes 40 min, folding takes 20 min

 Sequential laundry takes 6 hours for 4 loads

 If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM Midnight

T

a

s

k

O

r

d

e

r

7 8 9 10 11

Time

* Slide is courtesy of Dave Patterson

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 3

Pipelined Laundry

 Pipelining means start work as soon as possible

 Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 10 11 Midnight

T

a

s

k

O

r

d

e

r

8 9

Time

30 40 40 40 40 20

* Slide is courtesy of Dave Patterson

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 4

Pipelining Lessons

 Pipelining doesn’t help latency

of single task, it helps throughput

of entire workload

 Pipeline rate limited by slowest

pipeline stage

 Multiple tasks operating

simultaneously using different

resources

 Potential speedup = Number

pipe stages

 Unbalanced lengths of pipe

stages reduces speedup

 Time to “fill” pipeline and time to

“drain” it reduce speedup

 Stall for Dependencies

A

B

C

D

6 PM 7

T

a

s

k

O

r

d

e

r

8 9

Time

30 40 40 40 40 20

* Slide is courtesy of Dave Patterson

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 5

Multi-cycle Instruction Execution

Instruction

memory

Address

4

32

Add
Add

result

Shift

left 2

Instruction

0

M
u
x

1

Add

PC

Write
data

1

M
u
x

0

Read
data 1

data 2

Read
register 1

Read
register 2

16
Sign

extend

Registers Read
Write
register

Write
data

Read
data

Address

Data

memory

0

M u
x

1

ALU ALU

result

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/ MEM: Memory access WB: Write back

address calculation

    

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Stages of Instruction Execution

 Exec:

Mem:

Wr:

Calculate the memory address

Read the data from the Data Memory

Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Ifetch Reg/Dec Exec Mem WrLoad

 The load instruction is the longest

 All instructions follows at most the following five steps:

 Ifetch: Instruction Fetch

• Fetch the instruction from the Instruction Memory

 Reg/Dec: Registers Fetch and Instruction Decode

* Slide is courtesy of Dave Patterson

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB
Program Flow

Instruction Pipelining

Pipelining improves performance by increasing instruction throughput

 Start handling of next instruction while the current instruction is in progress

 Pipelining is feasible when different devices are used at different stages of

instruction execution
Time

Number of pipe stages

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Time between instructions pipelined


Time between instructionsnonpipelined

Single Cycle, Multiple Cycle, vs. Pipeline

Ifetch Reg Exec

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Clk

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Mem Wr Ifetch Reg Exec

Load Store

Ifetch Reg Exec Mem Wr

Clk

Single Cycle Implementation:

Load Store Waste

Mem Ifetch

R-type

Ifetch Reg Exec Mem Wr

Pipeline Implementation:

Load

Store

R-type

Cycle 1 Cycle 2

* Slide is courtesy of Dave Patterson

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Example of Instruction Pipelining

Ideal and upper bound for speedup is number of stages in the pipeline

Instruction

fetch
Reg ALU

Data

access
Reg

Instruction

fetch
Reg ALU

Data

access
Reg

8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

Instruction

fetch

...
8 ns

Program

execution

order

(in instructions)

Instruction

fetch
Reg ALU

Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Program

execution

order

(in instructions)
Time between first

& fourth instructions

is 3  2 = 6 ns

8 ns

Time between first

& fourth instructions

is 3  8 = 24 ns

Pipeline Performance

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

 Suppose we execute 100 instructions:

 Single Cycle Machine

• 45 ns/cycle x 1 CPI x 100 inst = 4500 ns

Multi-cycle Machine

• 10 ns/cycle x 4.2 CPI (due to inst mix) x 100 inst = 4200 ns

 Ideal 5 stages pipelined machine

• 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

 Due to fill and drain effects of a pipeline ideal performance can

be achieved only for very large instructions

Example:

a sequence of 1000 load instructions would take 5000 cycles on a multi-

cycle machine while taking 1004 on a pipeline machine

 speedup = 5000/1004  5

Pipeline Hazards

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

 Pipeline hazards are cases that affect instruction execution

semantics and thus need to be detected and corrected

 Hazards types

Structural hazard: attempt to use a resource two different ways at same time

 E.g., combined washer/dryer would be a structural hazard or folder busy

doing something else (watching TV)

 Single memory for instruction and data

Data hazard: attempt to use item before it is ready

 E.g., one sock of pair in dryer and one in washer; can’t fold until get sock

from washer through dryer

 instruction depends on result of prior instruction still in the pipeline

Control hazard: attempt to make a decision before condition is evaluated

 E.g., washing football uniforms and need to get proper detergent level;

need to see after dryer before next load in

 branch instructions

 Hazards can always be resolved by waiting

Single Memory is a Structural Hazard

Mem

I

n

s

t

r.

Time (clock cycles)

Load

Instr 1

O Instr 2
r
d Instr 3
e
r

Instr 4
A

L
UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg
A

L
UReg Mem Reg

A
L

UMem Reg Mem Reg

 Can be easily detected

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

 Resolved by inserting idle cycles
* Slide is courtesy of Dave Patterson

 Stall: wait until decision is clear

 It is possible to move up decision to 2nd stage by adding hardware to

check registers as being read

Control Hazard

I

n

s

t

r.

O

r

d

e

r

Add

Beq

Load

A
L

UMem Reg

Time (clock cycles)

Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem RegMem

 Impact: 2 clock cycles per branch instruction  slow
* Slide is courtesy of Dave Patterson

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Stall

 Predict: guess one direction then back up if wrong

 Predict not taken

Control Hazard Solution

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Add

Beq

Load

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

 Impact: 1 clock cycles per branch instruction if right, 2 if wrong

(right 50% of time)

 More dynamic scheme: history of 1 branch (90%)
* Slide is courtesy of Dave Patterson

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 15

 Redefine branch behavior (takes place after next instruction)

“delayed branch”

Control Hazard Solution

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Add

Beq

Misc

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

Load Mem

A
L

UReg Mem Reg

 Impact: 0 clock cycles per branch instruction if can find

instruction to put in “slot” (50% of time)
* Slide is courtesy of Dave Patterson

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 16

Dependencies backwards in time are hazards

Data Hazard

I

n

s

t

r.

O

r

d

e

r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Time (clock cycles)

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

* Slide is courtesy of Dave Patterson

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 17

Data Hazard Solution

I

n

s

t

r.

O

r

d

e

r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Time (clock cycles)

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm DmReg Reg

“Forward” result from one stage to another
* Slide is courtesy of Dave Patterson

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture 18

Resolving Data Hazards for Loads

Time (clock cycles)

lw r1,0(r2)

sub r4,r1,r3

IF ID/RF

A
L

U

Im Reg

EX MEM WB

Dm Reg

A
L

UIm gRe Dm Reg

 Dependencies backwards in time are hazards

 Cannot solve with forwarding

Must delay/stall instruction dependent on loads

* Slide is courtesy of Dave Patterson

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

Conclusion
 Summary

 An overview of Pipelining
• Pipelining concept is natural

• Start handling of next instruction while current one is in progress

 Pipeline performance

• Performance improvement by increasing instruction throughput

• Ideal and upper bound for speedup is number of stages in pipeline

 Pipelined hazards
• Structural, data and control hazards

• Hazard resolution techniques

 Next Lecture

 Designing a pipelined datapath

 Pipelined control

Read section 4.5 in the 5th Ed., or 4.5 in the 4th Ed. of the textbook

Courtesy
Mohamed Younis

CMSC 411, Computer Architecture

