CMSC 411
Computer Architecture

L ecture 13

Introduction to Pipelining

Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Lecture’s Overview

d Previous Lecture

=>» Micro-programmed control

 PLA versus ROM based control unit design
« Horizontal versus vertical micro-coding
« Designing a micro-instruction set

=>» Processor exceptions
« Exceptions are the hardest part of control
 MIPS interrupts and exceptions support
« Detecting exceptions by the control unit

J Ihis Lecture
=>» An overview of Pipelining

=>» A pipelined datapath
=» Pipelined control

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Sequential Laundry
6PM 7 8 9 10 11 Midnight

Time

R Il e S B B i il e
30 40 20 30 40 20 30 40 20 30 40 20

1L

‘ Sph7_

P | @ s .
e | (D Slotéy

1 Washer takes 30 min, Dryer takes 40 min, folding takes 20 min
 Sequential laundry takes 6 hours for 4 loads
d If they learned pipelining, how long would laundry take?

e\ * Slide is courtesy of Dave Patterson

P)

% Courtesy CMSC 411, Computer Architecture 3

M~ ~cmmm o N~ s -

Pipelined Laundry

6PM 7 8 9 10 11 Midnight
I Time]
||
30 40 40 40 40 20
T =2)
a @S ﬁ(:) = 7
S = .
k —
) = Al
;
d @S ﬁo 4I-;[
e — Ve ®
@ = al
4 Pipelining means start work as soon as possible
4 Pipelined laundry takes 3.5 hours for 4 loads
e\ * Slide is courtesy of Dave Patterson
Y/ Courtesy CMSC 411, Computer Architecture 4

M~ ~cmmm o N~ s -

x~ 0 9 -

= 0o a-=0

Pipelining Lessons

Q Pipelining doesn’t help latency

6 PM 7 8 o) of single task, it helps throughput

| . of entire workload
I Time

| | U Pipeline rate limited by slowest
30 40 40 40 40 20 Pipeline stage

= Q Multiple tasks operating
iag - —qf simultaneously using different
=1, resources
O F O Potential speedup = Number

pipe stages
Ol = ;[U Unbalanced lengths of pipe

@ — = o stages reduces speedup

O = ? O Time to “fill” pipeline and time to
“drain” it reduce speedup

O Stall for Dependencies

* Slide is courtesy of Dave Patterson

Courtesy CMSC 411, Computer Architecture 5

M~ ~cmmm o N~ s -

IF: Instruction fetch

Multi-cycle Instruction Execution

ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access

WB: Write back

0
M
u
X
1
S
Add \
, Add
4 Add result
Shift
left2 /
Read
—(PC Address register 1 Read \
Read data 1l .
register 2 Zero >
Instruction _ Registers Read 5 ALU ALU Read
Write data 2 result Address de? 1
i register M (u ata
Instruction M Data M
memory Write 1 memory)L(l
data o
Write
data
16 . 32
A Sign | \
A} @ A}
|\ J J 1\
Y Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Stages of Instruction Execution

Cycle 1 :Cycle 2 Cycle 3 :Cycle 4 :Cycle 5
| | |

Load Ifetch | Reg/Dec | Exec Mem Wr

d The load instruction is the longest

d All instructions follows at most the following five steps:
=» Ifetch: Instruction Fetch
« Fetch the instruction from the Instruction Memory
=» Reg/Dec: Registers Fetch and Instruction Decode

= Exec: Calculate the memory address
= Mem: Read the data from the Data Memory

> Wr: Write the data back to the register file

AN * Slide is courtesy of Dave Patterson

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Instruction Pipelining

d Start handling of next instruction while the current instruction is in progress

O Pipelining is feasible when different devices are used at different stages of

instruction execution
Time

o

IFetchIDec |Exec |Mem |WB

IFetChIDec IExec IMem IWB

IFetchIDec IExec IMem IWB

IFetchIDec IExec IMem IWB

| Program Flow

IFetchIDec IExec IMem IWB

Time between instructionsyonpipelined

Time betweeninstructions .. =
Pipelined Number of pipe stages

Pipelining improves performance by increasing instruction throughput |

Ny Courtesy CMSC 411, Computer Architecture

Py PR T N S

Smgle Cycle, I\/Iultlple Cycle, vs. Plpellne

|
l Cycle 1 Cycle 2 pycle 3 ¢yc|e 4 Cb/cle 5 Cycle 6 C)}Icle 7 Cy#le 8 Cycle 9 Cycl%: 10 :

Cyclel Cycle 2 |
Clk| | __
- e : |
Single Cycle Implementation: ; !
Load ! Store | Waste
|
|
|

Clk

| . I I
Multiple Cycle Implementation: . |

Load 'store I'R- -type

Ifetchl Reg I Exec I Mem I Wr | Ifetchl Reg I Exec I Mem | Ifetch

Load| Ifetchl Regu Exec I Mem I Wr

Store Ifetchl Regu Exec I Mem I Wr

R-type Ifetchl Regu Exec I Mem I Wr

e\ * Slide is courtesy of Dave Patterson

P)

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Example of Instruction Pipelining

Program
execution
order

(in instructions)

lw $1, 100($0)

Time

lw $2, 200($0)

lw $3, 300($0)

A4

Program
execution
order

(in instructions)

lw $1, 100($0)

Time

lw $2, 200($0)

lw $3, 300($0)

v

2 4 6 8 10 12 14 16 18
T T T T T T T T T >
Instruction Data
fetch Reg ALU access Reg
< »|Instruction Data
8 ns fetch Reg ALU access Reg
Time between first P - > Instruction
)) ns
& fourth instructions fetch
IS3x8=24ns T
2 4 6 8 10 12 14
T | T T T T T >
Instruction o ALU Data |, Time between first
fetch €9 access €9 . .
& fourth instructions
<+—— ¥ |nstruction Data .
2ns fetch Reg ALU access Reg IS 3 X 2 - 6 ns
<—— ¥ |nstruction Data
2ns fetch Reg ALY access Reg

+—— Pt t+— P ———Pp¢————>

2ns

2ns

2ns

2ns

2ns

ldeal and upper bound for speedup is number of stages in the pipeline

Courtesy

M~ ~cmmm o N~ s -

CMSC 411, Computer Architecture

Pipeline Performance

1 Suppose we execute 100 instructions:
=» Single Cycle Machine
« 45 ns/cycle x 1 CPI x 100 inst = 4500 ns
=» Multi-cycle Machine
« 10 ns/cycle x 4.2 CPI (due to inst mix) x 100 inst = 4200 ns
=» Ideal 5 stages pipelined machine
« 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

d Due to fill and drain effects of a pipeline ideal performance can
be achieved only for very large instructions

Example:

a sequence of 1000 load instructions would take 5000 cycles on a multi-
cycle machine while taking 1004 on a pipeline machine

= speedup = 5000/1004 =5

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Pipeline Hazards

[Pipeline hazards are cases that affect instruction execution
semantics and thus need to be detected and corrected

1 Hazards types
attempt to use a resource two different ways at sametime

= E.g., combined washer/dryer would be a structural hazard or folder busy
doing something else (watching TV)

=>» Single memory for instruction and data
attempt to use item before it is ready

=> E.g., one sock of pair in dryer and one in washer; can’t fold until get sock
from washer through dryer

=» instruction depends on result of prior instruction still in the pipeline
attempt to make a decision before condition is evaluated

= E.g., washing football uniforms and need to get proper detergent level;
need to see after dryer before next load in

=» branch instructions

Elazards can always be resolved by waiting

P)

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Single Memory Is a Structural Hazard

Time (clock cycles)

Load |Mem

Mem

Instr 1

ST 0N o5 -

Instr 2

@)

N

Instr 3

= D QO =

% |

Reg

‘Instr 4

___________________I__I___
pY)
9
Q
A/
<
@
A
9
Q

|

|

|

|

|

|

|

|

|

\ | |

1 | |

Mem.t Reg| i >:E I\/Iemr- Reg

| 1 |

| | |

| |
|
|
|
|
|
|
|
|

— >
Mem.F Reg| | - Mem |, Reg

| | [

| | |

|

|

|

|

|

 Can be easily detected 1 Resolved by inserting idle cycles

e\ * Slide is courtesy of Dave Patterson

P)

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Control Hazard

L Stall: wait until decision is clear

=> It is possible to move up decision to 2"d stage by adding hardware to
check registers as being read

| Time (clock cycles)
n
s v I - I I|M I - I I | |
em |l eg|! \— I Mem |I eg|! I I
t | I] | I |
r Add I | I || I I | :
I i1 I I I | :
I I : I I I |
Mem R — |Mem . |Re |
° |Bec 1 1D ¢ o
r I I I I I | :
d I I I I I I I :
re Load : :Slla” : Mem -t Reg || \- {Mem : Reg :
I I I I I
I I I I I A(I :
I I I I I I | :
I I I I I I | :
I I I I I I | :

O Impact: 2 clock cycles per branch instruction = slow

e\ * Slide is courtesy of Dave Patterson

P)

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

ST 0n o5 -

- Dd Q =

4 Impact: 1 clock cycles per branch instruction if right, 2 if wrong

£/c2\

P)

\Y

Control Hazard Solution

O Predict: guess one direction then back up if wrong
=» Predict not taken

Time (clock cycles)

Add
Beq

Load

Mem

I I I
Reg |! | [Mem |

1 I

I I

I I

Reg

.______________E_

|
S I
Reg [T\ L' Mem |! [Reg
|
_Ik |
| |
|
|

|Mem

(right 50% of time)
1 More dynamic scheme: history of 1 branch (90%)

Mem _i:Reg ‘i_%l

L

Reg

* Slide is courtesy of Dave Patterson

Courtesy

M~ ~cmmm o N~ s -

CMSC 411, Computer Architecture

15

1 Redefine branch behavior (takes place after next instruction)

ST 0n S -

= o a-=0

Control Hazard Solution

Time (clock cycles)

Add
Beq

Misc

Load

23

| | | | |

Mem |[[Reg [T \= L!Mem |1 _|Reg [! I I
21						
: Mem _:[Reg [, >Cl— ' Mem ,! Reg : :						
N						
, IIMem IMem	!	Reg	!			
	v					

Reg

Il\/lem i

4 Impact: O clock cycles per branch instruction if can find
Instruction to put in “slot” (50% of time)

£/c2\

P)

\Y

* Slide is courtesy of Dave Patterson

Courtesy

M~ ~cmmm o N~ s -

CMSC 411, Computer Architecture

16

Data Hazard

_Hb, mwnv
- - |||Irl+ |||||||||||||||||
| o
Ole | |E
S i e
b| e
g -
O
sl © € T o =
S| i
o — =
L 2 - 9 - o
) M Rru 00) —
- — —
[O O © —
e - (- - (@)
© n @ O >

Dependencies backwards in time are hazards

* Slide is courtesy of Dave Patterson

£/c2\

e ogeaty

\Y

ot e

17

CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Courtesy

Data Hazard Solution

Time (clock cycles)

X
DN\ |
I |
| Reg|
I
I

Im

=01
B £
B e A
L | E
3
2 2 T e =
A\ P -
| - ~
2 " - N
S 2 g d
o O e —
@) > (- — o
© 7 © O X

result from one stage to another

* Slide is courtesy of Dave Patterson

P)

18

CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Courtesy

\Y

Resolving Data Hazards for Loads

Time (clock cycles) I I I
1 1 1

1= :ID/RFI EX : MEM
|

lw ,O(r2) im || Reg >:'_ Dm B_Reg i

|
o - —
—

Reg

subr4,r1.r3

3
_______H__-_..

pY)

D

«
— e = e e e e e e = = o = o = ¥

1 Dependencies backwards in time are hazards
1 Cannot solve with forwarding
1 Must delay/stall instruction dependent on loads

e\ * Slide is courtesy of Dave Patterson

P)

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

Conclusion
d Summary

=>» An overview of Pipelining

* Pipelining concept is natural
« Start handling of next instruction while current one is in progress

=» Pipeline performance
« Performance improvement by increasing instruction throughput
« |deal and upper bound for speedup is number of stages in pipeline

=» Pipelined hazards
« Structural, data and control hazards
« Hazard resolution techniques

d Next Lecture
=» Designing a pipelined datapath
=>» Pipelined control

Read section 4.5 in the 5th Ed., or 4.5 in the 4th Ed. of the textbook

Ny Courtesy CMSC 411, Computer Architecture

M~ ~cmmm o N~ s -

