
CMSC 411

Computer Architecture

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture 1

Lecture 12

Micro-programming & Exceptions



Lecture’s Overview

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture 2

 Previous Lecture:

• Disadvantages of the Single Cycle Processor
 Long cycle time

 Cycle time is too long for all instructions except the Load

• Multiple Cycle Processor:
 Divide the instructions into smaller steps

 Execute each step (instead of the entire instruction) in one cycle

• Control is specified by finite state diagram

• Follow same 5-step method for designing “real” processor

 This Lecture:

• Micro-programmed control

• Processor exceptions



Overview of Processor Design

Processor

Computer

Control

Datapath

Memory Devices

Input  

Output

Connections for  

Information flow

Coordination for  

proper operation
In today’s  

class we  

study how  

to design  

control in a  

micro-instr.

Design Steps:

1. Analyze instruction set => datapath requirements

2. Select set of datapath components and establish  

clocking methodology

3. Assemble datapath meeting the requirements

4. Analyze implementation of each instruction to determine  

setting of control points that effects the register transfer

5. Assemble the control logic

✓ Applied for

multi-cycle

processor

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture 3



Multiple Cycle Datapath

32

32

32

RAdr

Ideal  

Memory  
WrAdr

Din Dout

32

A
L

U

32

32

ALUOp

ALU

Control

In
s

tru
c
tio

n
R

e
g

32

32

5

5

32

Ra

Rb busA

Reg File

Rw

busWbusB 32

Rs

Rt

M
u

x

1

Rt 0

Rd

PCWr

ALUSelA

1 Mux 0

MemWr IRWr RegDst RegWr

M
u

x

0

1

PC

Extend

ExtOp

M
u

x
0

1
32

0

1

2

3

4

Imm 16 32

MemtoReg

<< 2

ALUSelB

M
u

x

1

0

Target
32

Zero

Zero

PCWrCond PCSrc BrWr

32

32

IorD

A
L

U
 O

u
t

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture



Controller FSM Specifications

R-type ORi LW BEQ & Equal  

BEQ & ~Equal

PC  PC +

SX || 00

SW

“instruction fetch”

“decode”

E
x
e

c
u

te

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

M
e

m
o

ry

W
ri

te
-b

a
c
k

IR <= MEM[PC]  
0000

A <= R[rs]  

B <= R[rt]
0001

S  A fun B

0100

R[rd]  S  

PC  PC + 4
0101

S  A or ZX

0110

R[rt]  S  

PC  PC + 4
0111

S <= A + SX

1000

M <= MEM[S]

1001

R[rt] M  

PC  PC + 4
1010

PC  PC + 4

0011 0010

S  A + SX

1011

MEM[S] <= B  

PC  PC + 4
1100



Detailed Control Specification

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture 6

R:

ORi:  

LW:

SW:

State

0000

Op field

??????

Eq

?

Next

0001

IR

1

PC

en sel

Ops  

A B

Exec

Ex Sr ALU S

Mem  

R W M

Write-B  

M-R Wr

ack  

Dst

0001 BEQ 0 0011 1 1

0001 BEQ 1 0010 1 1

0001 R-type x 0100 1 1

0001 orI x 0110 1 1

0001 LW x 1000 1 1

0001 SW x 1011 1 1
0010 xxxxxx x 0000 1 1

0011 xxxxxx x 0000 1 0

0100 xxxxxx x 0101 0 1 fun 1

0101 xxxxxx x 0000 1 0 0 1 1

0110 xxxxxx x 0111 0 0 or 1
0111 xxxxxx x 0000 1 0 0 1 0

1000 xxxxxx x 1001 1 0 add 1

1001 xxxxxx x 1010 1 0 0

1010 xxxxxx x 0000 1 0 1 1 0

1011 xxxxxx x 1100 1 0 add 1
1100 xxxxxx x 0000 1 0 0 1



I n i t i a l   

re p r e s e n ta t io n

F i n i t e s t a t e   

d i a g r a m
M i c r o p r o g r a m

S e q u e n c in g   

c o n t r o l

E x p l i c i t  n e x t   

s t a t e f u n c t i o n
M i c r o p r o g r a m c o u n t e r

+  d i s p a t c h R O M S

L o g i c   

re p r e s e n ta t io n

L o g i c   

e q u a t io n s

T r u t h   

t a b le s

I m p l e m e n t a t i o n   

t e c h n i q u e

P r o g ra m m a b le   

l o g i c a r r a y

R e a d o n l y   

m e m o r y

Overview of Control Design

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture 7

 Control may be designed using one of several initial representation

 The choice of sequence control, and how logic is represented, can be  

determined independently

 The control can then be implemented with one of several methods using

a structured logic technique * Slide is courtesy of Dave Patterson



Example: PLA Implementation Control
op<5>. . op<5>. . op<5>. . op<5>. . op<5>. . op<5>. .

<0> <0> <0> <0> <0> op<0>

R-type ori lw sw beq jump
RegWrite

ALUSrc 

RegDst

MemtoReg

MemWrite

Branch  

Jump

ExtOp

ALUop<2>

ALUop<1>

ALUop<0>

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture



Micro-programming

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

 Control is the hard part of processor design

 Datapath is fairly regular and well-organized

 Memory is highly regular

 Control is irregular and global

 Micro-programming:

A Particular Strategy for Implementing the Control Unit of a processor by  

"programming" at the level of register transfer operations

 Micro-architecture:

Logical structure and functional capabilities of the hardware as seen by  

the micro-programmer

 Historical Note:

 IBM 360 Series first to distinguish between architecture & organization

 Same instruction set across wide range of implementations, each with  
different cost/performance



Micro-programmed Controller Design

The state diagrams that define the controller for an  

instruction set processor are highly structured

Use this structure to construct a simple “micro-sequencer”

Control reduces to programming this very simple device

 micro-programming

sequencer  

control

datapath  

control

micro-PC
sequencer

Micro-instruction

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture



Sequencer-based control unit

Opcode

State Reg

Inputs

Outputs

Control Logic Multi-cycle  

Datapath

1

Address Select Logic

Adder

Types of “branching”

• Set state to 0

• Dispatch (state 1)

• Use incremented

state  number

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture



“Micro-instruction” Interpretation

Main  
Memory

execution  
unit

control  
memory

CPU

ADD
SUB
AND

.

.

.

DATA

AND micro-sequence

e.g., Fetch
Calc. Operand Addr.  
Fetch Operand(s)  
Calculate
Save Answer(s)

User program  
plus Data

this can change!

one of these is  
mapped into one  
of these

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture



Variations on Micro-programming

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

 “Horizontal” Micro-code

 control field for each control point in the machine

 more control over the potential parallelism of operations in the datapath

 uses up lots of control store

 “Vertical” Micro-code

 compact micro-instruction format for each class of micro-operation

branch:  

execute:  

memory:

µseq-op

ALU-op

mem-op

µadd  

A,B,R  

S, D

 local decode to generate all control points

 Easier to program, not very different from programming a RISC machine  

in assembly language

 Extra level of decoding may slow the machine down

µseq µaddr A-mux B-mux bus enables register enables



Example Of Horizontal Micro-programs

Incr PC

ALU control

1 bit for each loadable register

. . . N3 N2 N1 N0
input  
select

 Depending on bus organization, many potential control  
combinations simply wrong, i.e., implies transfers that can  
never happen at the same time

 Example:
mem_to_reg and ALU_to_reg should never happen simultaneously;
 encode in single bit which is decoded rather than two separate bits

Makes sense to encode fields to save ROM space

3 1

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture



Vertical Micro-programming Format

src dst

D

E

C

D

E

C

other control fields next states inputs

MUX

 Multi-format Micro-code:
1 3 6

1 3 3 3

0 cond next address

1 dst src alu

D

E

C

D

E

C

Branch Jump

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

Register transfer Operation

 Single-format Micro-code:



Designing a Micro-instruction Set

* Slide is courtesy of Dave Patterson

17Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

1) Start with list of control signals

2) Group together signals when makes sense (vs. 

random):  called “fields”

3) Place fields in some logical order

(e.g., ALU operation & operands first and micro-instruction sequencing last)

4) Create a symbolic legend for the micro-instruction format,  

showing name of field values and how they set control signals

 Use computers to design computers

5) To minimize the width, encode operations that will never be  

used at the same time



1&2) list signals, grouped into fields
S

in
g
le

 B
it

C
o
n

tr
o
l

M
u

lt
ip

le
 B

it
C

o
n

tr
o
l

IF ALUzero then PC = PCSource

Signal name Effect when deasserted Effect when asserted

ALUSelA 1st ALU operand = PC 1st ALU operand = Reg[rs]
RegWrite None Reg. is written

MemtoReg Reg. write data input = ALU Reg. write data input = memory RegDst
RegDst Reg. dest. no. = rt Reg. dest. no. = rd

TargetWrite None Target reg. = ALU
MemRead None Memory at address is read
MemWrite None Memory at address is written
IorD Memory address = PC Memory address = ALU
IRWrite None IR = Memory

PCWrite None PC = PCSource
PCWriteCond None

Signal name Value Effect
ALUOp

ALUSelB

00
01
10
11
000

ALU adds  
ALU subtracts
ALU does function code
ALU does logical OR  
2nd ALU input = Reg[rt]

PCSource

001
010
011
100
00

2nd ALU input = 4
2nd ALU input = sign extended IR[15-0]
2nd ALU input = sign extended, shift left 2 IR[15-0]  
2nd ALU input = zero extended IR[15-0]
PC = ALU

01
10

PC = Target
PC = PC+4[29-26] : IR[25–0] << 2

* Slide is courtesy of Dave Patterson

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture 18



3) Encoded fields

Field Name Control Signals Set

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

Width

wide narrow

ALU Control 4 2 ALUOp

SRC1 2 1 ALUSelA

SRC2 5 3 ALUSelB

ALU Destination 6 4 RegWrite, MemtoReg, RegDst, TargetWr.

Memory 4 3 MemRead, MemWrite, IorD

Memory Register 1 1 IRWrite

PCWrite Control 5 4 PCWrite, PCWriteCond, PCSource

Sequencing 3 2 AddrCtl

Total width 30 20 bits



4) Legend of Fields and Symbolic Names

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

Field Name Values for Field Function of Field with Specific Value

ALU Add ALU adds

Subt. ALU subtracts

Func code ALU does function code

Or ALU does logical OR

SRC1 PC 1st ALU input = PC

rs 1st ALU input = Reg[rs]

SRC2 4 2nd ALU input = 4

Extend 2nd ALU input = sign ext. IR[15-0]

Extend0 2nd ALU input = zero ext. IR[15-0]

Extshft 2nd ALU input = sign ex., sl IR[15-0]

rt 2nd ALU input = Reg[rt]

ALU destination Target Target = ALUout

rd Reg[rd] = ALUout

Memory Read PC Read memory using PC

Read ALU Read memory using ALU output

Write ALU Write memory using ALU output

Memory register IR IR = Mem

Write rt Reg[rt] = Mem

Read rt Mem = Reg[rt]

…….



5) Create Micro-program

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture 21

Label ALU SRC1 SRC2 ALUDest. Memory Mem. Reg. PC Write

ALUFetch Add  

Add

PC 4 Read PC IR

PC Extshft Target

Sequencing

Seq  

Dispatch

LW Add rs Extend

Read ALU Write rt

Seq  

Fetch

SW Add rs Extend

Write ALU Read rt

Seq  

Fetch

Rtype Func rs rt

rd

Seq  

Fetch

BEQ1

JUMP1

Subt. rs rt Target–cond.

jump address

Fetch

Fetch

ORI Or rs Extend0

rd

Seq  

Fetch



Micro-programming Pros and Cons

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

Advantages:

 Ease of design

 Flexibility

 Easy to adapt to changes in organization, timing, technology

 Can make changes late in design cycle, or even in the field

 Scalable for very powerful instruction sets

 Just more control memory

 Generality

 Can implement multiple instruction sets on same machine.

 Can tailor instruction set to application

 Compatibility

 Many organizations, same instruction set

Disadvantages

 Costly to implement  Slow



Exceptions

 Exception = unplanned control transfer
 system takes action to handle the exception

• must record the address of the offending instruction

 returns control to user

 must save & restore user state

 Allows construction of a “user virtual machine”

user program
System  

Exception  

HandlerException:

return from  

exception

normal control flow:

sequential, jumps, branches, calls, returns

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture



Types of Exceptions

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

 Interrupts

 caused by external events

 asynchronous to program execution

 may be handled between instructions

 simply suspend and resume user program

 Traps

 caused by internal events

• exceptional conditions (overflow)

• errors (parity)

• faults (non-resident page)

 synchronous to program execution

 condition must be remedied by the handler

 instruction may be retried or simulated and program  

continued or program may be aborted



MIPS Convention

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

 Exception means any unexpected change in control flow,  

without distinguishing internal or external

 Use the term interrupt only when the event is externally caused

MIPS architecture defines the instruction as having no effect if  

the instruction causes an exception

Type of event From where? MIPS terminology

I/O device request External Interrupt

Invoke OS from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or Interrupt



Addressing Exception Handlers

 Traditional Approach: Interrupt Vector

 PC  MEM[ IV_base + cause || 00]

 370, 68000, Vax, 80x86, . . .

 RISC Handler Table

 PC  IT_base + cause || 0000

 saves state and jumps

 Sparc, PA, M88K, . . .

 MIPS Approach: fixed entry

 PC  EXC_addr

 Actually very small table

• RESET entry

• TLB

• other

iv_base
cause

handler  

code

iv_base

handle

r

cause

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

entry code



MIPS support for Exceptions

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

 EPC: a 32-bit register used to hold the address of the 

affected  instruction

 Cause: a register used to record the cause of the exception

 BadVAddr: register contained memory address at 

which memory  reference occurred

 Status: interrupt mask and enable bits

 Control signals to write EPC , Cause, BadVAddr, and Status

 Be able to write exception address into PC, increase MUX to add as  

input 10000000 00000000 00000000 10000000two (8000 0080hex)

May have to undo PC = PC + 4, since want EPC to point to offending  

instruction (not its successor); PC = PC - 4



MIPS Status register

* Slide is courtesy of Dave Patterson

28Courtesy 
Mohamed Younis

CMSC 411, ComputerArchitecture

15 8 5 4 3 2 1 0

Mask k e k e k eStatus

old prevcurrent

 Mask = 1 bit for each of 5 hardware and 3 software interrupt levels

 1 => enables interrupts

 0 => disables interrupts

 k = kernel/user (important to know setting after interrupt is serviced)

 0 => was in the kernel when interrupt occurred

 1 => was running user mode

 e = interrupt enable

 0 => interrupts were disabled

 1 => interrupts were enabled

 When interrupt occurs, 6 LSB shifted left 2 bits, setting 2 LSB to 0

 run in kernel mode with interrupts disabled

 Enable handling nested exceptions (when allowed)

CMSC 411, Computer Architecture



 0 (INT)

 4 (ADDRL)

 5 (ADDRS)

 6 (IBUS)

 7 (DBUS)

 8 (Syscall)

 9 (BKPT)

 10 (RI)

 12 (OVF)

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

 external interrupt

 address error exception (load or instr fetch)

 address error exception (store)

 bus error on instruction fetch

 bus error on data fetch

 Syscall exception

 Breakpoint exception

 Reserved Instruction exception

 Arithmetic overflow exception

Status

Pending interrupt 5 H/W levels: bit set if interrupt occurs but not yet serviced

 handles cases when more than one interrupt occurs at the same time, or  

while records interrupt requests when interrupts are disabled

Exception Code encodes reasons for interrupt

MIPS Cause register
15 10 5 2

Pending Code



Detecting Exceptions

Undefined Instruction–detected when no next state is defined  

from state 1 for the op value.

We handle this exception by defining the next state value for all op  

values other than lw, sw, 0 (R-type), jmp, beq, and ori as new state

 Shown symbolically using “other” to indicate that the op field does not  

match any of the op-codes that label arcs out of state 1

Arithmetic overflow: logic is included in the ALU to detect  

overflow, and a signal called Overflow is provided as an output  

from the ALU

Challenge in designing control of a real machine is to handle  

different interactions between instructions and other exception-

causing events such that control logic remains small and fast

Complex interactions makes control unit the most challenging aspect of h/w design

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture



Modification to the Control Specification
IR MEM[PC]  

PC  PC + 4

R-type

A R[rs]  

B  R[rt]

S  A funB

R[rd]  S

S  A opZX

R[rt]  S

ORi

S  A +SX

R[rt] M

MMEM[S]

LW

S  A +SX

MEM[S]  B

SW

other

undefined instruction

EPC  PC - 4

PC  exp_addr  

cause  10 (RI)

EPC  PC - 4

PC  exp_addr  

cause  12 (Ovf)

overflow

BEQ

S  A -B  

0010

Equal

PC  PC +
SX || 00

0011

Courtesy 
Mohamed Younis

CMSC 411, Computer Architecture

~Equal



Mohamed Younis CMSC 411, ComputerArchitecture 32

Extended Datapath/Contol

CMSC 411, Computer ArchitectureCourtesy 
Mohamed Younis



Mohamed Younis CMPE 411, ComputerArchitecture 33

Conclusion
 Summary

 Micro-programmed control
• PLA versus ROM based control unit design

• Horizontal versus vertical micro-coding

• Designing a micro-instruction set

 Processor exceptions
• Exceptions are the hardest part of control

• MIPS interrupts and exceptions support

• Detecting exceptions by the control unit

 Next Lecture

 An overview of Pipelining

 A pipelined datapath

 Pipelined control

Read sections D.5 in 5th Ed.

CMSC 411, Computer ArchitectureCourtesy 
Mohamed Younis


